//! The `cluster_info` module defines a data structure that is shared by all the nodes in the network over //! a gossip control plane. The goal is to share small bits of off-chain information and detect and //! repair partitions. //! //! This CRDT only supports a very limited set of types. A map of Pubkey -> Versioned Struct. //! The last version is always picked during an update. //! //! The network is arranged in layers: //! //! * layer 0 - Leader. //! * layer 1 - As many nodes as we can fit //! * layer 2 - Everyone else, if layer 1 is `2^10`, layer 2 should be able to fit `2^20` number of nodes. //! //! Bank needs to provide an interface for us to query the stake weight use crate::bank_forks::BankForks; use crate::blocktree::Blocktree; use crate::contact_info::ContactInfo; use crate::crds_gossip::CrdsGossip; use crate::crds_gossip_error::CrdsGossipError; use crate::crds_gossip_pull::{CrdsFilter, CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS}; use crate::crds_value::{CrdsValue, CrdsValueLabel, EpochSlots, Vote}; use crate::packet::{to_shared_blob, Blob, Packet, SharedBlob}; use crate::repair_service::RepairType; use crate::result::{Error, Result}; use crate::sendmmsg::multicast; use crate::staking_utils; use crate::streamer::{BlobReceiver, BlobSender}; use crate::weighted_shuffle::{weighted_best, weighted_shuffle}; use bincode::{deserialize, serialize, serialized_size}; use core::cmp; use itertools::Itertools; use rand::SeedableRng; use rand::{thread_rng, Rng}; use rand_chacha::ChaChaRng; use solana_metrics::{datapoint_debug, inc_new_counter_debug, inc_new_counter_error}; use solana_netutil::{ bind_common, bind_common_in_range, bind_in_range, find_available_port_in_range, multi_bind_in_range, PortRange, }; use solana_sdk::packet::PACKET_DATA_SIZE; use solana_sdk::pubkey::Pubkey; use solana_sdk::signature::{Keypair, KeypairUtil, Signable, Signature}; use solana_sdk::timing::{duration_as_ms, timestamp}; use solana_sdk::transaction::Transaction; use std::borrow::Cow; use std::cmp::min; use std::collections::{BTreeSet, HashMap, HashSet}; use std::fmt; use std::net::{IpAddr, Ipv4Addr, SocketAddr, TcpListener, UdpSocket}; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::{Arc, RwLock}; use std::thread::{sleep, Builder, JoinHandle}; use std::time::{Duration, Instant}; pub const FULLNODE_PORT_RANGE: PortRange = (8000, 10_000); /// The Data plane fanout size, also used as the neighborhood size pub const DATA_PLANE_FANOUT: usize = 200; /// milliseconds we sleep for between gossip requests pub const GOSSIP_SLEEP_MILLIS: u64 = 100; /// the number of slots to respond with when responding to `Orphan` requests pub const MAX_ORPHAN_REPAIR_RESPONSES: usize = 10; /// The maximum size of a protocol payload const MAX_PROTOCOL_PAYLOAD_SIZE: u64 = PACKET_DATA_SIZE as u64; #[derive(Debug, PartialEq, Eq)] pub enum ClusterInfoError { NoPeers, NoLeader, BadContactInfo, BadGossipAddress, } #[derive(Clone)] pub struct ClusterInfo { /// The network pub gossip: CrdsGossip, /// set the keypair that will be used to sign crds values generated. It is unset only in tests. pub(crate) keypair: Arc, /// The network entrypoint entrypoint: Option, } #[derive(Default, Clone)] pub struct Locality { /// The bounds of the neighborhood represented by this locality pub neighbor_bounds: (usize, usize), /// The `turbine` layer this locality is in pub layer_ix: usize, /// The bounds of the current layer pub layer_bounds: (usize, usize), /// The bounds of the next layer pub next_layer_bounds: Option<(usize, usize)>, /// The indices of the nodes that should be contacted in next layer pub next_layer_peers: Vec, } impl fmt::Debug for Locality { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!( f, "Locality {{ neighborhood_bounds: {:?}, current_layer: {:?}, child_layer_bounds: {:?} child_layer_peers: {:?} }}", self.neighbor_bounds, self.layer_ix, self.next_layer_bounds, self.next_layer_peers ) } } #[derive(Debug, Deserialize, Serialize)] pub struct PruneData { /// Pubkey of the node that sent this prune data pub pubkey: Pubkey, /// Pubkeys of nodes that should be pruned pub prunes: Vec, /// Signature of this Prune Message pub signature: Signature, /// The Pubkey of the intended node/destination for this message pub destination: Pubkey, /// Wallclock of the node that generated this message pub wallclock: u64, } impl Signable for PruneData { fn pubkey(&self) -> Pubkey { self.pubkey } fn signable_data(&self) -> Cow<[u8]> { #[derive(Serialize)] struct SignData { pubkey: Pubkey, prunes: Vec, destination: Pubkey, wallclock: u64, } let data = SignData { pubkey: self.pubkey, prunes: self.prunes.clone(), destination: self.destination, wallclock: self.wallclock, }; Cow::Owned(serialize(&data).expect("serialize PruneData")) } fn get_signature(&self) -> Signature { self.signature } fn set_signature(&mut self, signature: Signature) { self.signature = signature } } struct PullData { pub from_addr: SocketAddr, pub caller: CrdsValue, pub filter: CrdsFilter, } // TODO These messages should go through the gpu pipeline for spam filtering #[derive(Serialize, Deserialize, Debug)] #[allow(clippy::large_enum_variant)] enum Protocol { /// Gossip protocol messages PullRequest(CrdsFilter, CrdsValue), PullResponse(Pubkey, Vec), PushMessage(Pubkey, Vec), PruneMessage(Pubkey, PruneData), /// Window protocol messages /// TODO: move this message to a different module RequestWindowIndex(ContactInfo, u64, u64), RequestHighestWindowIndex(ContactInfo, u64, u64), RequestOrphan(ContactInfo, u64), } impl ClusterInfo { /// Without a valid keypair gossip will not function. Only useful for tests. pub fn new_with_invalid_keypair(contact_info: ContactInfo) -> Self { Self::new(contact_info, Arc::new(Keypair::new())) } pub fn new(contact_info: ContactInfo, keypair: Arc) -> Self { let mut me = Self { gossip: CrdsGossip::default(), keypair, entrypoint: None, }; let id = contact_info.id; me.gossip.set_self(&id); me.insert_self(contact_info); me.push_self(&HashMap::new()); me } pub fn insert_self(&mut self, contact_info: ContactInfo) { if self.id() == contact_info.id { let mut value = CrdsValue::ContactInfo(contact_info.clone()); value.sign(&self.keypair); let _ = self.gossip.crds.insert(value, timestamp()); } } fn push_self(&mut self, stakes: &HashMap) { let mut my_data = self.my_data(); let now = timestamp(); my_data.wallclock = now; let mut entry = CrdsValue::ContactInfo(my_data); entry.sign(&self.keypair); self.gossip.refresh_push_active_set(stakes); self.gossip .process_push_message(&self.id(), vec![entry], now); } // TODO kill insert_info, only used by tests pub fn insert_info(&mut self, contact_info: ContactInfo) { let mut value = CrdsValue::ContactInfo(contact_info); value.sign(&self.keypair); let _ = self.gossip.crds.insert(value, timestamp()); } pub fn set_entrypoint(&mut self, entrypoint: ContactInfo) { self.entrypoint = Some(entrypoint) } pub fn id(&self) -> Pubkey { self.gossip.id } pub fn lookup(&self, id: &Pubkey) -> Option<&ContactInfo> { let entry = CrdsValueLabel::ContactInfo(*id); self.gossip .crds .lookup(&entry) .and_then(CrdsValue::contact_info) } pub fn my_data(&self) -> ContactInfo { self.lookup(&self.id()).cloned().unwrap() } pub fn contact_info_trace(&self) -> String { let now = timestamp(); let mut spy_nodes = 0; let mut replicators = 0; let my_pubkey = self.my_data().id; let nodes: Vec<_> = self .all_peers() .into_iter() .map(|(node, last_updated)| { if Self::is_spy_node(&node) { spy_nodes += 1; } else if Self::is_replicator(&node) { replicators += 1; } fn addr_to_string(addr: &SocketAddr) -> String { if ContactInfo::is_valid_address(addr) { addr.to_string() } else { "none".to_string() } } format!( "- gossip: {:20} | {:5}ms | {} {}\n \ tpu: {:20} | |\n \ rpc: {:20} | |\n", addr_to_string(&node.gossip), now.saturating_sub(last_updated), node.id, if node.id == my_pubkey { "(me)" } else { "" }.to_string(), addr_to_string(&node.tpu), addr_to_string(&node.rpc), ) }) .collect(); format!( " Node contact info | Age | Node identifier \n\ -------------------------------+---------+-----------------------------------\n\ {}\ Nodes: {}{}{}", nodes.join(""), nodes.len() - spy_nodes - replicators, if replicators > 0 { format!("\nReplicators: {}", replicators) } else { "".to_string() }, if spy_nodes > 0 { format!