//! @brief Solana Rust-based BPF program entry point supported by the latest //! BPFLoader. For more information see './bpf_loader.rs' extern crate alloc; use crate::{account_info::AccountInfo, program_error::ProgramError, pubkey::Pubkey}; use alloc::vec::Vec; use std::{ alloc::Layout, cell::RefCell, mem::{align_of, size_of}, ptr::null_mut, rc::Rc, // Hide Result from bindgen gets confused about generics in non-generic type declarations result::Result as ResultGeneric, slice::{from_raw_parts, from_raw_parts_mut}, }; pub type ProgramResult = ResultGeneric<(), ProgramError>; /// User implemented function to process an instruction /// /// program_id: Program ID of the currently executing program accounts: Accounts /// passed as part of the instruction instruction_data: Instruction data pub type ProcessInstruction = fn(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult; /// Programs indicate success with a return value of 0 pub const SUCCESS: u64 = 0; /// Start address of the memory region used for program heap. pub const HEAP_START_ADDRESS: usize = 0x300000000; /// Length of the heap memory region used for program heap. pub const HEAP_LENGTH: usize = 32 * 1024; /// Declare the entry point of the program and use the default local heap /// implementation /// /// Deserialize the program input arguments and call the user defined /// `process_instruction` function. Users must call this macro otherwise an /// entry point for their program will not be created. #[macro_export] macro_rules! entrypoint { ($process_instruction:ident) => { /// # Safety #[no_mangle] pub unsafe extern "C" fn entrypoint(input: *mut u8) -> u64 { let (program_id, accounts, instruction_data) = unsafe { $crate::entrypoint::deserialize(input) }; match $process_instruction(&program_id, &accounts, &instruction_data) { Ok(()) => $crate::entrypoint::SUCCESS, Err(error) => error.into(), } } $crate::custom_heap_default!(); $crate::custom_panic_default!(); }; } /// Fallback to default for unused custom heap feature. #[macro_export] macro_rules! custom_heap_default { () => { /// A program can provide their own custom heap implementation by adding /// a `custom-heap` feature to `Cargo.toml` and implementing their own /// `global_allocator`. /// /// If the program defines the feature `custom-heap` then the default heap /// implementation will not be included and the program is free to implement /// their own `#[global_allocator]` #[cfg(all(not(feature = "custom-heap"), target_arch = "bpf"))] #[global_allocator] static A: $crate::entrypoint::BumpAllocator = $crate::entrypoint::BumpAllocator { start: $crate::entrypoint::HEAP_START_ADDRESS, len: $crate::entrypoint::HEAP_LENGTH, }; }; } /// Fallback to default for unused custom panic feature. /// This must be used if the entrypoint! macro is not used. #[macro_export] macro_rules! custom_panic_default { () => { /// A program can provide their own custom panic implementation by /// adding a `custom-panic` feature to `Cargo.toml` and implementing /// their own `custom_panic`. /// /// A good way to reduce the final size of the program is to provide a /// `custom_panic` implementation that does nothing. Doing so will cut /// ~25kb from a noop program. That number goes down the more the /// programs pulls in Rust's libstd for other purposes. #[cfg(all(not(feature = "custom-panic"), target_arch = "bpf"))] #[no_mangle] fn custom_panic(info: &core::panic::PanicInfo<'_>) { // Full panic reporting $crate::msg!("{}", info); } }; } /// The bump allocator used as the default rust heap when running programs. pub struct BumpAllocator { pub start: usize, pub len: usize, } /// Integer arithmetic in this global allocator implementation is safe when /// operating on the prescribed `HEAP_START_ADDRESS` and `HEAP_LENGTH`. Any /// other use may overflow and is thus unsupported and at one's own risk. #[allow(clippy::integer_arithmetic)] unsafe impl std::alloc::GlobalAlloc for BumpAllocator { #[inline] unsafe fn alloc(&self, layout: Layout) -> *mut u8 { let pos_ptr = self.start as *mut usize; let mut pos = *pos_ptr; if pos == 0 { // First time, set starting position pos = self.start + self.len; } pos = pos.saturating_sub(layout.size()); pos &= !