use crate::blob_fetch_stage::BlobFetchStage; use crate::blocktree::Blocktree; use crate::chacha::{chacha_cbc_encrypt_ledger, CHACHA_BLOCK_SIZE}; use crate::cluster_info::{ClusterInfo, Node, FULLNODE_PORT_RANGE}; use crate::contact_info::ContactInfo; use crate::gossip_service::GossipService; use crate::packet::to_shared_blob; use crate::recycler::Recycler; use crate::repair_service::{RepairService, RepairSlotRange, RepairStrategy}; use crate::result::{Error, Result}; use crate::service::Service; use crate::storage_stage::NUM_STORAGE_SAMPLES; use crate::streamer::{blob_receiver, receiver, responder, BlobReceiver}; use crate::window_service::WindowService; use crate::{repair_service, window_service}; use bincode::deserialize; use rand::thread_rng; use rand::Rng; use rand::SeedableRng; use rand_chacha::ChaChaRng; use solana_client::rpc_client::RpcClient; use solana_client::rpc_request::RpcRequest; use solana_client::thin_client::ThinClient; use solana_ed25519_dalek as ed25519_dalek; use solana_netutil::bind_in_range; use solana_sdk::account_utils::State; use solana_sdk::client::{AsyncClient, SyncClient}; use solana_sdk::hash::{Hash, Hasher}; use solana_sdk::message::Message; use solana_sdk::signature::{Keypair, KeypairUtil, Signature}; use solana_sdk::timing::{get_complete_segment_from_slot, get_segment_from_slot, timestamp}; use solana_sdk::transaction::Transaction; use solana_sdk::transport::TransportError; use solana_storage_api::storage_contract::StorageContract; use solana_storage_api::storage_instruction; use std::fs::File; use std::io::{self, BufReader, ErrorKind, Read, Seek, SeekFrom}; use std::mem::size_of; use std::net::{SocketAddr, UdpSocket}; use std::path::{Path, PathBuf}; use std::result; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::mpsc::{channel, Receiver, Sender}; use std::sync::{Arc, RwLock}; use std::thread::{sleep, spawn, JoinHandle}; use std::time::Duration; static ENCRYPTED_FILENAME: &'static str = "ledger.enc"; #[derive(Serialize, Deserialize)] pub enum ReplicatorRequest { GetSlotHeight(SocketAddr), } pub struct Replicator { thread_handles: Vec>, exit: Arc, } // Shared Replicator Meta struct used internally #[derive(Default)] struct ReplicatorMeta { slot: u64, slots_per_segment: u64, ledger_path: String, signature: Signature, ledger_data_file_encrypted: PathBuf, sampling_offsets: Vec, blockhash: Hash, sha_state: Hash, num_chacha_blocks: usize, } pub(crate) fn sample_file(in_path: &Path, sample_offsets: &[u64]) -> io::Result { let in_file = File::open(in_path)?; let metadata = in_file.metadata()?; let mut buffer_file = BufReader::new(in_file); let mut hasher = Hasher::default(); let sample_size = size_of::(); let sample_size64 = sample_size as u64; let mut buf = vec![0; sample_size]; let file_len = metadata.len(); if file_len < sample_size64 { return Err(io::Error::new(ErrorKind::Other, "file too short!")); } for offset in sample_offsets { if *offset > (file_len - sample_size64) / sample_size64 { return Err(io::Error::new(ErrorKind::Other, "offset too large")); } buffer_file.seek(SeekFrom::Start(*offset * sample_size64))?; trace!("sampling @ {} ", *offset); match buffer_file.read(&mut buf) { Ok(size) => { assert_eq!(size, buf.len()); hasher.hash(&buf); } Err(e) => { warn!