//! The `thin_client` module is a client-side object that interfaces with //! a server-side TPU. Client code should use this object instead of writing //! messages to the network directly. The binary encoding of its messages are //! unstable and may change in future releases. use bincode::{deserialize, serialize}; use futures::future::{ok, FutureResult}; use hash::Hash; use request::{Request, Response, Subscription}; use signature::{KeyPair, PublicKey, Signature}; use std::collections::HashMap; use std::io; use std::net::{SocketAddr, UdpSocket}; use transaction::Transaction; pub struct ThinClient { pub addr: SocketAddr, pub requests_socket: UdpSocket, pub events_socket: UdpSocket, last_id: Option, num_events: u64, transaction_count: u64, balances: HashMap>, } impl ThinClient { /// Create a new ThinClient that will interface with Rpu /// over `requests_socket` and `events_socket`. To receive responses, the caller must bind `socket` /// to a public address before invoking ThinClient methods. pub fn new(addr: SocketAddr, requests_socket: UdpSocket, events_socket: UdpSocket) -> Self { let client = ThinClient { addr: addr, requests_socket, events_socket, last_id: None, num_events: 0, transaction_count: 0, balances: HashMap::new(), }; client.init(); client } pub fn init(&self) { let subscriptions = vec![Subscription::EntryInfo]; let req = Request::Subscribe { subscriptions }; let data = serialize(&req).expect("serialize Subscribe in thin_client"); trace!("subscribing to {}", self.addr); let _res = self.requests_socket.send_to(&data, &self.addr); } pub fn recv_response(&self) -> io::Result { let mut buf = vec![0u8; 1024]; info!("start recv_from"); self.requests_socket.recv_from(&mut buf)?; info!("end recv_from"); let resp = deserialize(&buf).expect("deserialize balance in thin_client"); Ok(resp) } pub fn process_response(&mut self, resp: Response) { match resp { Response::Balance { key, val } => { info!("Response balance {:?} {:?}", key, val); self.balances.insert(key, val); } Response::LastId { id } => { info!("Response last_id {:?}", id); self.last_id = Some(id); } Response::TransactionCount { transaction_count } => { info!("Response transaction count {:?}", transaction_count); self.transaction_count = transaction_count; } Response::EntryInfo(entry_info) => { trace!("Response entry_info {:?}", entry_info.id); self.last_id = Some(entry_info.id); self.num_events += entry_info.num_events; } } } /// Send a signed Transaction to the server for processing. This method /// does not wait for a response. pub fn transfer_signed(&self, tr: Transaction) -> io::Result { let req = Request::Transaction(tr); let data = serialize(&req).expect("serialize Transaction in pub fn transfer_signed"); self.requests_socket.send_to(&data, &self.addr) } /// Creates, signs, and processes a Transaction. Useful for writing unit-tests. pub fn transfer( &self, n: i64, keypair: &KeyPair, to: PublicKey, last_id: &Hash, ) -> io::Result { let tr = Transaction::new(keypair, to, n, *last_id); let sig = tr.sig; self.transfer_signed(tr).map(|_| sig) } /// Request the balance of the user holding `pubkey`. This method blocks /// until the server sends a response. If the response packet is dropped /// by the network, this method will hang indefinitely. pub fn get_balance(&mut self, pubkey: &PublicKey) -> io::Result { info!("get_balance"); let req = Request::GetBalance { key: *pubkey }; let data = serialize(&req).expect("serialize GetBalance in pub fn get_balance"); self.requests_socket .send_to(&data, &self.addr) .expect("buffer error in pub fn get_balance"); let mut done = false; while !done { let resp = self.recv_response()?; info!("recv_response {:?}", resp); if let &Response::Balance { ref key, .. } = &resp { done = key == pubkey; } self.process_response(resp); } self.balances[pubkey].ok_or(io::Error::new(io::ErrorKind::Other, "nokey")) } /// Request the transaction count. If the response packet is dropped by the network, /// this method will hang. pub fn transaction_count(&mut self) -> u64 { info!