("\nSpies: {}", spy_nodes) } else { "".to_string() } ) } pub fn push_epoch_slots(&mut self, id: Pubkey, root: u64, slots: BTreeSet) { let now = timestamp(); let mut entry = CrdsValue::EpochSlots(EpochSlots::new(id, root, slots, now)); entry.sign(&self.keypair); self.gossip .process_push_message(&self.id(), vec![entry], now); } pub fn push_vote(&mut self, vote: Transaction) { let now = timestamp(); let vote = Vote::new(&self.id(), vote, now); let mut entry = CrdsValue::Vote(vote); entry.sign(&self.keypair); self.gossip .process_push_message(&self.id(), vec![entry], now); } /// Get votes in the crds /// * since - The timestamp of when the vote inserted must be greater than /// since. This allows the bank to query for new votes only. /// /// * return - The votes, and the max timestamp from the new set. pub fn get_votes(&self, since: u64) -> (Vec, u64) { let votes: Vec<_> = self .gossip .crds .table .values() .filter(|x| x.insert_timestamp > since) .filter_map(|x| { x.value .vote() .map(|v| (x.insert_timestamp, v.transaction.clone())) }) .collect(); let max_ts = votes.iter().map(|x| x.0).max().unwrap_or(since); let txs: Vec = votes.into_iter().map(|x| x.1).collect(); (txs, max_ts) } pub fn get_epoch_state_for_node( &self, pubkey: &Pubkey, since: Option, ) -> Option<(&EpochSlots, u64)> { self.gossip .crds .table .get(&CrdsValueLabel::EpochSlots(*pubkey)) .filter(|x| { since .map(|since| x.insert_timestamp > since) .unwrap_or(true) }) .map(|x| (x.value.epoch_slots().unwrap(), x.insert_timestamp)) } pub fn get_gossiped_root_for_node(&self, pubkey: &Pubkey, since: Option) -> Option { self.gossip .crds .table .get(&CrdsValueLabel::EpochSlots(*pubkey)) .filter(|x| { since .map(|since| x.insert_timestamp > since) .unwrap_or(true) }) .map(|x| x.value.epoch_slots().unwrap().root) } pub fn get_contact_info_for_node(&self, pubkey: &Pubkey) -> Option<&ContactInfo> { self.gossip .crds .table .get(&CrdsValueLabel::ContactInfo(*pubkey)) .map(|x| x.value.contact_info().unwrap()) } pub fn purge(&mut self, now: u64) { self.gossip.purge(now); } pub fn rpc_peers(&self) -> Vec { let me = self.my_data().id; self.gossip .crds .table .values() .filter_map(|x| x.value.contact_info()) .filter(|x| x.id != me) .filter(|x| ContactInfo::is_valid_address(&x.rpc)) .cloned() .collect() } // All nodes in gossip (including spy nodes) and the last time we heard about them pub(crate) fn all_peers(&self) -> Vec<(ContactInfo, u64)> { self.gossip .crds .table .values() .filter_map(|x| { x.value .contact_info() .map(|ci| (ci.clone(), x.local_timestamp)) }) .collect() } pub fn gossip_peers(&self) -> Vec { let me = self.my_data().id; self.gossip .crds .table .values() .filter_map(|x| x.value.contact_info()) .filter(|x| x.id != me) .filter(|x| ContactInfo::is_valid_address(&x.gossip)) .cloned() .collect() } /// all validators that have a valid tvu port. pub fn tvu_peers(&self) -> Vec { let me = self.my_data().id; self.gossip .crds .table .values() .filter_map(|x| x.value.contact_info()) .filter(|x| ContactInfo::is_valid_address(&x.tvu)) .filter(|x| !ClusterInfo::is_replicator(x)) .filter(|x| x.id != me) .cloned() .collect() } /// all peers that have a valid storage addr pub fn storage_peers(&self) -> Vec { let me = self.my_data().id; self.gossip .crds .table .values() .filter_map(|x| x.value.contact_info()) .filter(|x| ContactInfo::is_valid_address(&x.storage_addr)) .filter(|x| x.id != me) .cloned() .collect() } /// all peers that have a valid tvu pub fn retransmit_peers(&self) -> Vec { let me = self.my_data().id; self.gossip .crds .table .values() .filter_map(|x| x.value.contact_info()) .filter(|x| x.id != me) .filter(|x| ContactInfo::is_valid_address(&x.tvu)) .filter(|x| ContactInfo::is_valid_address(&x.tvu_forwards)) .cloned() .collect() } /// all tvu peers with valid gossip addrs fn repair_peers(&self) -> Vec { let me = self.my_data().id; ClusterInfo::tvu_peers(self) .into_iter() .filter(|x| x.id != me) .filter(|x| ContactInfo::is_valid_address(&x.gossip)) .collect() } fn is_spy_node(contact_info: &ContactInfo) -> bool { (!ContactInfo::is_valid_address(&contact_info.tpu) || !ContactInfo::is_valid_address(&contact_info.gossip) || !ContactInfo::is_valid_address(&contact_info.tvu)) && !ContactInfo::is_valid_address(&contact_info.storage_addr) } pub fn is_replicator(contact_info: &ContactInfo) -> bool { ContactInfo::is_valid_address(&contact_info.storage_addr) && !ContactInfo::is_valid_address(&contact_info.tpu) } fn sorted_stakes_with_index( peers: &[ContactInfo], stakes: Option<&HashMap>, ) -> Vec<(u64, usize)> { let stakes_and_index: Vec<_> = peers .iter() .enumerate() .map(|(i, c)| { // For stake weighted shuffle a valid weight is atleast 1. Weight 0 is // assumed to be missing entry. So let's make sure stake weights are atleast 1 let stake = 1.max(stakes.map_or(1, |stakes| *stakes.get(&c.id).unwrap_or(&1))); (stake, i) }) .sorted_by(|(l_stake, l_info), (r_stake, r_info)| { if r_stake == l_stake { peers[*r_info].id.cmp(&peers[*l_info].id) } else { r_stake.cmp(&l_stake) } }) .collect(); stakes_and_index } fn stake_weighted_shuffle( stakes_and_index: &[(u64, usize)], rng: ChaChaRng, ) -> Vec<(u64, usize)> { let stake_weights = stakes_and_index.iter().map(|(w, _)| *w).collect(); let shuffle = weighted_shuffle(stake_weights, rng); shuffle.iter().map(|x| stakes_and_index[*x]).collect() } // Return sorted_retransmit_peers(including self) and their stakes pub fn sorted_retransmit_peers_and_stakes( &self, stakes: Option<&HashMap>, ) -> (Vec, Vec<(u64, usize)>) { let mut peers = self.retransmit_peers(); // insert "self" into this list for the layer and neighborhood computation peers.push(self.lookup(&self.id()).unwrap().clone()); let stakes_and_index = ClusterInfo::sorted_stakes_with_index(&peers, stakes); (peers, stakes_and_index) } /// Return sorted Retransmit peers and index of `Self.id()` as if it were in that list pub fn shuffle_peers_and_index( id: &Pubkey, peers: &[ContactInfo], stakes_and_index: &[(u64, usize)], rng: ChaChaRng, ) -> (usize, Vec<(u64, usize)>) { let shuffled_stakes_and_index = ClusterInfo::stake_weighted_shuffle(stakes_and_index, rng); let mut self_index = 0; shuffled_stakes_and_index .iter() .enumerate() .for_each(|(i, (_stake, index))| { if &peers[*index].id == id { self_index = i; } }); (self_index, shuffled_stakes_and_index) } /// compute broadcast table pub fn tpu_peers(&self) -> Vec { let me = self.my_data().id; self.gossip .crds .table .values() .filter_map(|x| x.value.contact_info()) .filter(|x| x.id != me) .filter(|x| ContactInfo::is_valid_address(&x.tpu)) .cloned() .collect() } /// Given a node count and fanout, it calculates how many layers are needed and at what index each layer begins. pub fn describe_data_plane(nodes: usize, fanout: usize) -> (usize, Vec) { let mut layer_indices: Vec = vec![0]; if nodes == 0 { (0, vec![]) } else if nodes <= fanout { // single layer data plane (1, layer_indices) } else { //layer 1 is going to be the first num fanout nodes, so exclude those let mut remaining_nodes = nodes - fanout; layer_indices.push(fanout); let mut num_layers = 2; // fanout * num_nodes in a neighborhood, which is also fanout. let mut layer_capacity = fanout * fanout; while remaining_nodes > 0 { if remaining_nodes > layer_capacity { // Needs more layers. num_layers += 1; remaining_nodes -= layer_capacity; let end = *layer_indices.last().unwrap(); layer_indices.push(layer_capacity + end); // Next layer's capacity layer_capacity *= fanout; } else { //everything will now fit in the layers we have let end = *layer_indices.last().unwrap(); layer_indices.push(layer_capacity + end); break; } } assert_eq!