("Error sampling file"); return Err(e); } } } Ok(hasher.result()) } fn get_slot_from_signature( signature: &ed25519_dalek::Signature, storage_turn: u64, slots_per_segment: u64, ) -> u64 { let signature_vec = signature.to_bytes(); let mut segment_index = u64::from(signature_vec[0]) | (u64::from(signature_vec[1]) << 8) | (u64::from(signature_vec[1]) << 16) | (u64::from(signature_vec[2]) << 24); let max_segment_index = get_complete_segment_from_slot(storage_turn, slots_per_segment).unwrap(); segment_index %= max_segment_index as u64; segment_index * slots_per_segment } fn create_request_processor( socket: UdpSocket, exit: &Arc, slot_receiver: Receiver, ) -> Vec> { let mut thread_handles = vec![]; let (s_reader, r_reader) = channel(); let (s_responder, r_responder) = channel(); let storage_socket = Arc::new(socket); let recycler = Recycler::default(); let t_receiver = receiver( storage_socket.clone(), exit, s_reader, recycler, "replicator", ); thread_handles.push(t_receiver); let t_responder = responder("replicator-responder", storage_socket.clone(), r_responder); thread_handles.push(t_responder); let exit = exit.clone(); let t_processor = spawn(move || { let slot = poll_for_slot(slot_receiver, &exit); loop { if exit.load(Ordering::Relaxed) { break; } let packets = r_reader.recv_timeout(Duration::from_secs(1)); if let Ok(packets) = packets { for packet in &packets.packets { let req: result::Result> = deserialize(&packet.data[..packet.meta.size]); match req { Ok(ReplicatorRequest::GetSlotHeight(from)) => { if let Ok(blob) = to_shared_blob(slot, from) { let _ = s_responder.send(vec![blob]); } } Err(e) => { info!("invalid request: {:?}", e); } } } } } }); thread_handles.push(t_processor); thread_handles } fn poll_for_slot(receiver: Receiver, exit: &Arc) -> u64 { loop { let slot = receiver.recv_timeout(Duration::from_secs(1)); if let Ok(slot) = slot { return slot; } if exit.load(Ordering::Relaxed) { return 0; } } } impl Replicator { /// Returns a Result that contains a replicator on success /// /// # Arguments /// * `ledger_path` - path to where the ledger will be stored. /// Causes panic if none /// * `node` - The replicator node /// * `cluster_entrypoint` - ContactInfo representing an entry into the network /// * `keypair` - Keypair for this replicator #[allow(clippy::new_ret_no_self)] pub fn new( ledger_path: &str, node: Node, cluster_entrypoint: ContactInfo, keypair: Arc, storage_keypair: Arc, ) -> Result { let exit = Arc::new(AtomicBool::new(false)); info!("Replicator: id: {}", keypair.pubkey()); info!("Creating cluster info...."); let mut cluster_info = ClusterInfo::new(node.info.clone(), keypair.clone()); cluster_info.set_entrypoint(cluster_entrypoint.clone()); let cluster_info = Arc::new(RwLock::new(cluster_info)); // Note for now, this ledger will not contain any of the existing entries // in the ledger located at ledger_path, and will only append on newly received // entries after being passed to window_service let blocktree = Arc::new( Blocktree::open(ledger_path).expect("Expected to be able to open database ledger"), ); let gossip_service = GossipService::new( &cluster_info, Some(blocktree.clone()), None, node.sockets.gossip, &exit, ); info!("Connecting to the cluster via {:?}", cluster_entrypoint); let (nodes, _) = match crate::gossip_service::discover_cluster(&cluster_entrypoint.gossip, 1) { Ok(nodes_and_replicators) => nodes_and_replicators, Err(e) => { //shutdown services before exiting exit.store(true, Ordering::Relaxed); gossip_service.join()?; return Err(Error::from(e)); } }; let client = crate::gossip_service::get_client(&nodes); if let Err(e) = Self::setup_mining_account(&client, &keypair, &storage_keypair) { //shutdown services before exiting exit.store(true, Ordering::Relaxed); gossip_service.join()?; return Err(e); }; let repair_socket = Arc::new(node.sockets.repair); let mut blob_sockets: Vec> = node.sockets.tvu.into_iter().map(Arc::new).collect(); blob_sockets.push(repair_socket.clone()); let (blob_fetch_sender, blob_fetch_receiver) = channel(); let