//! The `thin_client` module is a client-side object that interfaces with //! a server-side TPU. Client code should use this object instead of writing //! messages to the network directly. The binary encoding of its messages are //! unstable and may change in future releases. use bincode::{deserialize, serialize}; use event::Event; use futures::future::{ok, FutureResult}; use hash::Hash; use request::{Request, Response}; use signature::{KeyPair, PublicKey, Signature}; use std::collections::HashMap; use std::io; use std::net::{SocketAddr, UdpSocket}; use transaction::Transaction; pub struct ThinClient { requests_addr: SocketAddr, requests_socket: UdpSocket, events_addr: SocketAddr, events_socket: UdpSocket, last_id: Option, transaction_count: u64, balances: HashMap>, } impl ThinClient { /// Create a new ThinClient that will interface with Rpu /// over `requests_socket` and `events_socket`. To receive responses, the caller must bind `socket` /// to a public address before invoking ThinClient methods. pub fn new( requests_addr: SocketAddr, requests_socket: UdpSocket, events_addr: SocketAddr, events_socket: UdpSocket, ) -> Self { let client = ThinClient { requests_addr, requests_socket, events_addr, events_socket, last_id: None, transaction_count: 0, balances: HashMap::new(), }; client } pub fn recv_response(&self) -> io::Result { let mut buf = vec![0u8; 1024]; trace!("start recv_from"); self.requests_socket.recv_from(&mut buf)?; trace!("end recv_from"); let resp = deserialize(&buf).expect("deserialize balance in thin_client"); Ok(resp) } pub fn process_response(&mut self, resp: Response) { match resp { Response::Balance { key, val } => { trace!("Response balance {:?} {:?}", key, val); self.balances.insert(key, val); } Response::LastId { id } => { info!("Response last_id {:?}", id); self.last_id = Some(id); } Response::TransactionCount { transaction_count } => { info!("Response transaction count {:?}", transaction_count); self.transaction_count = transaction_count; } } } /// Send a signed Transaction to the server for processing. This method /// does not wait for a response. pub fn transfer_signed(&self, tr: Transaction) -> io::Result { let event = Event::Transaction(tr); let data = serialize(&event).expect("serialize Transaction in pub fn transfer_signed"); self.events_socket.send_to(&data, &self.events_addr) } /// Creates, signs, and processes a Transaction. Useful for writing unit-tests. pub fn transfer( &self, n: i64, keypair: &KeyPair, to: PublicKey, last_id: &Hash, ) -> io::Result { let tr = Transaction::new(keypair, to, n, *last_id); let sig = tr.sig; self.transfer_signed(tr).map(|_| sig) } /// Request the balance of the user holding `pubkey`. This method blocks /// until the server sends a response. If the response packet is dropped /// by the network, this method will hang indefinitely. pub fn get_balance(&mut self, pubkey: &PublicKey) -> io::Result { trace!("get_balance"); let req = Request::GetBalance { key: *pubkey }; let data = serialize(&req).expect("serialize GetBalance in pub fn get_balance"); self.requests_socket .send_to(&data, &self.requests_addr) .expect("buffer error in pub fn get_balance"); let mut done = false; while !done { let resp = self.recv_response()?; trace!("recv_response {:?}", resp); if let &Response::Balance { ref key, .. } = &resp { done = key == pubkey; } self.process_response(resp); } self.balances[pubkey].ok_or(io::Error::new(io::ErrorKind::Other, "nokey")) } /// Request the transaction count. If the response packet is dropped by the network, /// this method will hang. pub fn transaction_count(&mut self) -> u64 { info!("transaction_count"); let req = Request::GetTransactionCount; let data = serialize(&req).expect("serialize GetTransactionCount in pub fn transaction_count"); self.requests_socket .send_to(&data, &self.requests_addr) .expect("buffer error in pub fn transaction_count"); let mut done = false; while !done { let resp = self.recv_response().expect("transaction count dropped"); info!("recv_response {:?}", resp); if let &Response::TransactionCount { .. } = &resp { done = true; } self.process_response(resp); } self.transaction_count } /// Request the last Entry ID from the server. This method blocks /// until the server sends a response. pub fn get_last_id(&mut self) -> FutureResult { info!