(layout.align().wrapping_sub(1)); if pos < self.start + size_of::<*mut u8>() { return null_mut(); } *pos_ptr = pos; pos as *mut u8 } #[inline] unsafe fn dealloc(&self, _: *mut u8, _: Layout) { // I'm a bump allocator, I don't free } } /// Maximum number of bytes a program may add to an account during a single realloc pub const MAX_PERMITTED_DATA_INCREASE: usize = 1_024 * 10; /// Deserialize the input arguments /// /// The integer arithmetic in this method is safe when called on a buffer that was /// serialized by runtime. Use with buffers serialized otherwise is unsupported and /// done at one's own risk. #[allow(clippy::integer_arithmetic)] /// /// # Safety #[allow(clippy::type_complexity)] pub unsafe fn deserialize<'a>(input: *mut u8) -> (&'a Pubkey, Vec>, &'a [u8]) { let mut offset: usize = 0; // Number of accounts present #[allow(clippy::cast_ptr_alignment)] let num_accounts = *(input.add(offset) as *const u64) as usize; offset += size_of::(); // Account Infos let mut accounts = Vec::with_capacity(num_accounts); for _ in 0..num_accounts { let dup_info = *(input.add(offset) as *const u8); offset += size_of::(); if dup_info == std::u8::MAX { #[allow(clippy::cast_ptr_alignment)] let is_signer = *(input.add(offset) as *const u8) != 0; offset += size_of::(); #[allow(clippy::cast_ptr_alignment)] let is_writable = *(input.add(offset) as *const u8) != 0; offset += size_of::(); #[allow(clippy::cast_ptr_alignment)] let executable = *(input.add(offset) as *const u8) != 0; offset += size_of::(); offset += size_of::(); // padding to u64 let key: &Pubkey = &*(input.add(offset) as *const Pubkey); offset += size_of::(); let owner: &Pubkey = &*(input.add(offset) as *const Pubkey); offset += size_of::(); #[allow(clippy::cast_ptr_alignment)] let lamports = Rc::new(RefCell::new(&mut *(input.add(offset) as *mut u64))); offset += size_of::(); #[allow(clippy::cast_ptr_alignment)] let data_len = *(input.add(offset) as *const u64) as usize; offset += size_of::(); let data = Rc::new(RefCell::new({ from_raw_parts_mut(input.add(offset), data_len) })); offset += data_len + MAX_PERMITTED_DATA_INCREASE; offset += (offset as *const u8).align_offset(align_of::()); // padding #[allow(clippy::cast_ptr_alignment)] let rent_epoch = *(input.add(offset) as *const u64); offset += size_of::(); accounts.push(AccountInfo { key, is_signer, is_writable, lamports, data, owner, executable, rent_epoch, }); } else { offset += 7; // padding // Duplicate account, clone the original accounts.push(accounts[dup_info as usize].clone()); } } // Instruction data #[allow(clippy::cast_ptr_alignment)] let instruction_data_len = *(input.add(offset) as *const u64) as usize; offset += size_of::(); let instruction_data = { from_raw_parts(input.add(offset), instruction_data_len) }; offset += instruction_data_len; // Program Id let program_id: &Pubkey = &*(input.add(offset) as *const Pubkey); (program_id, accounts, instruction_data) } #[cfg(test)] mod test { use super::*; use std::alloc::GlobalAlloc; #[test] fn test_bump_allocator() { // alloc the entire { let heap = vec![0u8; 128]; let allocator = BumpAllocator { start: heap.as_ptr() as *const _ as usize, len: heap.len(), }; for i in 0..128 - size_of::<*mut u8>() { let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, size_of::()).unwrap()) }; assert_eq!( ptr as *const _ as usize, heap.as_ptr() as *const _ as usize + heap.len() - 1 - i ); } assert_eq!(null_mut(), unsafe { allocator.alloc(Layout::from_size_align(1, 1).unwrap()) }); } // check alignment { let heap = vec![0u8; 128]; let allocator = BumpAllocator { start: heap.as_ptr() as *const _ as usize, len: heap.len(), }; let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, size_of::()).unwrap()) }; assert_eq!(0, ptr.align_offset(size_of::())); let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, size_of::()).unwrap()) }; assert_eq!(0, ptr.align_offset(size_of::())); let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, size_of::()).unwrap()) }; assert_eq!(0, ptr.align_offset(size_of::())); let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, size_of::()).unwrap()) }; assert_eq!(0, ptr.align_offset(size_of::())); let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, size_of::()).unwrap()) }; assert_eq!(0, ptr.align_offset(size_of::())); let ptr = unsafe { allocator.alloc(Layout::from_size_align(1, 64).unwrap()) }; assert_eq!(0, ptr.align_offset(64)); } // alloc entire block (minus the pos ptr) { let heap = vec![0u8; 128]; let allocator = BumpAllocator { start: heap.as_ptr() as *const _ as usize, len: heap.len(), }; let ptr = unsafe { allocator.alloc(Layout::from_size_align(120, size_of::()).unwrap()) }; assert_ne!(ptr, null_mut()); assert_eq!(0, ptr.align_offset(size_of::())); } } }