fetch_stage = BlobFetchStage::new_multi_socket(blob_sockets, &blob_fetch_sender, &exit); let (slot_sender, slot_receiver) = channel(); let request_processor = create_request_processor(node.sockets.storage.unwrap(), &exit, slot_receiver); let t_replicator = { let exit = exit.clone(); let node_info = node.info.clone(); let mut meta = ReplicatorMeta { ledger_path: ledger_path.to_string(), ..ReplicatorMeta::default() }; spawn(move || { // setup replicator let window_service = match Self::setup( &mut meta, cluster_info.clone(), &blocktree, &exit, &node_info, &storage_keypair, repair_socket, blob_fetch_receiver, slot_sender, ) { Ok(window_service) => window_service, Err(e) => { //shutdown services before exiting error!("setup failed {:?}; replicator thread exiting...", e); exit.store(true, Ordering::Relaxed); request_processor .into_iter() .for_each(|t| t.join().unwrap()); fetch_stage.join().unwrap(); gossip_service.join().unwrap(); return; } }; info!("setup complete"); // run replicator Self::run( &mut meta, &blocktree, cluster_info, &keypair, &storage_keypair, &exit, ); // wait until exit request_processor .into_iter() .for_each(|t| t.join().unwrap()); fetch_stage.join().unwrap(); gossip_service.join().unwrap(); window_service.join().unwrap() }) }; Ok(Self { thread_handles: vec![t_replicator], exit, }) } fn run( meta: &mut ReplicatorMeta, blocktree: &Arc, cluster_info: Arc>, replicator_keypair: &Arc, storage_keypair: &Arc, exit: &Arc, ) { // encrypt segment Self::encrypt_ledger(meta, blocktree).expect("ledger encrypt not successful"); let enc_file_path = meta.ledger_data_file_encrypted.clone(); // do replicate loop { if exit.load(Ordering::Relaxed) { break; } // TODO check if more segments are available - based on space constraints Self::create_sampling_offsets(meta); let sampling_offsets = &meta.sampling_offsets; meta.sha_state = match Self::sample_file_to_create_mining_hash(&enc_file_path, sampling_offsets) { Ok(hash) => hash, Err(err) => { warn!("Error sampling file, exiting: {:?}", err); break; } }; Self::submit_mining_proof(meta, &cluster_info, replicator_keypair, storage_keypair); // TODO make this a lot more frequent by picking a "new" blockhash instead of picking a storage blockhash // prep the next proof let (storage_blockhash, _) = match Self::poll_for_blockhash_and_slot( &cluster_info, meta.slots_per_segment, &meta.blockhash, exit, ) { Ok(blockhash_and_slot) => blockhash_and_slot, Err(e) => { warn!( "Error couldn't get a newer blockhash than {:?}. {:?}", meta.blockhash, e ); break; } }; meta.blockhash = storage_blockhash; Self::redeem_rewards(&cluster_info, replicator_keypair, storage_keypair); } exit.store(true, Ordering::Relaxed); } fn redeem_rewards( cluster_info: &Arc>, replicator_keypair: &Arc, storage_keypair: &Arc, ) { let nodes = cluster_info.read().unwrap().tvu_peers(); let client = crate::gossip_service::get_client(&nodes); if let Ok(Some(account)) = client.get_account(&storage_keypair.pubkey()) { if let Ok(StorageContract::ReplicatorStorage { validations, .. }) = account.state() { if !validations.is_empty() { let ix = storage_instruction::claim_reward( &replicator_keypair.pubkey(), &storage_keypair.pubkey(), ); let message = Message::new_with_payer(vec![ix], Some(&replicator_keypair.pubkey())); if let Err(e) = client.send_message(&[&replicator_keypair], message) { error!("unable to redeem reward, tx failed: {:?}", e); } else { info!( "collected mining rewards: Account balance {:?}", client.get_balance(&replicator_keypair.pubkey()) ); } } } } else { info!