(num_layers, layer_indices.len() - 1); (num_layers, layer_indices) } } fn localize_item( layer_indices: &[usize], fanout: usize, select_index: usize, curr_index: usize, ) -> Option<(Locality)> { let end = layer_indices.len() - 1; let next = min(end, curr_index + 1); let layer_start = layer_indices[curr_index]; // localized if selected index lies within the current layer's bounds let localized = select_index >= layer_start && select_index < layer_indices[next]; if localized { let mut locality = Locality::default(); let hood_ix = (select_index - layer_start) / fanout; match curr_index { _ if curr_index == 0 => { locality.layer_ix = 0; locality.layer_bounds = (0, fanout); locality.neighbor_bounds = locality.layer_bounds; if next == end { locality.next_layer_bounds = None; locality.next_layer_peers = vec![]; } else { locality.next_layer_bounds = Some((layer_indices[next], layer_indices[next + 1])); locality.next_layer_peers = ClusterInfo::next_layer_peers( select_index, hood_ix, layer_indices[next], fanout, ); } } _ if curr_index == end => { locality.layer_ix = end; locality.layer_bounds = (end - fanout, end); locality.neighbor_bounds = locality.layer_bounds; locality.next_layer_bounds = None; locality.next_layer_peers = vec![]; } ix => { locality.layer_ix = ix; locality.layer_bounds = (layer_start, layer_indices[next]); locality.neighbor_bounds = ( ((hood_ix * fanout) + layer_start), ((hood_ix + 1) * fanout + layer_start), ); if next == end { locality.next_layer_bounds = None; locality.next_layer_peers = vec![]; } else { locality.next_layer_bounds = Some((layer_indices[next], layer_indices[next + 1])); locality.next_layer_peers = ClusterInfo::next_layer_peers( select_index, hood_ix, layer_indices[next], fanout, ); } } } Some(locality) } else { None } } /// Given a array of layer indices and an index of interest, returns (as a `Locality`) the layer, /// layer-bounds, and neighborhood-bounds in which the index resides fn localize(layer_indices: &[usize], fanout: usize, select_index: usize) -> Locality { (0..layer_indices.len()) .find_map(|i| ClusterInfo::localize_item(layer_indices, fanout, select_index, i)) .or_else(|| Some(Locality::default())) .unwrap() } /// Selects a range in the next layer and chooses nodes from that range as peers for the given index fn next_layer_peers(index: usize, hood_ix: usize, start: usize, fanout: usize) -> Vec { // Each neighborhood is only tasked with pushing to `fanout` neighborhoods where each neighborhood contains `fanout` nodes. let fanout_nodes = fanout * fanout; // Skip first N nodes, where N is hood_ix * (fanout_nodes) let start = start + (hood_ix * fanout_nodes); let end = start + fanout_nodes; (start..end) .step_by(fanout) .map(|x| x + index % fanout) .collect() } fn sorted_tvu_peers_and_stakes( &self, stakes: Option<&HashMap>, ) -> (Vec, Vec<(u64, usize)>) { let mut peers = self.tvu_peers(); peers.dedup(); let stakes_and_index = ClusterInfo::sorted_stakes_with_index(&peers, stakes); (peers, stakes_and_index) } /// broadcast messages from the leader to layer 1 nodes /// # Remarks pub fn broadcast_shreds( &self, s: &UdpSocket, shreds: &[Vec], seeds: &[[u8; 32]], stakes: Option<&HashMap>, ) -> Result<()> { let mut last_err = Ok(()); let (peers, peers_and_stakes) = self.sorted_tvu_peers_and_stakes(stakes); let broadcast_len = peers_and_stakes.len(); if broadcast_len == 0 { datapoint_info!("cluster_info-num_nodes", ("count", 1, i64)); return Ok(()); } shreds.iter().zip(seeds).for_each(|(shred, seed)| { let broadcast_index = weighted_best(&peers_and_stakes, ChaChaRng::from_seed(*seed)); if let Err(e) = s.send_to(shred, &peers[broadcast_index].tvu) { trace!("{}: broadcast result {:?}", self.id(), e); last_err = Err(e); } }); last_err?; datapoint_debug!("cluster_info-num_nodes", ("count", broadcast_len + 1, i64)); Ok(()) } /// retransmit messages to a list of nodes /// # Remarks /// We need to avoid having obj locked while doing a io, such as the `send_to` pub fn retransmit_to( peers: &[&ContactInfo], packet: &mut Packet, slot_leader_pubkey: Option, s: &UdpSocket, forwarded: bool, ) -> Result<()> { trace!("retransmit orders {}", peers.len()); let dests: Vec<_> = peers .iter() .filter(|v| v.id != slot_leader_pubkey.unwrap_or_default()) .map(|v| if forwarded { &v.tvu_forwards } else { &v.tvu }) .collect(); let mut sent = 0; while sent < dests.len() { match multicast(s, packet, &dests[sent..]) { Ok(n) => sent += n, Err(e) => { inc_new_counter_error!( "cluster_info-retransmit-send_to_error", dests.len() - sent, 1 ); error!("retransmit result {:?}", e); return Err(Error::IO(e)); } } } Ok(()) } pub fn window_index_request_bytes(&self, slot: u64, blob_index: u64) -> Result> { let req = Protocol::RequestWindowIndex(self.my_data().clone(), slot, blob_index); let out = serialize(&req)?; Ok(out) } fn window_highest_index_request_bytes(&self, slot: u64, blob_index: u64) -> Result> { let req = Protocol::RequestHighestWindowIndex(self.my_data().clone(), slot, blob_index); let out = serialize(&req)?; Ok(out) } fn orphan_bytes(&self, slot: u64) -> Result> { let req = Protocol::RequestOrphan(self.my_data().clone(), slot); let out = serialize(&req)?; Ok(out) } pub fn repair_request(&self, repair_request: &RepairType) -> Result<(SocketAddr, Vec)> { // find a peer that appears to be accepting replication, as indicated // by a valid tvu port location let valid: Vec<_> = self.repair_peers(); if valid.is_empty() { return Err(ClusterInfoError::NoPeers.into()); } let n = thread_rng().gen::() % valid.len(); let addr = valid[n].gossip; // send the request to the peer's gossip port let out = self.map_repair_request(repair_request)?; Ok((addr, out)) } pub fn map_repair_request(&self, repair_request: &RepairType) -> Result> { match repair_request { RepairType::Blob(slot, blob_index) => { datapoint_debug!( "cluster_info-repair", ("repair-slot", *slot, i64), ("repair-ix", *blob_index, i64) ); Ok(self.window_index_request_bytes(*slot, *blob_index)?) } RepairType::HighestBlob(slot, blob_index) => { datapoint_debug!( "cluster_info-repair_highest", ("repair-highest-slot", *slot, i64), ("repair-highest-ix", *blob_index, i64) ); Ok(self.window_highest_index_request_bytes(*slot, *blob_index)?) } RepairType::Orphan(slot) => { datapoint_debug!("cluster_info-repair_orphan", ("repair-orphan", *slot, i64)); Ok(self.orphan_bytes(*slot)?) } } } // If the network entrypoint hasn't been discovered yet, add it to the crds table fn add_entrypoint(&mut self, pulls: &mut Vec<(Pubkey, CrdsFilter, SocketAddr, CrdsValue)>) { let pull_from_entrypoint = if let Some(entrypoint) = &mut self.entrypoint { if pulls.is_empty() { // Nobody else to pull from, try the entrypoint true } else { let now = timestamp(); // Only consider pulling from the entrypoint periodically to avoid spamming it if timestamp() - entrypoint.wallclock <= CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS / 2 { false } else { entrypoint.wallclock = now; let found_entrypoint = self.gossip.crds.table.iter().any(|(_, v)| { v.value .contact_info() .map(|ci| ci.gossip == entrypoint.gossip) .unwrap_or(false) }); !found_entrypoint } } } else { false }; if pull_from_entrypoint { if let Some(entrypoint) = &self.entrypoint { let self_info = self .gossip .crds .lookup(&CrdsValueLabel::ContactInfo(self.id())) .unwrap_or_else(|| panic!("self_id invalid {}", self.id())); return self .gossip .pull .build_crds_filters(&self.gossip.crds, Self::max_bloom_size()) .into_iter() .for_each(|filter| { pulls.push((entrypoint.id, filter, entrypoint.gossip, self_info.clone())) }); } } } /// Splits a Vec of CrdsValues into a nested Vec, trying to make sure that /// each Vec is no larger than `PROTOCOL_PAYLOAD_SIZE` /// Note: some messages cannot be contained within that size so in the worst case this returns /// N nested Vecs with 1 item each. fn split_gossip_messages(mut msgs: Vec) -> Vec> { let mut messages = vec![]; while !msgs.is_empty() { let mut size = 0; let mut payload = vec![]; while let Some(msg) = msgs.pop() { let msg_size = msg.size(); if size + msg_size > MAX_PROTOCOL_PAYLOAD_SIZE as u64 { if msg_size < MAX_PROTOCOL_PAYLOAD_SIZE as u64 { msgs.push(msg); } else { debug!( "dropping message larger than the maximum payload size {:?