//! The `shred` module defines data structures and methods to pull MTU sized data frames from the network. use crate::erasure::Session; use crate::result; use crate::result::Error; use bincode::serialized_size; use core::cell::RefCell; use lazy_static::lazy_static; use rayon::iter::{IntoParallelRefMutIterator, ParallelIterator}; use rayon::ThreadPool; use serde::{Deserialize, Serialize}; use solana_rayon_threadlimit::get_thread_count; use solana_sdk::packet::PACKET_DATA_SIZE; use solana_sdk::pubkey::Pubkey; use solana_sdk::signature::{Keypair, KeypairUtil, Signature}; use std::io; use std::io::{Error as IOError, ErrorKind, Write}; use std::sync::Arc; lazy_static! { static ref SIZE_OF_CODING_SHRED_HEADER: usize = { serialized_size(&CodingShredHeader::default()).unwrap() as usize }; static ref SIZE_OF_DATA_SHRED_HEADER: usize = { serialized_size(&DataShredHeader::default()).unwrap() as usize }; static ref SIZE_OF_SIGNATURE: usize = { bincode::serialized_size(&Signature::default()).unwrap() as usize }; pub static ref SIZE_OF_SHRED_TYPE: usize = { bincode::serialized_size(&0u8).unwrap() as usize }; } thread_local!(static PAR_THREAD_POOL: RefCell = RefCell::new(rayon::ThreadPoolBuilder::new() .num_threads(get_thread_count()) .build() .unwrap())); /// The constants that define if a shred is data or coding pub const DATA_SHRED: u8 = 0b1010_0101; pub const CODING_SHRED: u8 = 0b0101_1010; /// This limit comes from reed solomon library, but unfortunately they don't have /// a public constant defined for it. const MAX_DATA_SHREDS_PER_FEC_BLOCK: u32 = 16; /// Based on rse benchmarks, the optimal erasure config uses 16 data shreds and 4 coding shreds pub const RECOMMENDED_FEC_RATE: f32 = 0.25; const LAST_SHRED_IN_SLOT: u8 = 0b0000_0001; const DATA_COMPLETE_SHRED: u8 = 0b0000_0010; /// A common header that is present at start of every shred #[derive(Serialize, Clone, Deserialize, Default, PartialEq, Debug)] pub struct ShredCommonHeader { pub signature: Signature, pub slot: u64, pub index: u32, } /// A common header that is present at start of every data shred #[derive(Serialize, Clone, Deserialize, PartialEq, Debug)] pub struct DataShredHeader { pub common_header: CodingShredHeader, pub data_header: ShredCommonHeader, pub parent_offset: u16, pub flags: u8, } /// The coding shred header has FEC information #[derive(Serialize, Clone, Deserialize, PartialEq, Debug)] pub struct CodingShredHeader { pub shred_type: u8, pub coding_header: ShredCommonHeader, pub num_data_shreds: u16, pub num_coding_shreds: u16, pub position: u16, } impl Default for DataShredHeader { fn default() -> Self { DataShredHeader { common_header: CodingShredHeader { shred_type: DATA_SHRED, ..CodingShredHeader::default() }, data_header: ShredCommonHeader::default(), parent_offset: 0, flags: 0, } } } impl Default for CodingShredHeader { fn default() -> Self { CodingShredHeader { shred_type: CODING_SHRED, coding_header: ShredCommonHeader::default(), num_data_shreds: 0, num_coding_shreds: 0, position: 0, } } } #[derive(Clone, Debug, PartialEq)] pub struct Shred { pub headers: DataShredHeader, pub payload: Vec, } impl Shred { fn new(header: DataShredHeader, shred_buf: Vec) -> Self { Shred { headers: header, payload: shred_buf, } } pub fn new_from_serialized_shred(shred_buf: Vec) -> result::Result { let shred_type: u8 = bincode::deserialize(&shred_buf[..*SIZE_OF_SHRED_TYPE])?; let header = if shred_type == CODING_SHRED { let end = *SIZE_OF_CODING_SHRED_HEADER; let mut header = DataShredHeader::default(); header.common_header = bincode::deserialize(&shred_buf[..end])?; header } else { let end = *SIZE_OF_DATA_SHRED_HEADER; bincode::deserialize(&shred_buf[..end])? }; Ok(Self::new(header, shred_buf)) } pub fn new_empty_from_header(headers: DataShredHeader) -> Self { let mut payload = vec![0; PACKET_DATA_SIZE]; let mut wr = io::Cursor::new(&mut payload[..