use crate::leader_schedule::LeaderSchedule; use crate::staking_utils; use solana_runtime::bank::Bank; use solana_sdk::pubkey::Pubkey; use solana_sdk::timing::NUM_CONSECUTIVE_LEADER_SLOTS; /// Return the leader schedule for the given epoch. fn leader_schedule(epoch_height: u64, bank: &Bank) -> Option { staking_utils::delegated_stakes_at_epoch(bank, epoch_height).map(|stakes| { let mut seed = [0u8; 32]; seed[0..8].copy_from_slice(&epoch_height.to_le_bytes()); let mut stakes: Vec<_> = stakes.into_iter().collect(); sort_stakes(&mut stakes); LeaderSchedule::new( &stakes, seed, bank.get_slots_in_epoch(epoch_height), NUM_CONSECUTIVE_LEADER_SLOTS, ) }) } fn sort_stakes(stakes: &mut Vec<(Pubkey, u64)>) { // Sort first by stake. If stakes are the same, sort by pubkey to ensure a // deterministic result. // Note: Use unstable sort, because we dedup right after to remove the equal elements. stakes.sort_unstable_by(|(l_id, l_stake), (r_id, r_stake)| { if r_stake == l_stake { r_id.cmp(&l_id) } else { r_stake.cmp(&l_stake) } }); // Now that it's sorted, we can do an O(n) dedup. stakes.dedup(); } /// Return the leader for the given slot. pub fn slot_leader_at(slot: u64, bank: &Bank) -> Option { let (epoch, slot_index) = bank.get_epoch_and_slot_index(slot); leader_schedule(epoch, bank).map(|leader_schedule| leader_schedule[slot_index]) } /// Return the next slot after the given current_slot that the given node will be leader pub fn next_leader_slot(pubkey: &Pubkey, current_slot: u64, bank: &Bank) -> Option { let (epoch, slot_index) = bank.get_epoch_and_slot_index(current_slot + 1); if let Some(leader_schedule) = leader_schedule(epoch, bank) { // clippy thinks I should do this: // for (i, ) in leader_schedule // .iter() // .enumerate() // .take(bank.get_slots_in_epoch(epoch)) // .skip(from_slot_index + 1) { // // but leader_schedule doesn't implement Iter... #[allow(clippy::needless_range_loop)] for i in slot_index..bank.get_slots_in_epoch(epoch) { if *pubkey == leader_schedule[i] { return Some(current_slot + 1 + (i - slot_index) as u64); } } } None } // Returns the number of ticks remaining from the specified tick_height to the end of the // slot implied by the tick_height pub fn num_ticks_left_in_slot(bank: &Bank, tick_height: u64) -> u64 { bank.ticks_per_slot() - tick_height % bank.ticks_per_slot() - 1 } pub fn tick_height_to_slot(ticks_per_slot: u64, tick_height: u64) -> u64 { tick_height / ticks_per_slot } #[cfg(test)] mod tests { use super::*; use crate::staking_utils; use solana_sdk::genesis_block::{GenesisBlock, BOOTSTRAP_LEADER_LAMPORTS}; use solana_sdk::signature::{Keypair, KeypairUtil}; #[test] fn test_next_leader_slot() { let pubkey = Keypair::new().pubkey(); let mut genesis_block = GenesisBlock::new_with_leader( BOOTSTRAP_LEADER_LAMPORTS, &pubkey, BOOTSTRAP_LEADER_LAMPORTS, ) .0; genesis_block.epoch_warmup = false; let bank = Bank::new(&genesis_block); assert_eq!(slot_leader_at(bank.slot(), &bank).unwrap(), pubkey); assert_eq!(next_leader_slot(&pubkey, 0, &bank), Some(1)); assert_eq!(next_leader_slot(&pubkey, 1, &bank), Some(2)); assert_eq!( next_leader_slot( &pubkey, 2 * genesis_block.slots_per_epoch - 1, // no schedule generated for epoch 2 &bank ), None ); assert_eq!( next_leader_slot( &Keypair::new().pubkey(), // not in leader_schedule 0, &bank ), None ); } #[test] fn test_leader_schedule_via_bank() { let pubkey = Keypair::new().pubkey(); let (genesis_block, _mint_keypair) = GenesisBlock::new_with_leader( BOOTSTRAP_LEADER_LAMPORTS, &pubkey, BOOTSTRAP_LEADER_LAMPORTS, ); let bank = Bank::new(&genesis_block); let ids_and_stakes: Vec<_> = staking_utils::delegated_stakes(&bank).into_iter().collect(); let seed = [0u8; 32]; let leader_schedule = LeaderSchedule::new( &ids_and_stakes, seed, genesis_block.slots_per_epoch, NUM_CONSECUTIVE_LEADER_SLOTS, ); assert_eq!(leader_schedule[0], pubkey); assert_eq!(leader_schedule[1], pubkey); assert_eq!(leader_schedule[2], pubkey); } #[test] fn test_leader_scheduler1_basic() { let pubkey = Keypair::new().pubkey(); let genesis_block = GenesisBlock::new_with_leader( BOOTSTRAP_LEADER_LAMPORTS, &pubkey, BOOTSTRAP_LEADER_LAMPORTS, ) .0; let bank = Bank::new(&genesis_block); assert_eq!(slot_leader_at(bank.slot(), &bank).unwrap(), pubkey); } #[test] fn test_sort_stakes_basic() { let pubkey0 = Keypair::new().pubkey(); let pubkey1 = Keypair::new().pubkey(); let mut stakes = vec![(pubkey0, 1), (pubkey1, 2)]; sort_stakes(&mut stakes); assert_eq!(stakes, vec![(pubkey1, 2), (pubkey0, 1)]); } #[test] fn test_sort_stakes_with_dup() { let pubkey0 = Keypair::new().pubkey(); let pubkey1 = Keypair::new().pubkey(); let mut stakes = vec![(pubkey0, 1), (pubkey1, 2), (pubkey0, 1)]; sort_stakes(&mut stakes); assert_eq!(stakes, vec![(pubkey1, 2), (pubkey0, 1)]); } #[test] fn test_sort_stakes_with_equal_stakes() { let pubkey0 = Pubkey::default(); let pubkey1 = Keypair::new().pubkey(); let mut stakes = vec![(pubkey0, 1), (pubkey1, 1)]; sort_stakes(&mut stakes); assert_eq!(stakes, vec![(pubkey1, 1), (pubkey0, 1)]); } }