("Redeem mining reward: No account data found"); } } // Find a segment to replicate and download it. fn setup( meta: &mut ReplicatorMeta, cluster_info: Arc>, blocktree: &Arc, exit: &Arc, node_info: &ContactInfo, storage_keypair: &Arc, repair_socket: Arc, blob_fetch_receiver: BlobReceiver, slot_sender: Sender, ) -> Result<(WindowService)> { let slots_per_segment = match Self::get_segment_config(&cluster_info) { Ok(slots_per_segment) => slots_per_segment, Err(e) => { error!("unable to get segment size configuration, exiting..."); //shutdown services before exiting exit.store(true, Ordering::Relaxed); return Err(e); } }; let (segment_blockhash, segment_slot) = match Self::poll_for_segment( &cluster_info, slots_per_segment, &Hash::default(), exit, ) { Ok(blockhash_and_slot) => blockhash_and_slot, Err(e) => { //shutdown services before exiting exit.store(true, Ordering::Relaxed); return Err(e); } }; let signature = storage_keypair.sign(segment_blockhash.as_ref()); let slot = get_slot_from_signature(&signature, segment_slot, slots_per_segment); info!("replicating slot: {}", slot); slot_sender.send(slot)?; meta.slot = slot; meta.slots_per_segment = slots_per_segment; meta.signature = Signature::new(&signature.to_bytes()); meta.blockhash = segment_blockhash; let mut repair_slot_range = RepairSlotRange::default(); repair_slot_range.end = slot + slots_per_segment; repair_slot_range.start = slot; let (retransmit_sender, _) = channel(); let window_service = WindowService::new( blocktree.clone(), cluster_info.clone(), blob_fetch_receiver, retransmit_sender, repair_socket, &exit, RepairStrategy::RepairRange(repair_slot_range), |_, _, _| true, ); info!("waiting for ledger download"); Self::wait_for_segment_download( slot, slots_per_segment, &blocktree, &exit, &node_info, cluster_info, ); Ok(window_service) } fn wait_for_segment_download( start_slot: u64, slots_per_segment: u64, blocktree: &Arc, exit: &Arc, node_info: &ContactInfo, cluster_info: Arc>, ) { info!( "window created, waiting for ledger download starting at slot {:?}", start_slot ); let mut current_slot = start_slot; 'outer: loop { while blocktree.is_full(current_slot) { current_slot += 1; info!("current slot: {}", current_slot); if current_slot >= start_slot + slots_per_segment { break 'outer; } } if exit.load(Ordering::Relaxed) { break; } sleep(Duration::from_secs(1)); } info!("Done receiving entries from window_service"); // Remove replicator from the data plane let mut contact_info = node_info.clone(); contact_info.tvu = "0.0.0.0:0".parse().unwrap(); contact_info.wallclock = timestamp(); { let mut cluster_info_w = cluster_info.write().unwrap(); cluster_info_w.insert_self(contact_info); } } fn encrypt_ledger(meta: &mut ReplicatorMeta, blocktree: &Arc) -> Result<()> { let ledger_path = Path::new(&meta.ledger_path); meta.ledger_data_file_encrypted = ledger_path.join(ENCRYPTED_FILENAME); { let mut ivec = [0u8; 64]; ivec.copy_from_slice(&meta.signature.as_ref()); let num_encrypted_bytes = chacha_cbc_encrypt_ledger( blocktree, meta.slot, meta.slots_per_segment, &meta.ledger_data_file_encrypted, &mut ivec, )?; meta.num_chacha_blocks = num_encrypted_bytes / CHACHA_BLOCK_SIZE; } info!( "Done encrypting the ledger: {:?}", meta.ledger_data_file_encrypted ); Ok(()) } fn create_sampling_offsets(meta: &mut ReplicatorMeta) { meta.sampling_offsets.clear(); let mut rng_seed = [0u8; 32]; rng_seed.copy_from_slice(&meta.blockhash.as_ref()); let mut rng = ChaChaRng::from_seed(rng_seed); for _ in 0..NUM_STORAGE_SAMPLES { meta.sampling_offsets .push(rng.gen_range(0, meta.num_chacha_blocks) as u64); } } fn sample_file_to_create_mining_hash( enc_file_path: &Path, sampling_offsets: &[u64], ) -> Result<(Hash)> { let sha_state = sample_file(enc_file_path, sampling_offsets)?; info!