}", msg ); } break; } size += msg_size; payload.push(msg); } messages.push(payload); } messages } // computes the maximum size for pull request blooms pub fn max_bloom_size() -> usize { let filter_size = serialized_size(&CrdsFilter::default()) .expect("unable to serialize default filter") as usize; let protocol = Protocol::PullRequest( CrdsFilter::default(), CrdsValue::ContactInfo(ContactInfo::default()), ); let protocol_size = serialized_size(&protocol).expect("unable to serialize gossip protocol") as usize; PACKET_DATA_SIZE - (protocol_size - filter_size) } fn new_pull_requests(&mut self, stakes: &HashMap) -> Vec<(SocketAddr, Protocol)> { let now = timestamp(); let mut pulls: Vec<_> = self .gossip .new_pull_request(now, stakes, Self::max_bloom_size()) .ok() .into_iter() .filter_map(|(peer, filters, me)| { let peer_label = CrdsValueLabel::ContactInfo(peer); self.gossip .crds .lookup(&peer_label) .and_then(CrdsValue::contact_info) .map(move |peer_info| { filters .into_iter() .map(move |f| (peer, f, peer_info.gossip, me.clone())) }) }) .flatten() .collect(); self.add_entrypoint(&mut pulls); pulls .into_iter() .map(|(peer, filter, gossip, self_info)| { self.gossip.mark_pull_request_creation_time(&peer, now); (gossip, Protocol::PullRequest(filter, self_info)) }) .collect() } fn new_push_requests(&mut self) -> Vec<(SocketAddr, Protocol)> { let self_id = self.gossip.id; let (_, push_messages) = self.gossip.new_push_messages(timestamp()); push_messages .into_iter() .filter_map(|(peer, messages)| { let peer_label = CrdsValueLabel::ContactInfo(peer); self.gossip .crds .lookup(&peer_label) .and_then(CrdsValue::contact_info) .map(|p| (p.gossip, messages)) }) .map(|(peer, msgs)| { Self::split_gossip_messages(msgs) .into_iter() .map(move |payload| (peer, Protocol::PushMessage(self_id, payload))) }) .flatten() .collect() } fn gossip_request(&mut self, stakes: &HashMap) -> Vec<(SocketAddr, Protocol)> { let pulls: Vec<_> = self.new_pull_requests(stakes); let pushes: Vec<_> = self.new_push_requests(); vec![pulls, pushes].into_iter().flat_map(|x| x).collect() } /// At random pick a node and try to get updated changes from them fn run_gossip( obj: &Arc>, stakes: &HashMap, blob_sender: &BlobSender, ) -> Result<()> { let reqs = obj.write().unwrap().gossip_request(&stakes); let blobs = reqs .into_iter() .filter_map(|(remote_gossip_addr, req)| to_shared_blob(req, remote_gossip_addr).ok()) .collect(); blob_sender.send(blobs)?; Ok(()) } /// randomly pick a node and ask them for updates asynchronously pub fn gossip( obj: Arc>, bank_forks: Option>>, blob_sender: BlobSender, exit: &Arc, ) -> JoinHandle<()> { let exit = exit.clone(); Builder::new() .name("solana-gossip".to_string()) .spawn(move || { let mut last_push = timestamp(); let mut last_contact_info_trace = timestamp(); loop { let start = timestamp(); if start - last_contact_info_trace > 10000 { // Log contact info every 10 seconds info!("\n{}", obj.read().unwrap().contact_info_trace()); last_contact_info_trace = start; } let stakes: HashMap<_, _> = match bank_forks { Some(ref bank_forks) => { staking_utils::staked_nodes(&bank_forks.read().unwrap().working_bank()) } None => HashMap::new(), }; let _ = Self::run_gossip(&obj, &stakes, &blob_sender); if exit.load(Ordering::Relaxed) { return; } obj.write().unwrap().purge(timestamp()); //TODO: possibly tune this parameter //we saw a deadlock passing an obj.read().unwrap().timeout into sleep if start - last_push > CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS / 2 { obj.write().unwrap().push_self(&stakes); last_push = timestamp(); } let elapsed = timestamp() - start; if GOSSIP_SLEEP_MILLIS > elapsed { let time_left = GOSSIP_SLEEP_MILLIS - elapsed; sleep(Duration::from_millis(time_left)); } } }) .unwrap() } fn get_data_shred_as_blob( blocktree: &Arc, slot: u64, shred_index: u64, ) -> Result> { let bytes = blocktree.get_data_shred(slot, shred_index)?; Ok(bytes.map(|bytes| Blob::new(&bytes))) } fn run_window_request( from: &ContactInfo, from_addr: &SocketAddr, blocktree: Option<&Arc>, me: &ContactInfo, slot: u64, blob_index: u64, ) -> Vec { if let Some(blocktree) = blocktree { // Try to find the requested index in one of the slots let blob = Self::get_data_shred_as_blob(blocktree, slot, blob_index); if let Ok(Some(mut blob)) = blob { inc_new_counter_debug!("cluster_info-window-request-ledger", 1); blob.meta.set_addr(from_addr); return vec![Arc::new(RwLock::new(blob))]; } } inc_new_counter_debug!("cluster_info-window-request-fail", 1); trace!( "{}: failed RequestWindowIndex {} {} {}", me.id, from.id, slot, blob_index, ); vec![] } fn run_highest_window_request( from_addr: &SocketAddr, blocktree: Option<&Arc>, slot: u64, highest_index: u64, ) -> Vec { if let Some(blocktree) = blocktree { // Try to find the requested index in one of the slots let meta = blocktree.meta(slot); if let Ok(Some(meta)) = meta { if meta.received > highest_index { // meta.received must be at least 1 by this point let blob = Self::get_data_shred_as_blob(blocktree, slot, meta.received - 1); if let Ok(Some(mut blob)) = blob { blob.meta.set_addr(from_addr); return vec![Arc::new(RwLock::new(blob))]; } } } } vec![] } fn run_orphan( from_addr: &SocketAddr, blocktree: Option<&Arc>, mut slot: u64, max_responses: usize, ) -> Vec { let mut res = vec![]; if let Some(blocktree) = blocktree { // Try to find the next "n" parent slots of the input slot while let Ok(Some(meta)) = blocktree.meta(slot) { if meta.received == 0 { break; } let blob = Self::get_data_shred_as_blob(blocktree, slot, meta.received - 1); if let Ok(Some(mut blob)) = blob { blob.meta.set_addr(from_addr); res.push(Arc::new(RwLock::new(blob))); } if meta.is_parent_set() && res.len() <= max_responses { slot = meta.parent_slot; } else { break; } } } res } fn handle_blobs( me: &Arc>, blocktree: Option<&Arc>, stakes: &HashMap, blobs: &[SharedBlob], response_sender: &BlobSender, ) { // iter over the blobs, collect pulls separately and process everything else let mut gossip_pull_data: Vec = vec![]; blobs.iter().for_each(|blob| { let blob = blob.read().unwrap(); let from_addr = blob.meta.addr(); deserialize(&blob.data[..blob.meta.size]) .into_iter() .for_each(|request| match request { Protocol::PullRequest(filter, caller) => { if !caller.verify() { inc_new_counter_error!( "cluster_info-gossip_pull_request_verify_fail", 1 ); } else if caller.contact_info().is_some() { if caller.contact_info().unwrap().pubkey() == me.read().unwrap().gossip.id { warn!("PullRequest ignored, I'm talking to myself"); inc_new_counter_debug!("cluster_info-window-request-loopback", 1); } else { gossip_pull_data.push(PullData { from_addr, caller, filter, }); } } } Protocol::PullResponse(from, mut data) => { data.retain(|v| { let ret = v.verify(); if !ret { inc_new_counter_error!( "cluster_info-gossip_pull_response_verify_fail", 1 ); } ret }); Self::handle_pull_response(me, &from, data); } Protocol::PushMessage(from, mut data) => { data.retain(|v| { let ret = v.verify(); if !ret { inc_new_counter_error!( "cluster_info-gossip_push_msg_verify_fail", 1 ); } ret }); let _ignore_disconnect = response_sender .send(Self::handle_push_message(me, &from, data, stakes)); } Protocol::PruneMessage(from, data) => { if data.verify() { inc_new_counter_debug!("cluster_info-prune_message", 1); inc_new_counter_debug!( "cluster_info-prune_message-size", data.prunes.len() ); match me.write().unwrap().gossip.process_prune_msg( &from, &data.destination, &data.prunes, data.wallclock, timestamp(), ) { Err(CrdsGossipError::PruneMessageTimeout) => { inc_new_counter_debug!("cluster_info-prune_message_timeout", 1) } Err(CrdsGossipError::BadPruneDestination) => { inc_new_counter_debug!("cluster_info-bad_prune_destination", 1) } _ => (), } } else { inc_new_counter_debug!("cluster_info-gossip_prune_msg_verify_fail", 1); } } _ => { let _ignore_disconnect = response_sender .send(Self::handle_repair(me, &from_addr, blocktree, request)); } }) }); // process the collected pulls together let _ignore_disconnect = response_sender.send(Self::handle_pull_requests(me, gossip_pull_data)); } fn handle_pull_requests(me: &Arc>, requests: Vec) -> Vec { // split the requests into addrs and filters let mut caller_and_filters = vec![]; let mut addrs = vec![]; for pull_data in requests { caller_and_filters.push((pull_data.caller, pull_data.filter)); addrs.push(pull_data.from_addr); } let now = timestamp(); let self_id = me.read().unwrap().id(); let pull_responses = me .write() .unwrap() .gossip .process_pull_requests(caller_and_filters, now); pull_responses .into_iter() .zip(addrs.into_iter()) .flat_map(|(response, from_addr)| { let len = response.len(); trace!("get updates since response {}", len); inc_new_counter_debug!("cluster_info-pull_request-rsp", len); Self::split_gossip_messages(response) .into_iter() .filter_map(move |payload| { let protocol = Protocol::PullResponse(self_id, payload); // The remote node may not know its public IP:PORT. Instead of responding to the caller's // gossip addr, respond to the origin addr. The last origin addr is picked from the list of // addrs. to_shared_blob(protocol, from_addr).ok() }) }) .collect() } fn handle_pull_response(me: &Arc>, from: &Pubkey, data: Vec) { let len = data.len(); let now = Instant::now(); let self_id = me.read().unwrap().gossip.id; trace!("PullResponse me: {} from: {} len={}", self_id, from, len); me.write() .unwrap() .gossip .process_pull_response(from, data, timestamp()); inc_new_counter_debug!("cluster_info-pull_request_response", 1); inc_new_counter_debug!