("get_last_id"); let req = Request::GetLastId; let data = serialize(&req).expect("serialize GetLastId in pub fn get_last_id"); self.requests_socket .send_to(&data, &self.requests_addr) .expect("buffer error in pub fn get_last_id"); let mut done = false; while !done { let resp = self.recv_response().expect("get_last_id response"); if let &Response::LastId { .. } = &resp { done = true; } self.process_response(resp); } ok(self.last_id.expect("some last_id")) } } #[cfg(test)] pub fn poll_get_balance(client: &mut ThinClient, pubkey: &PublicKey) -> io::Result { use std::time::Instant; let mut balance; let now = Instant::now(); loop { balance = client.get_balance(pubkey); if balance.is_ok() || now.elapsed().as_secs() > 1 { break; } } balance } #[cfg(test)] mod tests { use super::*; use bank::Bank; use crdt::{Crdt, ReplicatedData}; use futures::Future; use logger; use mint::Mint; use plan::Plan; use server::Server; use signature::{KeyPair, KeyPairUtil}; use std::io::sink; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::{Arc, RwLock}; use std::thread::JoinHandle; use std::thread::sleep; use std::time::Duration; use streamer::default_window; #[test] fn test_thin_client() { logger::setup(); let gossip = UdpSocket::bind("0.0.0.0:0").unwrap(); let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(1, 0))) .unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let events_addr = events_socket.local_addr().unwrap(); let addr = requests_socket.local_addr().unwrap(); let pubkey = KeyPair::new().pubkey(); let d = ReplicatedData::new( pubkey, gossip.local_addr().unwrap(), "0.0.0.0:0".parse().unwrap(), requests_socket.local_addr().unwrap(), events_addr, ); let alice = Mint::new(10_000); let bank = Bank::new(&alice); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let mut local = requests_socket.local_addr().unwrap(); local.set_port(0); let broadcast_socket = UdpSocket::bind(local).unwrap(); let respond_socket = UdpSocket::bind(local.clone()).unwrap(); let server = Server::leader( bank, alice.last_id(), Some(Duration::from_millis(30)), d, requests_socket, events_socket, broadcast_socket, respond_socket, gossip, exit.clone(), sink(), ); sleep(Duration::from_millis(900)); let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new(addr, requests_socket, events_addr, events_socket); let last_id = client.get_last_id().wait().unwrap(); let _sig = client .transfer(500, &alice.keypair(), bob_pubkey, &last_id) .unwrap(); let balance = poll_get_balance(&mut client, &bob_pubkey); assert_eq!(balance.unwrap(), 500); exit.store(true, Ordering::Relaxed); for t in server.thread_hdls { t.join().unwrap(); } } #[test] fn test_bad_sig() { logger::setup(); let leader = TestNode::new(); let alice = Mint::new(10_000); let bank = Bank::new(&alice); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let serve_addr = leader.data.requests_addr; let mut local = serve_addr.local_addr().unwrap(); local.set_port(0); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let broadcast_socket = UdpSocket::bind(local).unwrap(); let respond_socket = UdpSocket::bind(local.clone()).unwrap(); let events_addr = events_socket.local_addr().unwrap(); let server = Server::leader( bank, alice.last_id(), Some(Duration::from_millis(30)), leader_data, leader_serve, events_socket, broadcast_socket, respond_socket, leader_gossip, exit.clone(), sink(), ); sleep(Duration::from_millis(300)); let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(5, 0))) .unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new(serve_addr, requests_socket, events_addr, events_socket); let last_id = client.get_last_id().wait().unwrap(); let tr = Transaction::new(&alice.keypair(), bob_pubkey, 500, last_id); let _sig = client.transfer_signed(tr).unwrap(); let last_id = client.get_last_id().wait().unwrap(); let mut tr2 = Transaction::new(&alice.keypair(), bob_pubkey, 501, last_id); tr2.contract.tokens = 502; tr2.contract.plan = Plan::new_payment(502, bob_pubkey); let _sig = client.transfer_signed(tr2).unwrap(); let balance = poll_get_balance(&mut client, &bob_pubkey); assert_eq!