("sampled sha_state: {}", sha_state); Ok(sha_state) } fn setup_mining_account( client: &ThinClient, keypair: &Keypair, storage_keypair: &Keypair, ) -> Result<()> { // make sure replicator has some balance if client.poll_get_balance(&keypair.pubkey())? == 0 { Err(io::Error::new( io::ErrorKind::Other, "keypair account has no balance", ))? } // check if the storage account exists let balance = client.poll_get_balance(&storage_keypair.pubkey()); if balance.is_err() || balance.unwrap() == 0 { let blockhash = match client.get_recent_blockhash() { Ok((blockhash, _)) => blockhash, Err(_) => { return Err(Error::IO(::new( io::ErrorKind::Other, "unable to get recent blockhash, can't submit proof", ))) } }; let ix = storage_instruction::create_replicator_storage_account( &keypair.pubkey(), &keypair.pubkey(), &storage_keypair.pubkey(), 1, ); let tx = Transaction::new_signed_instructions(&[keypair], ix, blockhash); let signature = client.async_send_transaction(tx)?; client .poll_for_signature(&signature) .map_err(|err| match err { TransportError::IoError(e) => e, TransportError::TransactionError(_) => io::Error::new( ErrorKind::Other, "setup_mining_account: signature not found", ), })?; } Ok(()) } fn submit_mining_proof( meta: &ReplicatorMeta, cluster_info: &Arc>, replicator_keypair: &Arc, storage_keypair: &Arc, ) { // No point if we've got no storage account... let nodes = cluster_info.read().unwrap().tvu_peers(); let client = crate::gossip_service::get_client(&nodes); let storage_balance = client.poll_get_balance(&storage_keypair.pubkey()); if storage_balance.is_err() || storage_balance.unwrap() == 0 { error!("Unable to submit mining proof, no storage account"); return; } // ...or no lamports for fees let balance = client.poll_get_balance(&replicator_keypair.pubkey()); if balance.is_err() || balance.unwrap() == 0 { error!("Unable to submit mining proof, insufficient Replicator Account balance"); return; } let blockhash = match client.get_recent_blockhash() { Ok((blockhash, _)) => blockhash, Err(_) => { error!("unable to get recent blockhash, can't submit proof"); return; } }; let instruction = storage_instruction::mining_proof( &storage_keypair.pubkey(), meta.sha_state, get_segment_from_slot(meta.slot, meta.slots_per_segment), Signature::new(&meta.signature.as_ref()), meta.blockhash, ); let message = Message::new_with_payer(vec![instruction], Some(&replicator_keypair.pubkey())); let mut transaction = Transaction::new( &[replicator_keypair.as_ref(), storage_keypair.as_ref()], message, blockhash, ); if let Err(err) = client.send_and_confirm_transaction( &[&replicator_keypair, &storage_keypair], &mut transaction, 10, 0, ) { error!("Error: {:?}; while sending mining proof", err); } } pub fn close(self) { self.exit.store(true, Ordering::Relaxed); self.join() } pub fn join(self) { for handle in self.thread_handles { handle.join().unwrap(); } } fn get_segment_config(cluster_info: &Arc>) -> result::Result { let rpc_peers = { let cluster_info = cluster_info.read().unwrap(); cluster_info.rpc_peers() }; debug!("rpc peers: {:?}", rpc_peers); if !rpc_peers.is_empty() { let rpc_client = { let node_index = thread_rng().gen_range(0, rpc_peers.len()); RpcClient::new_socket(rpc_peers[node_index].rpc) }; Ok(rpc_client .retry_make_rpc_request(&RpcRequest::GetSlotsPerSegment, None, 0) .map_err(|err| { warn!("Error while making rpc request {:?