*SIZE_OF_DATA_SHRED_HEADER]); bincode::serialize_into(&mut wr, &headers).expect("Failed to serialize shred"); Shred { headers, payload } } pub fn new_empty_data_shred() -> Self { let mut payload = vec![0; PACKET_DATA_SIZE]; payload[0] = DATA_SHRED; let headers = DataShredHeader::default(); Shred { headers, payload } } fn header(&self) -> &ShredCommonHeader { if self.is_data() { &self.headers.data_header } else { &self.headers.common_header.coding_header } } pub fn header_mut(&mut self) -> &mut ShredCommonHeader { if self.is_data() { &mut self.headers.data_header } else { &mut self.headers.common_header.coding_header } } pub fn slot(&self) -> u64 { self.header().slot } pub fn parent(&self) -> u64 { if self.is_data() { self.headers.data_header.slot - u64::from(self.headers.parent_offset) } else { std::u64::MAX } } pub fn index(&self) -> u32 { self.header().index } /// This is not a safe function. It only changes the meta information. /// Use this only for test code which doesn't care about actual shred pub fn set_index(&mut self, index: u32) { self.header_mut().index = index } /// This is not a safe function. It only changes the meta information. /// Use this only for test code which doesn't care about actual shred pub fn set_slot(&mut self, slot: u64) { self.header_mut().slot = slot } pub fn signature(&self) -> Signature { self.header().signature } pub fn seed(&self) -> [u8; 32] { let mut seed = [0; 32]; let seed_len = seed.len(); let sig = self.header().signature.as_ref(); seed[0..seed_len].copy_from_slice(&sig[(sig.len() - seed_len)..]); seed } pub fn is_data(&self) -> bool { self.headers.common_header.shred_type == DATA_SHRED } pub fn last_in_slot(&self) -> bool { if self.is_data() { self.headers.flags & LAST_SHRED_IN_SLOT == LAST_SHRED_IN_SLOT } else { false } } /// This is not a safe function. It only changes the meta information. /// Use this only for test code which doesn't care about actual shred pub fn set_last_in_slot(&mut self) { if self.is_data() { self.headers.flags |= LAST_SHRED_IN_SLOT } } pub fn data_complete(&self) -> bool { if self.is_data() { self.headers.flags & DATA_COMPLETE_SHRED == DATA_COMPLETE_SHRED } else { false } } pub fn coding_params(&self) -> Option<(u16, u16, u16)> { if !self.is_data() { let header = &self.headers.common_header; Some(( header.num_data_shreds, header.num_coding_shreds, header.position, )) } else { None } } pub fn verify(&self, pubkey: &Pubkey) -> bool { let signed_payload_offset = if self.is_data() { *SIZE_OF_CODING_SHRED_HEADER } else { *SIZE_OF_SHRED_TYPE } + *SIZE_OF_SIGNATURE; self.signature() .verify(pubkey.as_ref(), &self.payload[signed_payload_offset..]) } } #[derive(Debug)] pub struct Shredder { slot: u64, pub index: u32, fec_set_index: u32, parent_offset: u16, fec_rate: f32, signer: Arc, pub shreds: Vec, fec_set_shred_start: usize, active_shred: Vec, active_shred_header: DataShredHeader, active_offset: usize, } impl Write for Shredder { fn write(&mut self, buf: &[u8]) -> io::Result { let offset = self.active_offset + *SIZE_OF_DATA_SHRED_HEADER; let slice_len = std::cmp::min(buf.len(), PACKET_DATA_SIZE - offset); self.active_shred[offset..offset + slice_len].copy_from_slice(&buf[..slice_len]); let capacity = PACKET_DATA_SIZE - offset - slice_len; if buf.len() > slice_len || capacity == 0 { self.finalize_data_shred(); } else { self.active_offset += slice_len; } if self.index - self.fec_set_index >= MAX_DATA_SHREDS_PER_FEC_BLOCK { self.sign_unsigned_shreds_and_generate_codes(); } Ok(slice_len) } fn flush(&mut self) -> io::Result<()> { unimplemented!() } } impl Shredder { pub fn new( slot: u64, parent: u64, fec_rate: f32, signer: &Arc, index: u32, ) -> result::Result { if fec_rate > 1.0 || fec_rate < 0.0 { Err(Error::IO(IOError::new( ErrorKind::Other, format!( "FEC rate {:?} must be more than 0.0 and less than 1.0", fec_rate ), ))) } else if slot < parent || slot - parent > u64::from(std::u16::MAX) { Err(Error::IO(IOError::new( ErrorKind::Other, format!( "Current slot {:?} must be > Parent slot {:?}, but the difference must not be > {:?