(balance.unwrap(), 500); exit.store(true, Ordering::Relaxed); for t in server.thread_hdls { t.join().unwrap(); } } struct TestNode { data: ReplicatedData, gossip: UdpSocket, requests: UdpSocket, replicate: UdpSocket, event: UdpSocket, respond: UdpSocket, broadcast: UdpSocket, } impl TestNode { fn new() -> TestNode { let gossip = UdpSocket::bind("0.0.0.0:0").unwrap(); let requests = UdpSocket::bind("0.0.0.0:0").unwrap(); let event = UdpSocket::bind("0.0.0.0:0").unwrap(); let replicate = UdpSocket::bind("0.0.0.0:0").unwrap(); let respond = UdpSocket::bind("0.0.0.0:0").unwrap(); let broadcast = UdpSocket::bind("0.0.0.0:0").unwrap(); let pubkey = KeyPair::new().pubkey(); let data = ReplicatedData::new( pubkey, gossip.local_addr().unwrap(), replicate.local_addr().unwrap(), requests.local_addr().unwrap(), event.local_addr().unwrap(), ); TestNode {data, gossip, requests, replicate, event, respond, broadcast } } } fn replicant( leader: &ReplicatedData, exit: Arc, alice: &Mint, threads: &mut Vec>, ) { let replicant = TestNode::new(); let replicant_bank = Bank::new(&alice); let mut ts = Server::validator( replicant_bank, replicant.data.clone(), replicant.requests, replicant.respond, replicant.replicate, replicant.gossip, leader.clone(), exit.clone(), ); threads.append(&mut ts.thread_hdls); } fn converge( leader: &ReplicatedData, exit: Arc, num_nodes: usize, threads: &mut Vec>, ) -> Vec { //lets spy on the network let mut spy = test_node(); let daddr = "0.0.0.0:0".parse().unwrap(); let me = spy.id.clone(); spy.replicate_addr = daddr; spy.requests_addr = daddr; let mut spy_crdt = Crdt::new(spy); spy_crdt.insert(&leader); spy_crdt.set_leader(leader.id); let spy_ref = Arc::new(RwLock::new(spy_crdt)); let spy_window = default_window(); let t_spy_listen = Crdt::listen(spy_ref.clone(), spy_window, spy_gossip, exit.clone()); let t_spy_gossip = Crdt::gossip(spy_ref.clone(), exit.clone()); //wait for the network to converge let mut converged = false; for _ in 0..30 { let num = spy_ref.read().unwrap().convergence(); if num == num_nodes as u64 { converged = true; break; } sleep(Duration::new(1, 0)); } assert!(converged); threads.push(t_spy_listen); threads.push(t_spy_gossip); let v: Vec = spy_ref .read() .unwrap() .table .values() .into_iter() .filter(|x| x.id != me) .map(|x| x.requests_addr) .collect(); v.clone() } #[test] #[ignore] fn test_multi_node() { logger::setup(); const N: usize = 5; trace!("test_multi_accountant_stub"); let leader = test_node(); let alice = Mint::new(10_000); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let leader_bank = Bank::new(&alice); let mut local = leader.2.local_addr().unwrap(); local.set_port(0); let broadcast_socket = UdpSocket::bind(local).unwrap(); let respond_socket = UdpSocket::bind(local.clone()).unwrap(); let events_addr = leader.4.local_addr().unwrap(); let server = Server::leader( leader_bank, alice.last_id(), None, leader.0.clone(), leader.2, leader.4, broadcast_socket, respond_socket, leader.1, exit.clone(), sink(), ); let mut threads = server.thread_hdls; for _ in 0..N { replicant(&leader.0, exit.clone(), &alice, &mut threads); } let addrs = converge(&leader.0, exit.clone(), N + 2, &mut threads); //contains the leader addr as well assert_eq!(addrs.len(), N + 1); //verify leader can do transfer let leader_balance = { let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(1, 0))) .unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new( leader.0.requests_addr, requests_socket, events_addr, events_socket, ); trace!("getting leader last_id"); let last_id = client.get_last_id().wait().unwrap(); info!("executing leader transer"); let _sig = client .transfer(500, &alice.keypair(), bob_pubkey, &last_id) .unwrap(); trace!("getting leader balance"); client.get_balance(&bob_pubkey).unwrap() }; assert_eq!(leader_balance, 500); //verify replicant has the same balance let mut success = 0usize; for serve_addr in addrs.iter() { let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(1, 0))) .unwrap(); let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new(*serve_addr, requests_socket, events_addr, events_socket); for i in 0..10 { trace!("getting replicant balance {} {}/10", *serve_addr, i); if let Ok(bal) = client.get_balance(&bob_pubkey) { trace!("replicant balance {}", bal); if bal == leader_balance { success += 1; break; } } sleep(Duration::new(1, 0)); } } assert_eq!(success, addrs.len()); exit.store(true, Ordering::Relaxed); for t in threads { t.join().unwrap(); } } }