}", err); Error::IO(io::Error::new(ErrorKind::Other, "rpc error")) })? .as_u64() .unwrap()) } else { Err(io::Error::new( io::ErrorKind::Other, "No RPC peers...".to_string(), ))? } } /// Waits until the first segment is ready, and returns the current segment fn poll_for_segment( cluster_info: &Arc>, slots_per_segment: u64, previous_blockhash: &Hash, exit: &Arc, ) -> result::Result<(Hash, u64), Error> { loop { let (blockhash, turn_slot) = Self::poll_for_blockhash_and_slot( cluster_info, slots_per_segment, previous_blockhash, exit, )?; if get_complete_segment_from_slot(turn_slot, slots_per_segment).is_some() { return Ok((blockhash, turn_slot)); } } } /// Poll for a different blockhash and associated max_slot than `previous_blockhash` fn poll_for_blockhash_and_slot( cluster_info: &Arc>, slots_per_segment: u64, previous_blockhash: &Hash, exit: &Arc, ) -> result::Result<(Hash, u64), Error> { info!("waiting for the next turn..."); loop { let rpc_peers = { let cluster_info = cluster_info.read().unwrap(); cluster_info.rpc_peers() }; debug!("rpc peers: {:?}", rpc_peers); if !rpc_peers.is_empty() { let rpc_client = { let node_index = thread_rng().gen_range(0, rpc_peers.len()); RpcClient::new_socket(rpc_peers[node_index].rpc) }; let response = rpc_client .retry_make_rpc_request(&RpcRequest::GetStorageTurn, None, 0) .map_err(|err| { warn!("Error while making rpc request {:?}", err); Error::IO(io::Error::new(ErrorKind::Other, "rpc error")) })?; let (storage_blockhash, turn_slot) = serde_json::from_value::<((String, u64))>(response).map_err(|err| { io::Error::new( io::ErrorKind::Other, format!("Couldn't parse response: {:?}", err), ) })?; let turn_blockhash = storage_blockhash.parse().map_err(|err| { io::Error::new( io::ErrorKind::Other, format!( "Blockhash parse failure: {:?} on {:?}", err, storage_blockhash ), ) })?; if turn_blockhash != *previous_blockhash { info!("turn slot: {}", turn_slot); if get_segment_from_slot(turn_slot, slots_per_segment) != 0 { return Ok((turn_blockhash, turn_slot)); } } } if exit.load(Ordering::Relaxed) { return Err(Error::IO(io::Error::new( ErrorKind::Other, "exit signalled...", ))); } sleep(Duration::from_secs(5)); } } /// Ask a replicator to populate a given blocktree with its segment. /// Return the slot at the start of the replicator's segment /// /// It is recommended to use a temporary blocktree for this since the download will not verify /// blobs received and might impact the chaining of blobs across slots pub fn download_from_replicator( cluster_info: &Arc>, replicator_info: &ContactInfo, blocktree: &Arc, slots_per_segment: u64, ) -> Result<(u64)> { // Create a client which downloads from the replicator and see that it // can respond with blobs. let start_slot = Self::get_replicator_segment_slot(replicator_info.storage_addr); info!("Replicator download: start at {}", start_slot); let exit = Arc::new(AtomicBool::new(false)); let (s_reader, r_reader) = channel(); let repair_socket = Arc::new(bind_in_range(FULLNODE_PORT_RANGE).unwrap().1); let t_receiver = blob_receiver(repair_socket.clone(), &exit, s_reader); let id = cluster_info.read().unwrap().id(); info!( "Sending repair requests from: {} to: {}", cluster_info.read().unwrap().my_data().id, replicator_info.gossip ); let repair_slot_range = RepairSlotRange { start: start_slot, end: start_slot + slots_per_segment, }; // try for upto 180 seconds //TODO needs tuning if segments are huge for _ in 0..120 { // Strategy used by replicators let repairs = RepairService::generate_repairs_in_range( blocktree, repair_service::MAX_REPAIR_LENGTH, &repair_slot_range, ); //iter over the repairs and send them if let Ok(repairs) = repairs { let reqs: Vec<_> = repairs .into_iter() .filter_map(|repair_request| { cluster_info .read() .unwrap() .map_repair_request(&repair_request) .map(|result| ((replicator_info.gossip, result), repair_request)) .ok() }) .collect(); for ((to, req), repair_request) in reqs { if let Ok(local_addr) = repair_socket.local_addr() { datapoint_info!