("transaction_count"); let req = Request::GetTransactionCount; let data = serialize(&req).expect("serialize GetTransactionCount in pub fn transaction_count"); self.requests_socket .send_to(&data, &self.addr) .expect("buffer error in pub fn transaction_count"); let mut done = false; while !done { let resp = self.recv_response().expect("transaction count dropped"); info!("recv_response {:?}", resp); if let &Response::TransactionCount { .. } = &resp { done = true; } self.process_response(resp); } self.transaction_count } /// Request the last Entry ID from the server. This method blocks /// until the server sends a response. pub fn get_last_id(&mut self) -> FutureResult { info!("get_last_id"); let req = Request::GetLastId; let data = serialize(&req).expect("serialize GetLastId in pub fn get_last_id"); self.requests_socket .send_to(&data, &self.addr) .expect("buffer error in pub fn get_last_id"); let mut done = false; while !done { let resp = self.recv_response().expect("get_last_id response"); info!("recv_response {:?}", resp); if let &Response::LastId { .. } = &resp { done = true; } self.process_response(resp); } ok(self.last_id.expect("some last_id")) } } #[cfg(test)] mod tests { use super::*; use accountant::Accountant; use crdt::{Crdt, ReplicatedData}; use event_processor::EventProcessor; use futures::Future; use logger; use mint::Mint; use plan::Plan; use rpu::Rpu; use signature::{KeyPair, KeyPairUtil}; use std::io::sink; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::{Arc, RwLock}; use std::thread::sleep; use std::time::Duration; use std::time::Instant; use tvu::{self, Tvu}; #[test] #[ignore] fn test_thin_client() { logger::setup(); let gossip = UdpSocket::bind("0.0.0.0:0").unwrap(); let serve = UdpSocket::bind("0.0.0.0:0").unwrap(); let _events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let addr = serve.local_addr().unwrap(); let pubkey = KeyPair::new().pubkey(); let d = ReplicatedData::new( pubkey, gossip.local_addr().unwrap(), "0.0.0.0:0".parse().unwrap(), serve.local_addr().unwrap(), ); let alice = Mint::new(10_000); let accountant = Accountant::new(&alice); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let event_processor = EventProcessor::new(accountant, &alice.last_id(), Some(30)); let rpu = Rpu::new(event_processor); let threads = rpu.serve(d, serve, gossip, exit.clone(), sink()).unwrap(); sleep(Duration::from_millis(900)); let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new(addr, requests_socket, events_socket); let last_id = client.get_last_id().wait().unwrap(); let _sig = client .transfer(500, &alice.keypair(), bob_pubkey, &last_id) .unwrap(); let mut balance; let now = Instant::now(); loop { balance = client.get_balance(&bob_pubkey); if balance.is_ok() { break; } if now.elapsed().as_secs() > 0 { break; } } assert_eq!(balance.unwrap(), 500); exit.store(true, Ordering::Relaxed); for t in threads { t.join().unwrap(); } } #[test] #[ignore] fn test_bad_sig() { let (leader_data, leader_gossip, _, leader_serve, _leader_events) = tvu::test_node(); let alice = Mint::new(10_000); let accountant = Accountant::new(&alice); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let event_processor = EventProcessor::new(accountant, &alice.last_id(), Some(30)); let rpu = Rpu::new(event_processor); let serve_addr = leader_serve.local_addr().unwrap(); let threads = rpu.serve( leader_data, leader_serve, leader_gossip, exit.clone(), sink(), ).unwrap(); sleep(Duration::from_millis(300)); let requests_socket = UdpSocket::bind("127.0.0.1:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(5, 0))) .unwrap(); let events_socket = UdpSocket::bind("127.0.0.1:0").unwrap(); let mut client = ThinClient::new(serve_addr, requests_socket, events_socket); let last_id = client.get_last_id().wait().unwrap(); trace!("doing stuff"); let tr = Transaction::new(&alice.keypair(), bob_pubkey, 500, last_id); let _sig = client.transfer_signed(tr).unwrap(); let last_id = client.get_last_id().wait().unwrap(); let mut tr2 = Transaction::new(&alice.keypair(), bob_pubkey, 501, last_id); tr2.data.tokens = 502; tr2.data.plan = Plan::new_payment(502, bob_pubkey); let _sig = client.transfer_signed(tr2).unwrap(); assert_eq!