("cluster_info-pull_request_response-size", len); report_time_spent("ReceiveUpdates", &now.elapsed(), &format!(" len: {}", len)); } fn handle_push_message( me: &Arc>, from: &Pubkey, data: Vec, stakes: &HashMap, ) -> Vec { let self_id = me.read().unwrap().gossip.id; inc_new_counter_debug!("cluster_info-push_message", 1); let updated: Vec<_> = me.write() .unwrap() .gossip .process_push_message(from, data, timestamp()); let updated_labels: Vec<_> = updated.into_iter().map(|u| u.value.label()).collect(); let prunes_map: HashMap> = me .write() .unwrap() .gossip .prune_received_cache(updated_labels, stakes); let mut rsp: Vec<_> = prunes_map .into_iter() .map(|(from, prune_set)| { inc_new_counter_debug!("cluster_info-push_message-prunes", prune_set.len()); me.read().unwrap().lookup(&from).cloned().and_then(|ci| { let mut prune_msg = PruneData { pubkey: self_id, prunes: prune_set.into_iter().collect(), signature: Signature::default(), destination: from, wallclock: timestamp(), }; prune_msg.sign(&me.read().unwrap().keypair); let rsp = Protocol::PruneMessage(self_id, prune_msg); to_shared_blob(rsp, ci.gossip).ok() }) }) .flatten() .collect(); if !rsp.is_empty() { let pushes: Vec<_> = me.write().unwrap().new_push_requests(); inc_new_counter_debug!("cluster_info-push_message-pushes", pushes.len()); let mut blobs: Vec<_> = pushes .into_iter() .filter_map(|(remote_gossip_addr, req)| { to_shared_blob(req, remote_gossip_addr).ok() }) .collect(); rsp.append(&mut blobs); rsp } else { vec![] } } fn get_repair_sender(request: &Protocol) -> &ContactInfo { match request { Protocol::RequestWindowIndex(ref from, _, _) => from, Protocol::RequestHighestWindowIndex(ref from, _, _) => from, Protocol::RequestOrphan(ref from, _) => from, _ => panic!("Not a repair request"), } } fn handle_repair( me: &Arc>, from_addr: &SocketAddr, blocktree: Option<&Arc>, request: Protocol, ) -> Vec { let now = Instant::now(); //TODO this doesn't depend on cluster_info module, could be moved //but we are using the listen thread to service these request //TODO verify from is signed let self_id = me.read().unwrap().gossip.id; let from = Self::get_repair_sender(&request); if from.id == me.read().unwrap().gossip.id { warn!( "{}: Ignored received repair request from ME {}", self_id, from.id, ); inc_new_counter_debug!("cluster_info-handle-repair--eq", 1); return vec![]; } me.write() .unwrap() .gossip .crds .update_record_timestamp(&from.id, timestamp()); let my_info = me.read().unwrap().my_data().clone(); let (res, label) = { match &request { Protocol::RequestWindowIndex(from, slot, blob_index) => { inc_new_counter_debug!("cluster_info-request-window-index", 1); ( Self::run_window_request( from, &from_addr, blocktree, &my_info, *slot, *blob_index, ), "RequestWindowIndex", ) } Protocol::RequestHighestWindowIndex(_, slot, highest_index) => { inc_new_counter_debug!("cluster_info-request-highest-window-index", 1); ( Self::run_highest_window_request( &from_addr, blocktree, *slot, *highest_index, ), "RequestHighestWindowIndex", ) } Protocol::RequestOrphan(_, slot) => { inc_new_counter_debug!("cluster_info-request-orphan", 1); ( Self::run_orphan(&from_addr, blocktree, *slot, MAX_ORPHAN_REPAIR_RESPONSES), "RequestOrphan", ) } _ => panic!("Not a repair request"), } }; trace!("{}: received repair request: {:?}", self_id, request); report_time_spent(label, &now.elapsed(), ""); res } /// Process messages from the network fn run_listen( obj: &Arc>, blocktree: Option<&Arc>, bank_forks: Option<&Arc>>, requests_receiver: &BlobReceiver, response_sender: &BlobSender, ) -> Result<()> { //TODO cache connections let timeout = Duration::new(1, 0); let mut reqs = requests_receiver.recv_timeout(timeout)?; while let Ok(mut more) = requests_receiver.try_recv() { reqs.append(&mut more); } let stakes: HashMap<_, _> = match bank_forks { Some(ref bank_forks) => { staking_utils::staked_nodes(&bank_forks.read().unwrap().working_bank()) } None => HashMap::new(), }; Self::handle_blobs(obj, blocktree, &stakes, &reqs, response_sender); Ok(()) } pub fn listen( me: Arc>, blocktree: Option>, bank_forks: Option>>, requests_receiver: BlobReceiver, response_sender: BlobSender, exit: &Arc, ) -> JoinHandle<()> { let exit = exit.clone(); Builder::new() .name("solana-listen".to_string()) .spawn(move || loop { let e = Self::run_listen( &me, blocktree.as_ref(), bank_forks.as_ref(), &requests_receiver, &response_sender, ); if exit.load(Ordering::Relaxed) { return; } if e.is_err() { let me = me.read().unwrap(); debug!( "{}: run_listen timeout, table size: {}", me.gossip.id, me.gossip.crds.table.len() ); } }) .unwrap() } /// An alternative to Spy Node that has a valid gossip address and fully participate in Gossip. pub fn gossip_node(id: &Pubkey, gossip_addr: &SocketAddr) -> (ContactInfo, UdpSocket) { let (port, (gossip_socket, _)) = Node::get_gossip_port(gossip_addr, FULLNODE_PORT_RANGE); let daddr = socketaddr_any!(); let node = ContactInfo::new( id, SocketAddr::new(gossip_addr.ip(), port), daddr, daddr, daddr, daddr, daddr, daddr, daddr, timestamp(), ); (node, gossip_socket) } /// A Node with invalid ports to spy on gossip via pull requests pub fn spy_node(id: &Pubkey) -> (ContactInfo, UdpSocket) { let (_, gossip_socket) = bind_in_range(FULLNODE_PORT_RANGE).unwrap(); let daddr = socketaddr_any!(); let node = ContactInfo::new( id, daddr, daddr, daddr, daddr, daddr, daddr, daddr, daddr, timestamp(), ); (node, gossip_socket) } } /// Turbine logic /// 1 - For the current node find out if it is in layer 1 /// 1.1 - If yes, then broadcast to all layer 1 nodes /// 1 - using the layer 1 index, broadcast to all layer 2 nodes assuming you know neighborhood size /// 1.2 - If no, then figure out what layer the node is in and who the neighbors are and only broadcast to them /// 1 - also check if there are nodes in the next layer and repeat the layer 1 to layer 2 logic /// Returns Neighbor Nodes and Children Nodes `(neighbors, children)` for a given node based on its stake pub fn compute_retransmit_peers( fanout: usize, my_index: usize, stakes_and_index: Vec, ) -> (Vec, Vec) { //calc num_layers and num_neighborhoods using the total number of nodes let (num_layers, layer_indices) = ClusterInfo::describe_data_plane(stakes_and_index.len(), fanout); if num_layers <= 1 { /* single layer data plane */ (stakes_and_index, vec![]) } else { //find my layer let locality = ClusterInfo::localize(&layer_indices, fanout, my_index); let upper_bound = cmp::min(locality.neighbor_bounds.1, stakes_and_index.len()); let neighbors = stakes_and_index[locality.neighbor_bounds.0..upper_bound].to_vec(); let mut children = Vec::new(); for ix in locality.next_layer_peers { if let Some(peer) = stakes_and_index.get(ix) { children.push(*peer); continue; } break; } (neighbors, children) } } #[derive(Debug)] pub struct Sockets { pub gossip: UdpSocket, pub ip_echo: Option, pub tvu: Vec, pub tvu_forwards: Vec, pub tpu: Vec, pub tpu_forwards: Vec, pub broadcast: UdpSocket, pub repair: UdpSocket, pub retransmit_sockets: Vec, pub storage: Option, } #[derive(Debug)] pub struct Node { pub info: ContactInfo, pub sockets: Sockets, } impl Node { pub fn new_localhost() -> Self { let pubkey = Pubkey::new_rand(); Self::new_localhost_with_pubkey(&pubkey) } pub fn new_localhost_replicator(pubkey: &Pubkey) -> Self { let gossip = UdpSocket::bind("127.0.0.1:0").unwrap(); let tvu = UdpSocket::bind("127.0.0.1:0").unwrap(); let tvu_forwards = UdpSocket::bind("127.0.0.1:0").unwrap(); let storage = UdpSocket::bind("127.0.0.1:0").unwrap(); let empty = "0.0.0.0:0".parse().unwrap(); let repair = UdpSocket::bind("127.0.0.1:0").unwrap(); let broadcast = UdpSocket::bind("0.0.0.0:0").unwrap(); let retransmit = UdpSocket::bind("0.0.0.0:0").unwrap(); let info = ContactInfo::new( pubkey, gossip.local_addr().unwrap(), tvu.local_addr().unwrap(), tvu_forwards.local_addr().unwrap(), empty, empty, storage.local_addr().unwrap(), empty, empty, timestamp(), ); Node { info, sockets: Sockets { gossip, tvu: vec![tvu], tvu_forwards: vec![], tpu: vec![], tpu_forwards: vec![], broadcast, repair, retransmit_sockets: vec![retransmit], storage: Some(storage), ip_echo: None, }, } } pub fn new_localhost_with_pubkey(pubkey: &Pubkey) -> Self { let tpu = UdpSocket::bind("127.0.0.1:0").unwrap(); let (gossip_port, (gossip, ip_echo)) = bind_common_in_range((1024, 65535)).unwrap(); let gossip_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), gossip_port); let