}", slot, parent, std::u16::MAX ), ))) } else { let mut header = DataShredHeader::default(); header.data_header.slot = slot; header.data_header.index = index; header.parent_offset = (slot - parent) as u16; let active_shred = vec![0; PACKET_DATA_SIZE]; Ok(Shredder { slot, index, fec_set_index: index, parent_offset: (slot - parent) as u16, fec_rate, signer: signer.clone(), shreds: vec![], fec_set_shred_start: 0, active_shred, active_shred_header: header, active_offset: 0, }) } } pub fn sign_shred(signer: &Arc, shred_info: &mut Shred, signature_offset: usize) { let data_offset = signature_offset + *SIZE_OF_SIGNATURE; let signature = signer.sign_message(&shred_info.payload[data_offset..]); let serialized_signature = bincode::serialize(&signature).expect("Failed to generate serialized signature"); shred_info.payload[signature_offset..signature_offset + serialized_signature.len()] .copy_from_slice(&serialized_signature); shred_info.header_mut().signature = signature; } fn sign_unsigned_shreds_and_generate_codes(&mut self) { let signature_offset = *SIZE_OF_CODING_SHRED_HEADER; let signer = self.signer.clone(); PAR_THREAD_POOL.with(|thread_pool| { thread_pool.borrow().install(|| { self.shreds[self.fec_set_shred_start..] .par_iter_mut() .for_each(|d| Self::sign_shred(&signer, d, signature_offset)); }) }); let unsigned_coding_shred_start = self.shreds.len(); if self.fec_rate > 0.0 { self.generate_coding_shreds(); let signature_offset = *SIZE_OF_SHRED_TYPE; PAR_THREAD_POOL.with(|thread_pool| { thread_pool.borrow().install(|| { self.shreds[unsigned_coding_shred_start..] .par_iter_mut() .for_each(|d| Self::sign_shred(&signer, d, signature_offset)); }) }); } else { self.fec_set_index = self.index; } self.fec_set_shred_start = self.shreds.len(); } /// Finalize a data shred. Update the shred index for the next shred fn finalize_data_shred(&mut self) { self.active_offset = 0; self.index += 1; // Swap header let mut header = DataShredHeader::default(); header.data_header.slot = self.slot; header.data_header.index = self.index; header.parent_offset = self.parent_offset; std::mem::swap(&mut header, &mut self.active_shred_header); // Swap shred buffer let mut shred_buf = vec![0; PACKET_DATA_SIZE]; std::mem::swap(&mut shred_buf, &mut self.active_shred); let mut wr = io::Cursor::new(&mut shred_buf[..*SIZE_OF_DATA_SHRED_HEADER]); bincode::serialize_into(&mut wr, &header) .expect("Failed to write header into shred buffer"); let shred = Shred::new(header, shred_buf); self.shreds.push(shred); } pub fn new_coding_shred_header( slot: u64, index: u32, num_data: usize, num_code: usize, position: usize, ) -> DataShredHeader { let mut header = DataShredHeader::default(); header.common_header.shred_type = CODING_SHRED; header.common_header.coding_header.index = index; header.common_header.coding_header.slot = slot; header.common_header.num_coding_shreds = num_code as u16; header.common_header.num_data_shreds = num_data as u16; header.common_header.position = position as u16; header } /// Generates coding shreds for the data shreds in the current FEC set fn generate_coding_shreds(&mut self) { if self.fec_rate != 0.0 { let num_data = (self.index - self.fec_set_index) as usize; // always generate at least 1 coding shred even if the fec_rate doesn't allow it let num_coding = 1.max((self.fec_rate * num_data as f32) as usize); let session = Session::new(num_data, num_coding).expect("Failed to create erasure session"); let start_index = self.index - num_data as u32; // All information after coding shred field in a data shred is encoded let coding_block_offset = *SIZE_OF_CODING_SHRED_HEADER; let data_ptrs: Vec<_> = self.shreds[self.fec_set_shred_start..] .iter() .map(|data| &data.payload[coding_block_offset..]) .collect(); // Create empty coding shreds, with correctly populated headers let mut coding_shreds = Vec::with_capacity(num_coding); (0..num_coding).for_each(|i| { let header = Self::new_coding_shred_header( self.slot, start_index + i as u32, num_data, num_coding, i, ); let shred = Shred::new_empty_from_header(header); coding_shreds.push(shred.payload); }); // Grab pointers for the coding blocks let mut coding_ptrs: Vec<_> = coding_shreds .iter_mut() .map(|buffer| &mut buffer[coding_block_offset..]) .collect(); // Create coding blocks session .encode(&data_ptrs, coding_ptrs.as_mut_slice()) .expect("Failed in erasure encode"); // append to the shred list coding_shreds.into_iter().enumerate().for_each(|(i, code)| { let header = Self::new_coding_shred_header( self.slot, start_index + i as u32, num_data, num_coding, i, ); self.shreds.push(Shred::new(header, code)); }); self.fec_set_index = self.index; } } /// Create the final data shred for the current