(client.get_balance(&bob_pubkey).unwrap(), 500); trace!("exiting"); exit.store(true, Ordering::Relaxed); trace!("joining threads"); for t in threads { t.join().unwrap(); } } fn test_node() -> (ReplicatedData, UdpSocket, UdpSocket, UdpSocket, UdpSocket) { let gossip = UdpSocket::bind("0.0.0.0:0").unwrap(); let serve = UdpSocket::bind("0.0.0.0:0").unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let replicate = UdpSocket::bind("0.0.0.0:0").unwrap(); let pubkey = KeyPair::new().pubkey(); let leader = ReplicatedData::new( pubkey, gossip.local_addr().unwrap(), replicate.local_addr().unwrap(), serve.local_addr().unwrap(), ); (leader, gossip, serve, replicate, events_socket) } #[test] #[ignore] fn test_multi_node() { logger::setup(); info!("test_multi_node"); let leader = test_node(); let replicant = test_node(); let alice = Mint::new(10_000); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let leader_acc = { let accountant = Accountant::new(&alice); let event_processor = EventProcessor::new(accountant, &alice.last_id(), Some(30)); Rpu::new(event_processor) }; let replicant_acc = { let accountant = Accountant::new(&alice); let event_processor = EventProcessor::new(accountant, &alice.last_id(), Some(30)); Arc::new(Tvu::new(event_processor)) }; let leader_threads = leader_acc .serve(leader.0.clone(), leader.2, leader.1, exit.clone(), sink()) .unwrap(); let replicant_threads = Tvu::serve( &replicant_acc, replicant.0.clone(), replicant.1, replicant.2, replicant.3, leader.0.clone(), exit.clone(), ).unwrap(); //lets spy on the network let (mut spy, spy_gossip, _, _, _) = test_node(); let daddr = "0.0.0.0:0".parse().unwrap(); spy.replicate_addr = daddr; spy.serve_addr = daddr; let mut spy_crdt = Crdt::new(spy); spy_crdt.insert(leader.0.clone()); spy_crdt.set_leader(leader.0.id); let spy_ref = Arc::new(RwLock::new(spy_crdt)); let t_spy_listen = Crdt::listen(spy_ref.clone(), spy_gossip, exit.clone()); let t_spy_gossip = Crdt::gossip(spy_ref.clone(), exit.clone()); //wait for the network to converge for _ in 0..20 { let ix = spy_ref.read().unwrap().update_index; info!("my update index is {}", ix); let len = spy_ref.read().unwrap().remote.values().len(); let mut done = false; info!("remote len {}", len); if len > 1 && ix > 2 { done = true; //check if everyones remote index is greater or equal to ours let vs: Vec = spy_ref.read().unwrap().remote.values().cloned().collect(); for t in vs.into_iter() { info!("remote update index is {} vs {}", t, ix); if t < 3 { done = false; } } } if done == true { info!("converged!"); break; } sleep(Duration::new(1, 0)); } //verify leader can do transfer let leader_balance = { let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(1, 0))) .unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new(leader.0.serve_addr, requests_socket, events_socket); info!("getting leader last_id"); let last_id = client.get_last_id().wait().unwrap(); info!("executing leader transer"); let _sig = client .transfer(500, &alice.keypair(), bob_pubkey, &last_id) .unwrap(); info!("getting leader balance"); client.get_balance(&bob_pubkey).unwrap() }; assert_eq!(leader_balance, 500); //verify replicant has the same balance let mut replicant_balance = 0; for _ in 0..10 { let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(1, 0))) .unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new(replicant.0.serve_addr, requests_socket, events_socket); info!("getting replicant balance"); if let Ok(bal) = client.get_balance(&bob_pubkey) { replicant_balance = bal; } info!("replicant balance {}", replicant_balance); if replicant_balance == leader_balance { break; } sleep(Duration::new(1, 0)); } assert_eq!(replicant_balance, leader_balance); exit.store(true, Ordering::Relaxed); for t in leader_threads { t.join().unwrap(); } for t in replicant_threads { t.join().unwrap(); } for t in vec![t_spy_listen, t_spy_gossip] { t.join().unwrap(); } } }