tvu = UdpSocket::bind("127.0.0.1:0").unwrap(); let tvu_forwards = UdpSocket::bind("127.0.0.1:0").unwrap(); let tpu_forwards = UdpSocket::bind("127.0.0.1:0").unwrap(); let repair = UdpSocket::bind("127.0.0.1:0").unwrap(); let rpc_port = find_available_port_in_range((1024, 65535)).unwrap(); let rpc_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), rpc_port); let rpc_pubsub_port = find_available_port_in_range((1024, 65535)).unwrap(); let rpc_pubsub_addr = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), rpc_pubsub_port); let broadcast = UdpSocket::bind("0.0.0.0:0").unwrap(); let retransmit_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let storage = UdpSocket::bind("0.0.0.0:0").unwrap(); let info = ContactInfo::new( pubkey, gossip_addr, tvu.local_addr().unwrap(), tvu_forwards.local_addr().unwrap(), tpu.local_addr().unwrap(), tpu_forwards.local_addr().unwrap(), storage.local_addr().unwrap(), rpc_addr, rpc_pubsub_addr, timestamp(), ); Node { info, sockets: Sockets { gossip, ip_echo: Some(ip_echo), tvu: vec![tvu], tvu_forwards: vec![tvu_forwards], tpu: vec![tpu], tpu_forwards: vec![tpu_forwards], broadcast, repair, retransmit_sockets: vec![retransmit_socket], storage: None, }, } } fn get_gossip_port( gossip_addr: &SocketAddr, port_range: PortRange, ) -> (u16, (UdpSocket, TcpListener)) { if gossip_addr.port() != 0 { ( gossip_addr.port(), bind_common(gossip_addr.port(), false).unwrap_or_else(|e| { panic!("gossip_addr bind_to port {}: {}", gossip_addr.port(), e) }), ) } else { bind_common_in_range(port_range).expect("Failed to bind") } } fn bind(port_range: PortRange) -> (u16, UdpSocket) { bind_in_range(port_range).expect("Failed to bind") } pub fn new_with_external_ip( pubkey: &Pubkey, gossip_addr: &SocketAddr, port_range: PortRange, ) -> Node { let (gossip_port, (gossip, ip_echo)) = Self::get_gossip_port(gossip_addr, port_range); let (tvu_port, tvu_sockets) = multi_bind_in_range(port_range, 8).expect("tvu multi_bind"); let (tvu_forwards_port, tvu_forwards_sockets) = multi_bind_in_range(port_range, 8).expect("tvu_forwards multi_bind"); let (tpu_port, tpu_sockets) = multi_bind_in_range(port_range, 32).expect("tpu multi_bind"); let (tpu_forwards_port, tpu_forwards_sockets) = multi_bind_in_range(port_range, 8).expect("tpu_forwards multi_bind"); let (_, retransmit_sockets) = multi_bind_in_range(port_range, 8).expect("retransmit multi_bind"); let (_, repair) = Self::bind(port_range); let (_, broadcast) = Self::bind(port_range); let info = ContactInfo::new( pubkey, SocketAddr::new(gossip_addr.ip(), gossip_port), SocketAddr::new(gossip_addr.ip(), tvu_port), SocketAddr::new(gossip_addr.ip(), tvu_forwards_port), SocketAddr::new(gossip_addr.ip(), tpu_port), SocketAddr::new(gossip_addr.ip(), tpu_forwards_port), socketaddr_any!(), socketaddr_any!(), socketaddr_any!(), 0, ); trace!("new ContactInfo: {:?}", info); Node { info, sockets: Sockets { gossip, tvu: tvu_sockets, tvu_forwards: tvu_forwards_sockets, tpu: tpu_sockets, tpu_forwards: tpu_forwards_sockets, broadcast, repair, retransmit_sockets, storage: None, ip_echo: Some(ip_echo), }, } } pub fn new_replicator_with_external_ip( pubkey: &Pubkey, gossip_addr: &SocketAddr, port_range: PortRange, ) -> Node { let mut new = Self::new_with_external_ip(pubkey, gossip_addr, port_range); let (storage_port, storage_socket) = Self::bind(port_range); new.info.storage_addr = SocketAddr::new(gossip_addr.ip(), storage_port); new.sockets.storage = Some(storage_socket); let empty = socketaddr_any!(); new.info.tpu = empty; new.info.tpu_forwards = empty; new.sockets.tpu = vec![]; new.sockets.tpu_forwards = vec![]; new } } fn report_time_spent(label: &str, time: &Duration, extra: &str) { let count = duration_as_ms(time); if count > 5 { info!("{} took: {} ms {}", label, count, extra); } } #[cfg(test)] mod tests { use super::*; use crate::blocktree::get_tmp_ledger_path; use crate::blocktree::tests::make_many_slot_entries; use crate::blocktree::Blocktree; use crate::blocktree_processor::tests::fill_blocktree_slot_with_ticks; use crate::crds_value::CrdsValueLabel; use crate::repair_service::RepairType; use crate::result::Error; use crate::shred::max_ticks_per_n_shreds; use crate::shred::{DataShredHeader, Shred}; use crate::test_tx::test_tx; use rayon::prelude::*; use solana_sdk::hash::Hash; use solana_sdk::signature::{Keypair, KeypairUtil}; use std::collections::HashSet; use std::net::{IpAddr, Ipv4Addr}; use std::sync::{Arc, RwLock}; #[test] fn test_gossip_node() { //check that a gossip nodes always show up as spies let (node, _) = ClusterInfo::spy_node(&Pubkey::new_rand()); assert!(ClusterInfo::is_spy_node(&node)); let (node, _) = ClusterInfo::gossip_node(&Pubkey::new_rand(), &"1.1.1.1:1111".parse().unwrap()); assert!(ClusterInfo::is_spy_node(&node)); } #[test] fn test_cluster_spy_gossip() { //check that gossip doesn't try to push to invalid addresses let node = Node::new_localhost(); let (spy, _) = ClusterInfo::spy_node(&Pubkey::new_rand()); let cluster_info = Arc::new(RwLock::new(ClusterInfo::new_with_invalid_keypair( node.info, ))); cluster_info.write().unwrap().insert_info(spy); cluster_info .write() .unwrap() .gossip .refresh_push_active_set(&HashMap::new()); let reqs = cluster_info .write() .unwrap() .gossip_request(&HashMap::new()); //assert none of the addrs are invalid. reqs.iter().all(|(addr, _)| { let res = ContactInfo::is_valid_address(addr); assert!(res); res }); } #[test] fn test_cluster_info_new() { let d = ContactInfo::new_localhost(&Pubkey::new_rand(), timestamp()); let cluster_info = ClusterInfo::new_with_invalid_keypair(d.clone()); assert_eq!(d.id, cluster_info.my_data().id); } #[test] fn insert_info_test() { let d = ContactInfo::new_localhost(&Pubkey::new_rand(), timestamp()); let mut cluster_info = ClusterInfo::new_with_invalid_keypair(d); let d = ContactInfo::new_localhost(&Pubkey::new_rand(), timestamp()); let label = CrdsValueLabel::ContactInfo(d.id); cluster_info.insert_info(d); assert!(cluster_info.gossip.crds.lookup(&label).is_some()); } #[test] fn test_insert_self() { let d = ContactInfo::new_localhost(&Pubkey::new_rand(), timestamp()); let mut cluster_info = ClusterInfo::new_with_invalid_keypair(d.clone()); let entry_label = CrdsValueLabel::ContactInfo(cluster_info.id()); assert!(cluster_info.gossip.crds.lookup(&entry_label).is_some()); // inserting something else shouldn't work let d = ContactInfo::new_localhost(&Pubkey::new_rand(), timestamp()); cluster_info.insert_self(d.clone()); let label = CrdsValueLabel::ContactInfo(d.id); assert!(cluster_info.gossip.crds.lookup(&label).is_none()); } #[test] fn window_index_request() { let me = ContactInfo::new_localhost(&Pubkey::new_rand(), timestamp()); let mut cluster_info = ClusterInfo::new_with_invalid_keypair(me); let rv = cluster_info.repair_request(&RepairType::Blob(0, 0)); assert_matches!(rv, Err(Error::ClusterInfoError(ClusterInfoError::NoPeers))); let gossip_addr = socketaddr!([127, 0, 0, 1], 1234); let nxt = ContactInfo::new( &Pubkey::new_rand(), gossip_addr, socketaddr!([127, 0, 0, 1], 1235), socketaddr!([127, 0, 0, 1], 1236), socketaddr!([127, 0, 0, 1], 1237), socketaddr!([127, 0, 0, 1], 1238), socketaddr!([127, 0, 0, 1], 1239), socketaddr!([127, 0, 0, 1], 1240), socketaddr!([127, 0, 0, 1], 1241), 0, ); cluster_info.insert_info(nxt.clone()); let rv = cluster_info .repair_request(&RepairType::Blob(0, 0)) .unwrap(); assert_eq!(nxt.gossip, gossip_addr); assert_eq!(rv.0, nxt.gossip); let gossip_addr2 = socketaddr!([127, 0, 0, 2], 1234); let nxt = ContactInfo::new( &Pubkey::new_rand(), gossip_addr2, socketaddr!([127, 0, 0, 1], 1235), socketaddr!([127, 0, 0, 1], 1236), socketaddr!([127, 0, 0, 1], 1237), socketaddr!([127, 0, 0, 1], 1238), socketaddr!([127, 0, 0, 1], 1239), socketaddr!([127, 0, 0, 1], 1240), socketaddr!([127, 0, 0, 1], 1241), 0, ); cluster_info.insert_info(nxt); let mut one = false; let mut two = false; while !one || !two { //this randomly picks an option, so eventually it should pick both let rv = cluster_info .repair_request(&RepairType::Blob(0, 0)) .unwrap(); if rv.0 == gossip_addr { one = true; } if rv.0 == gossip_addr2 { two = true; } } assert!(one && two); } /// test window requests respond with the right blob, and do not overrun #[test] fn run_window_request() { solana_logger::setup(); let ledger_path = get_tmp_ledger_path!(); { let blocktree = Arc::new(Blocktree::open(&ledger_path).unwrap()); let me = ContactInfo::new( &Pubkey::new_rand(), socketaddr!