( "replicator_download", ("repair_request", format!("{:?}", repair_request), String), ("to", to.to_string(), String), ("from", local_addr.to_string(), String), ("id", id.to_string(), String) ); } repair_socket .send_to(&req, replicator_info.gossip) .unwrap_or_else(|e| { error!("{} repair req send_to({}) error {:?}", id, to, e); 0 }); } } let res = r_reader.recv_timeout(Duration::new(1, 0)); if let Ok(blobs) = res { window_service::process_blobs(&blobs, blocktree)?; } // check if all the slots in the segment are complete if Self::segment_complete(start_slot, slots_per_segment, blocktree) { break; } sleep(Duration::from_millis(500)); } exit.store(true, Ordering::Relaxed); t_receiver.join().unwrap(); // check if all the slots in the segment are complete if !Self::segment_complete(start_slot, slots_per_segment, blocktree) { Err(io::Error::new( ErrorKind::Other, "Unable to download the full segment", ))? } Ok(start_slot) } fn segment_complete( start_slot: u64, slots_per_segment: u64, blocktree: &Arc, ) -> bool { for slot in start_slot..(start_slot + slots_per_segment) { if !blocktree.is_full(slot) { return false; } } true } fn get_replicator_segment_slot(to: SocketAddr) -> u64 { let (_port, socket) = bind_in_range(FULLNODE_PORT_RANGE).unwrap(); socket .set_read_timeout(Some(Duration::from_secs(5))) .unwrap(); let req = ReplicatorRequest::GetSlotHeight(socket.local_addr().unwrap()); let serialized_req = bincode::serialize(&req).unwrap(); for _ in 0..10 { socket.send_to(&serialized_req, to).unwrap(); let mut buf = [0; 1024]; if let Ok((size, _addr)) = socket.recv_from(&mut buf) { return deserialize(&buf[..size]).unwrap(); } sleep(Duration::from_millis(500)); } panic!("Couldn't get segment slot from replicator!"); } } #[cfg(test)] mod tests { use super::*; use std::fs::{create_dir_all, remove_file}; use std::io::Write; fn tmp_file_path(name: &str) -> PathBuf { use std::env; let out_dir = env::var("OUT_DIR").unwrap_or_else(|_| "farf".to_string()); let keypair = Keypair::new(); let mut path = PathBuf::new(); path.push(out_dir); path.push("tmp"); create_dir_all(&path).unwrap(); path.push(format!("{}-{}", name, keypair.pubkey())); path } #[test] fn test_sample_file() { solana_logger::setup(); let in_path = tmp_file_path("test_sample_file_input.txt"); let num_strings = 4096; let string = "12foobar"; { let mut in_file = File::create(&in_path).unwrap(); for _ in 0..num_strings { in_file.write(string.as_bytes()).unwrap(); } } let num_samples = (string.len() * num_strings / size_of::()) as u64; let samples: Vec<_> = (0..num_samples).collect(); let res = sample_file(&in_path, samples.as_slice()); let ref_hash: Hash = Hash::new(&[ 173, 251, 182, 165, 10, 54, 33, 150, 133, 226, 106, 150, 99, 192, 179, 1, 230, 144, 151, 126, 18, 191, 54, 67, 249, 140, 230, 160, 56, 30, 170, 52, ]); let res = res.unwrap(); assert_eq!(res, ref_hash); // Sample just past the end assert!(sample_file(&in_path, &[num_samples]).is_err()); remove_file(&in_path).unwrap(); } #[test] fn test_sample_file_invalid_offset() { let in_path = tmp_file_path("test_sample_file_invalid_offset_input.txt"); { let mut in_file = File::create(&in_path).unwrap(); for _ in 0..4096 { in_file.write("123456foobar".as_bytes()).unwrap(); } } let samples = [0, 200000]; let res = sample_file(&in_path, &samples); assert!(res.is_err()); remove_file(in_path).unwrap(); } #[test] fn test_sample_file_missing_file() { let in_path = tmp_file_path("test_sample_file_that_doesnt_exist.txt"); let samples = [0, 5]; let res = sample_file(&in_path, &samples); assert!(res.is_err()); } }