FEC set or slot /// If there's an active data shred, morph it into the final shred /// If the current active data shred is first in slot, finalize it and create a new shred fn make_final_data_shred(&mut self, last_in_slot: u8) { if self.active_shred_header.data_header.index == 0 { self.finalize_data_shred(); } self.active_shred_header.flags |= DATA_COMPLETE_SHRED; if last_in_slot == LAST_SHRED_IN_SLOT { self.active_shred_header.flags |= LAST_SHRED_IN_SLOT; } self.finalize_data_shred(); self.sign_unsigned_shreds_and_generate_codes(); } /// Finalize the current FEC block, and generate coding shreds pub fn finalize_data(&mut self) { self.make_final_data_shred(0); } /// Finalize the current slot (i.e. add last slot shred) and generate coding shreds pub fn finalize_slot(&mut self) { self.make_final_data_shred(LAST_SHRED_IN_SLOT); } fn fill_in_missing_shreds( num_data: usize, num_coding: usize, first_index_in_fec_set: usize, expected_index: usize, index_found: usize, present: &mut [bool], ) -> Vec> { let end_index = index_found.saturating_sub(1); // The index of current shred must be within the range of shreds that are being // recovered if !(first_index_in_fec_set..first_index_in_fec_set + num_data + num_coding) .contains(&end_index) { return vec![]; } let missing_blocks: Vec> = (expected_index..index_found) .map(|missing| { present[missing.saturating_sub(first_index_in_fec_set)] = false; if missing < first_index_in_fec_set + num_data { Shred::new_empty_data_shred().payload } else { vec![0; PACKET_DATA_SIZE] } }) .collect(); missing_blocks } pub fn try_recovery( shreds: Vec, num_data: usize, num_coding: usize, first_index: usize, slot: u64, ) -> Result, reed_solomon_erasure::Error> { let mut recovered_data = vec![]; let fec_set_size = num_data + num_coding; if num_coding > 0 && shreds.len() < fec_set_size { let coding_block_offset = *SIZE_OF_CODING_SHRED_HEADER; // Let's try recovering missing shreds using erasure let mut present = &mut vec![true; fec_set_size]; let mut next_expected_index = first_index; let mut shred_bufs: Vec> = shreds .into_iter() .flat_map(|shred| { let index = Self::get_shred_index(&shred, num_data); let mut blocks = Self::fill_in_missing_shreds( num_data, num_coding, first_index, next_expected_index, index, &mut present, ); blocks.push(shred.payload); next_expected_index = index + 1; blocks }) .collect(); // Insert any other missing shreds after the last shred we have received in the // current FEC block let mut pending_shreds = Self::fill_in_missing_shreds( num_data, num_coding, first_index, next_expected_index, first_index + fec_set_size, &mut present, ); shred_bufs.append(&mut pending_shreds); if shred_bufs.len() != fec_set_size { Err(reed_solomon_erasure::Error::TooFewShardsPresent)?; } let session = Session::new(num_data, num_coding).unwrap(); let mut blocks: Vec<(&mut [u8], bool)> = shred_bufs .iter_mut() .map(|x| x[coding_block_offset..].as_mut()) .zip(present.clone()) .collect(); session.decode_blocks(&mut blocks)?; let mut num_drained = 0; present .iter() .enumerate() .for_each(|(position, was_present)| { if !*was_present && position < num_data { let drain_this = position - num_drained; let shred_buf = shred_bufs.remove(drain_this); num_drained += 1; if let Ok(shred) = Shred::new_from_serialized_shred(shred_buf) { let shred_index = shred.index() as usize; // Valid shred must be in the same slot as the original shreds if shred.slot() == slot { // A valid data shred must be indexed between first_index and first+num_data index if (first_index..first_index + num_data).contains(&shred_index) { recovered_data.push(shred) } } } } }); } Ok(recovered_data) } /// Combines all shreds to recreate the original buffer pub fn deshred(shreds: &[Shred]) -> Result, reed_solomon_erasure::Error> { let num_data = shreds.len(); let data_shred_bufs = { let first_index = shreds.first().unwrap().index() as usize; let last_shred = shreds.last().unwrap(); let last_index = if last_shred.data_complete() || last_shred.last_in_slot() { last_shred.index() as usize } else { 0 }; if num_data.saturating_add(first_index) != last_index.saturating_add(1) { Err(reed_solomon_erasure::Error::TooFewDataShards)?; } shreds.iter().map(|shred| &shred.payload).collect() }; Ok(Self::reassemble_payload(num_data, data_shred_bufs)) } fn get_shred_index(shred: &Shred, num_data: usize) -> usize { if shred.is_data() { shred.index() as usize } else { shred.index() as usize + num_data } } fn reassemble_payload(num_data: usize, data_shred_bufs: Vec<&Vec>) -> Vec { data_shred_bufs[..num_data] .iter() .flat_map(|data| { let offset = *SIZE_OF_DATA_SHRED_HEADER; data[offset as usize..].iter() }) .cloned() .collect() } } #[cfg(test)] mod tests { use super::*; fn verify_test_data_shred( shred: &Shred, index: u32, slot: u64, parent: u64, pk: &Pubkey, verify: bool, ) { assert_eq!