("127.0.0.1:1234"), socketaddr!("127.0.0.1:1235"), socketaddr!("127.0.0.1:1236"), socketaddr!("127.0.0.1:1237"), socketaddr!("127.0.0.1:1238"), socketaddr!("127.0.0.1:1239"), socketaddr!("127.0.0.1:1240"), socketaddr!("127.0.0.1:1241"), 0, ); let rv = ClusterInfo::run_window_request( &me, &socketaddr_any!(), Some(&blocktree), &me, 0, 0, ); assert!(rv.is_empty()); let mut data_shred = DataShredHeader::default(); data_shred.data_header.slot = 2; data_shred.parent_offset = 1; data_shred.data_header.index = 1; let shred_info = Shred::new_empty_from_header(data_shred); blocktree .insert_shreds(vec![shred_info], None) .expect("Expect successful ledger write"); let rv = ClusterInfo::run_window_request( &me, &socketaddr_any!(), Some(&blocktree), &me, 2, 1, ); assert!(!rv.is_empty()); let rv: Vec = rv .into_iter() .filter_map(|b| { Shred::new_from_serialized_shred(b.read().unwrap().data.to_vec()).ok() }) .collect(); assert_eq!(rv[0].index(), 1); assert_eq!(rv[0].slot(), 2); } Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } /// test run_window_requestwindow requests respond with the right blob, and do not overrun #[test] fn run_highest_window_request() { solana_logger::setup(); let ledger_path = get_tmp_ledger_path!(); { let blocktree = Arc::new(Blocktree::open(&ledger_path).unwrap()); let rv = ClusterInfo::run_highest_window_request(&socketaddr_any!(), Some(&blocktree), 0, 0); assert!(rv.is_empty()); let _ = fill_blocktree_slot_with_ticks( &blocktree, max_ticks_per_n_shreds(1) + 1, 2, 1, Hash::default(), ); let rv = ClusterInfo::run_highest_window_request(&socketaddr_any!(), Some(&blocktree), 2, 1); let rv: Vec = rv .into_iter() .filter_map(|b| { Shred::new_from_serialized_shred(b.read().unwrap().data.to_vec()).ok() }) .collect(); assert!(!rv.is_empty()); let index = blocktree.meta(2).unwrap().unwrap().received - 1; assert_eq!(rv[0].index(), index as u32); assert_eq!(rv[0].slot(), 2); let rv = ClusterInfo::run_highest_window_request( &socketaddr_any!(), Some(&blocktree), 2, index + 1, ); assert!(rv.is_empty()); } Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } #[test] fn run_orphan() { solana_logger::setup(); let ledger_path = get_tmp_ledger_path!(); { let blocktree = Arc::new(Blocktree::open(&ledger_path).unwrap()); let rv = ClusterInfo::run_orphan(&socketaddr_any!(), Some(&blocktree), 2, 0); assert!(rv.is_empty()); // Create slots 1, 2, 3 with 5 blobs apiece let (shreds, _) = make_many_slot_entries(1, 3, 5); blocktree .insert_shreds(shreds, None) .expect("Expect successful ledger write"); // We don't have slot 4, so we don't know how to service this requeset let rv = ClusterInfo::run_orphan(&socketaddr_any!(), Some(&blocktree), 4, 5); assert!(rv.is_empty()); // For slot 3, we should return the highest blobs from slots 3, 2, 1 respectively // for this request let rv: Vec<_> = ClusterInfo::run_orphan(&socketaddr_any!(), Some(&blocktree), 3, 5) .iter() .map(|b| b.read().unwrap().clone()) .collect(); let expected: Vec<_> = (1..=3) .rev() .map(|slot| { let index = blocktree.meta(slot).unwrap().unwrap().received - 1; ClusterInfo::get_data_shred_as_blob(&blocktree, slot, index) .unwrap() .unwrap() }) .collect(); assert_eq!(rv, expected) } Blocktree::destroy(&ledger_path).expect("Expected successful database destruction"); } fn assert_in_range(x: u16, range: (u16, u16)) { assert!(x >= range.0); assert!(x < range.1); } fn check_sockets(sockets: &Vec, ip: IpAddr, range: (u16, u16)) { assert!(sockets.len() > 1); let port = sockets[0].local_addr().unwrap().port(); for socket in sockets.iter() { check_socket(socket, ip, range); assert_eq!(socket.local_addr().unwrap().port(), port); } } fn check_socket(socket: &UdpSocket, ip: IpAddr, range: (u16, u16)) { let local_addr = socket.local_addr().unwrap(); assert_eq!(local_addr.ip(), ip); assert_in_range(local_addr.port(), range); } fn check_node_sockets(node: &Node, ip: IpAddr, range: (u16, u16)) { check_socket(&node.sockets.gossip, ip, range); check_socket(&node.sockets.repair, ip, range); check_sockets(&node.sockets.tvu, ip, range); check_sockets(&node.sockets.tpu, ip, range); } #[test] fn new_with_external_ip_test_random() { let ip = Ipv4Addr::from(0); let node = Node::new_with_external_ip( &Pubkey::new_rand(), &socketaddr!(ip, 0), FULLNODE_PORT_RANGE, ); check_node_sockets(&node, IpAddr::V4(ip), FULLNODE_PORT_RANGE); } #[test] fn new_with_external_ip_test_gossip() { let ip = IpAddr::V4(Ipv4Addr::from(0)); let port = { bind_in_range(FULLNODE_PORT_RANGE) .expect("Failed to bind") .0 }; let node = Node::new_with_external_ip( &Pubkey::new_rand(), &socketaddr!(0, port), FULLNODE_PORT_RANGE, ); check_node_sockets(&node, ip, FULLNODE_PORT_RANGE); assert_eq!(node.sockets.gossip.local_addr().unwrap().port(), port); } #[test] fn new_replicator_external_ip_test() { let ip = Ipv4Addr::from(0); let node = Node::new_replicator_with_external_ip( &Pubkey::new_rand(), &socketaddr!(ip, 0), FULLNODE_PORT_RANGE, ); let ip = IpAddr::V4(ip); check_socket(&node.sockets.storage.unwrap(), ip, FULLNODE_PORT_RANGE); check_socket(&node.sockets.gossip, ip, FULLNODE_PORT_RANGE); check_socket(&node.sockets.repair, ip, FULLNODE_PORT_RANGE); check_sockets(&node.sockets.tvu, ip, FULLNODE_PORT_RANGE); } //test that all cluster_info objects only generate signed messages //when constructed with keypairs #[test] fn test_gossip_signature_verification() { //create new cluster info, leader, and peer let keypair = Keypair::new(); let peer_keypair = Keypair::new(); let contact_info = ContactInfo::new_localhost(&keypair.pubkey(), 0); let peer = ContactInfo::new_localhost(&peer_keypair.pubkey(), 0); let mut cluster_info = ClusterInfo::new(contact_info.clone(), Arc::new(keypair)); cluster_info.insert_info(peer.clone()); cluster_info.gossip.refresh_push_active_set(&HashMap::new()); //check that all types of gossip messages are signed correctly let (_, push_messages) = cluster_info.gossip.new_push_messages(timestamp()); // there should be some pushes ready assert_eq!(push_messages.len() > 0, true); push_messages .values() .for_each(|v| v.par_iter().for_each(|v| assert!(v.verify()))); let (_, _, val) = cluster_info .gossip .new_pull_request(timestamp(), &HashMap::new(), ClusterInfo::max_bloom_size()) .ok() .unwrap(); assert!(val.verify()); } fn num_layers(nodes: usize, fanout: usize) -> usize { ClusterInfo::describe_data_plane(nodes, fanout).0 } #[test] fn test_describe_data_plane() { // no nodes assert_eq!(num_layers(0, 200), 0); // 1 node assert_eq!(num_layers(1, 200), 1); // 10 nodes with fanout of 2 assert_eq!(num_layers(10, 2), 3); // fanout + 1 nodes with fanout of 2 assert_eq!(num_layers(3, 2), 2); // A little more realistic assert_eq!(num_layers(100, 10), 2); // A little more realistic with odd numbers assert_eq!(num_layers(103, 13), 2); // A little more realistic with just enough for 3 layers assert_eq!(num_layers(111, 10), 3); // larger let (layer_cnt, layer_indices) = ClusterInfo::describe_data_plane(10_000, 10); assert_eq!(layer_cnt, 4); // distances between index values should increase by `fanout` for every layer. let mut capacity = 10 * 10; assert_eq!(layer_indices[1], 10); layer_indices[1..].windows(2).for_each(|x| { if x.len() == 2 { assert_eq!(x[1] - x[0], capacity); capacity *= 10; } }); // massive let (layer_cnt, layer_indices) = ClusterInfo::describe_data_plane(500_000, 200); let mut capacity = 200 * 200; assert_eq!(layer_cnt, 3); // distances between index values should increase by `fanout` for every layer. assert_eq!(layer_indices[1], 200); layer_indices[1..].windows(2).for_each(|x| { if x.len() == 2 { assert_eq!(x[1] - x[0], capacity); capacity *= 200; } }); let total_capacity: usize = *layer_indices.last().unwrap(); assert!(total_capacity >= 500_000); } #[test] fn test_localize() { // go for gold let (_, layer_indices) = ClusterInfo::describe_data_plane(500_000, 200); let mut me = 0; let mut layer_ix = 0; let locality = ClusterInfo::localize(&layer_indices, 200, me); assert_eq!(locality.layer_ix, layer_ix); assert_eq!( locality.next_layer_bounds, Some((layer_indices[layer_ix + 1], layer_indices[layer_ix + 2])) ); me = 201; layer_ix = 1; let locality = ClusterInfo::localize(&layer_indices, 200, me); assert_eq!( locality.layer_ix, layer_ix, "layer_indices[layer_ix] is actually {}", layer_indices[layer_ix] ); assert_eq!( locality.next_layer_bounds, Some((layer_indices[layer_ix + 1], layer_indices[layer_ix + 2])) ); me = 20_000; layer_ix = 1; let locality = ClusterInfo::localize(&layer_indices, 200, me); assert_eq!( locality.layer_ix, layer_ix, "layer_indices[layer_ix] is actually {}", layer_indices[layer_ix] ); assert_eq!( locality.next_layer_bounds, Some((layer_indices[layer_ix + 1], layer_indices[layer_ix + 2])) ); // test no child layer since last layer should have massive capacity let (_, layer_indices) = ClusterInfo::describe_data_plane(500_000, 200); me = 40_201; layer_ix = 2; let locality = ClusterInfo::localize(&layer_indices, 200, me); assert_eq!( locality.layer_ix, layer_ix, "layer_indices[layer_ix] is actually {}", layer_indices[layer_ix] ); assert_eq!(locality.next_layer_bounds, None); } #[test] fn test_localize_child_peer_overlap() { let (_, layer_indices) = ClusterInfo::describe_data_plane(500_000, 200); let last_ix = layer_indices.len() - 1; // sample every 33 pairs to reduce test time for x in (0..*layer_indices.get(last_ix - 2).unwrap()).step_by(33) { let me_locality = ClusterInfo::localize(&layer_indices, 200, x); let buddy_locality = ClusterInfo::localize(&layer_indices, 200, x + 1); assert!(!me_locality.next_layer_peers.is_empty()); assert!(!buddy_locality.next_layer_peers.is_empty()); me_locality .next_layer_peers .iter() .zip(buddy_locality.next_layer_peers.iter()) .for_each(|(x, y)| assert_ne!(x, y)); } } #[test] fn test_network_coverage() { // pretend to be each node in a scaled down network and make sure the set of all the broadcast peers // includes every node in the network. let (_, layer_indices) = ClusterInfo::describe_data_plane(25_000, 10); let mut broadcast_set = HashSet::new(); for my_index in 0..25_000 { let my_locality = ClusterInfo::localize(&layer_indices, 10, my_index); broadcast_set.extend(my_locality.neighbor_bounds.0..my_locality.neighbor_bounds.1); broadcast_set.extend(my_locality.next_layer_peers); } for i in 0..25_000 { assert!(broadcast_set.contains(&(i as usize))); } assert!(broadcast_set.contains(&(layer_indices.last().unwrap() - 1))); //sanity check for past total capacity. assert!(!broadcast_set.contains(&(layer_indices.last().unwrap()))); } #[test] fn test_push_vote() { let keys = Keypair::new(); let now = timestamp(); let contact_info = ContactInfo::new_localhost(&keys.pubkey(), 0); let mut cluster_info = ClusterInfo::new_with_invalid_keypair(contact_info); // make sure empty crds is handled correctly let (votes, max_ts) = cluster_info.get_votes(now); assert_eq!(votes, vec![]); assert_eq!(max_ts, now); // add a vote let tx = test_tx(); cluster_info.push_vote(tx.clone()); // -1 to make sure that the clock is strictly lower then when insert occurred let (votes, max_ts) = cluster_info.get_votes(now - 1); assert_eq!(votes, vec![tx]); assert!(max_ts >= now - 1); // make sure timestamp filter works let (votes, new_max_ts) = cluster_info.get_votes(max_ts); assert_eq!(votes, vec![]); assert_eq!(max_ts, new_max_ts); } #[test] fn test_add_entrypoint() { let node_keypair = Arc::new(Keypair::new()); let mut cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()), node_keypair, ); let entrypoint_pubkey = Pubkey::new_rand(); let entrypoint = ContactInfo::new_localhost(&entrypoint_pubkey, timestamp()); cluster_info.set_entrypoint(entrypoint.clone()); let pulls = cluster_info.new_pull_requests(&HashMap::new()); assert_eq!(1, pulls.len() as u64); match pulls.get(0) { Some((addr, msg)) => { assert_eq!(*addr, entrypoint.gossip); match msg { Protocol::PullRequest(_, value) => { assert!(value.verify()); assert_eq!(value.pubkey(), cluster_info.id()) } _ => panic!("wrong protocol"), } } None => panic!("entrypoint should be a pull destination"), } // now add this message back to the table and make sure after the next pull, the entrypoint is unset let entrypoint_crdsvalue = CrdsValue::ContactInfo(entrypoint.clone()); let cluster_info = Arc::new(RwLock::new(cluster_info)); ClusterInfo::handle_pull_response( &cluster_info, &entrypoint_pubkey, vec![entrypoint_crdsvalue], ); let pulls = cluster_info .write() .unwrap() .new_pull_requests(&HashMap::new()); assert_eq!(1, pulls.len() as u64); assert_eq!(cluster_info.read().unwrap().entrypoint, Some(entrypoint)); } #[test] fn test_split_messages_small() { let value = CrdsValue::ContactInfo(ContactInfo::default()); test_split_messages(value); } #[test] fn test_split_messages_large() { let mut btree_slots = BTreeSet::new(); for i in 0..128 { btree_slots.insert(i); } let value = CrdsValue::EpochSlots(EpochSlots { from: Pubkey::default(), root: 0, slots: btree_slots, signature: Signature::default(), wallclock: 0, }); test_split_messages(value); } fn test_split_messages(value: CrdsValue) { const NUM_VALUES: usize = 30; let value_size = value.size(); let expected_len = NUM_VALUES / (MAX_PROTOCOL_PAYLOAD_SIZE / value_size).max(1) as usize; let msgs = vec![value; NUM_VALUES]; let split = ClusterInfo::split_gossip_messages(msgs); assert!(split.len() <= expected_len); } #[test] fn test_crds_filter_size() { //sanity test to ensure filter size never exceeds MTU size check_pull_request_size(CrdsFilter::new_rand(1000, 10)); check_pull_request_size(CrdsFilter::new_rand(1000, 1000)); check_pull_request_size(CrdsFilter::new_rand(100000, 1000)); check_pull_request_size(CrdsFilter::new_rand(100000, ClusterInfo::max_bloom_size())); } fn check_pull_request_size(filter: CrdsFilter) { let value = CrdsValue::ContactInfo(ContactInfo::default()); let protocol = Protocol::PullRequest(filter, value.clone()); assert!(serialized_size(&protocol).unwrap() <= PACKET_DATA_SIZE as u64); } #[test] fn test_tvu_peers_and_stakes() { let d = ContactInfo::new_localhost(&Pubkey::new(&[0; 32]), timestamp()); let mut cluster_info = ClusterInfo::new_with_invalid_keypair(d.clone()); let mut stakes = HashMap::new(); // no stake let id = Pubkey::new(&[1u8; 32]); let contact_info = ContactInfo::new_localhost(&id, timestamp()); cluster_info.insert_info(contact_info); // normal let id2 = Pubkey::new(&[2u8; 32]); let mut contact_info = ContactInfo::new_localhost(&id2, timestamp()); cluster_info.insert_info(contact_info.clone()); stakes.insert(id2, 10); // duplicate contact_info.wallclock = timestamp() + 1; cluster_info.insert_info(contact_info); // no tvu let id3 = Pubkey::new(&[3u8; 32]); let mut contact_info = ContactInfo::new_localhost(&id3, timestamp()); contact_info.tvu = "0.0.0.0:0".parse().unwrap(); cluster_info.insert_info(contact_info); stakes.insert(id3, 10); let (peers, peers_and_stakes) = cluster_info.sorted_tvu_peers_and_stakes(Some(&stakes)); assert_eq!(peers.len(), 2); assert_eq!(peers[0].id, id); assert_eq!(peers[1].id, id2); assert_eq!(peers_and_stakes.len(), 2); assert_eq!(peers_and_stakes[0].0, 10); assert_eq!(peers_and_stakes[1].0, 1); } #[test] fn test_pull_from_entrypoint_if_not_present() { let node_keypair = Arc::new(Keypair::new()); let mut cluster_info = ClusterInfo::new( ContactInfo::new_localhost(&node_keypair.pubkey(), timestamp()), node_keypair, ); let entrypoint_pubkey = Pubkey::new_rand(); let mut entrypoint = ContactInfo::new_localhost(&entrypoint_pubkey, timestamp()); entrypoint.gossip = socketaddr!("127.0.0.2:1234"); cluster_info.set_entrypoint(entrypoint.clone()); let mut stakes = HashMap::new(); let other_node_pubkey = Pubkey::new_rand(); let other_node = ContactInfo::new_localhost(&other_node_pubkey, timestamp()); assert_ne!(other_node.gossip, entrypoint.gossip); cluster_info.insert_info(other_node.clone()); stakes.insert(other_node_pubkey, 10); // Pull request 1: `other_node` is present but `entrypoint` was just added (so it has a // fresh timestamp). There should only be one pull request to `other_node` let pulls = cluster_info.new_pull_requests(&stakes); assert_eq!(1, pulls.len() as u64); assert_eq!(pulls.get(0).unwrap().0, other_node.gossip); // Pull request 2: pretend it's been a while since we've pulled from `entrypoint`. There should // now be two pull requests cluster_info.entrypoint.as_mut().unwrap().wallclock = 0; let pulls = cluster_info.new_pull_requests(&stakes); assert_eq!(2, pulls.len() as u64); assert_eq!(pulls.get(0).unwrap().0, other_node.gossip); assert_eq!(pulls.get(1).unwrap().0, entrypoint.gossip); // Pull request 3: `other_node` is present and `entrypoint` was just pulled from. There should // only be one pull request to `other_node` let pulls = cluster_info.new_pull_requests(&stakes); assert_eq!(1, pulls.len() as u64); assert_eq!(pulls.get(0).unwrap().0, other_node.gossip); } }