(shred.payload.len(), PACKET_DATA_SIZE); assert!(shred.is_data()); assert_eq!(shred.index(), index); assert_eq!(shred.slot(), slot); assert_eq!(shred.parent(), parent); assert_eq!(verify, shred.verify(pk)); } fn verify_test_code_shred(shred: &Shred, index: u32, slot: u64, pk: &Pubkey, verify: bool) { assert_eq!(shred.payload.len(), PACKET_DATA_SIZE); assert!(!shred.is_data()); assert_eq!(shred.index(), index); assert_eq!(shred.slot(), slot); assert_eq!(verify, shred.verify(pk)); } #[test] fn test_data_shredder() { let keypair = Arc::new(Keypair::new()); let slot = 0x123456789abcdef0; // Test that parent cannot be > current slot assert_matches!(Shredder::new(slot, slot + 1, 1.001, &keypair, 0), Err(_)); // Test that slot - parent cannot be > u16 MAX assert_matches!( Shredder::new(slot, slot - 1 - 0xffff, 1.001, &keypair, 0), Err(_) ); let mut shredder = Shredder::new(slot, slot - 5, 0.0, &keypair, 0).expect("Failed in creating shredder"); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 0); // Test0: Write some data to shred. Not enough to create a signed shred let data: Vec = (0..25).collect(); assert_eq!(shredder.write(&data).unwrap(), data.len()); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 25); // Test1: Write some more data to shred. Not enough to create a signed shred assert_eq!(shredder.write(&data).unwrap(), data.len()); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 50); // Test2: Write enough data to create a shred (> PACKET_DATA_SIZE) let data: Vec<_> = (0..PACKET_DATA_SIZE).collect(); let data: Vec = data.iter().map(|x| *x as u8).collect(); let offset = shredder.write(&data).unwrap(); assert_ne!(offset, data.len()); // Assert that we have atleast one signed shred assert!(!shredder.shreds.is_empty()); // Assert that the new active shred was not populated assert_eq!(shredder.active_offset, 0); // Test3: Assert that the first shred in slot was created (since we gave a parent to shredder) let shred = &shredder.shreds[0]; // Test4: assert that it matches the original shred // The shreds are not signed yet, as the data is not finalized verify_test_data_shred(&shred, 0, slot, slot - 5, &keypair.pubkey(), false); let seed0 = shred.seed(); // Test that same seed is generated for a given shred assert_eq!(seed0, shred.seed()); // Test5: Write left over data, and assert that a data shred is being created shredder.write(&data[offset..]).unwrap(); // Test6: Let's finalize the FEC block. That should result in the current shred to morph into // a signed LastInFECBlock shred shredder.finalize_data(); // We should have a new signed shred assert!(!shredder.shreds.is_empty()); // Must be Last in FEC Set let shred = &shredder.shreds[1]; verify_test_data_shred(&shred, 1, slot, slot - 5, &keypair.pubkey(), true); // Test that same seed is NOT generated for two different shreds assert_ne!(seed0, shred.seed()); // Test7: Let's write some more data to the shredder. // Now we should get a new FEC block let data: Vec<_> = (0..PACKET_DATA_SIZE).collect(); let data: Vec = data.iter().map(|x| *x as u8).collect(); let offset = shredder.write(&data).unwrap(); assert_ne!(offset, data.len()); // We should have a new signed shred assert!(!shredder.shreds.is_empty()); let shred = &shredder.shreds[2]; verify_test_data_shred(&shred, 2, slot, slot - 5, &keypair.pubkey(), false); // Test8: Write more data to generate an intermediate data shred let offset = shredder.write(&data).unwrap(); assert_ne!(offset, data.len()); // We should have a new signed shred assert!(!shredder.shreds.is_empty()); // Must be a Data shred let shred = &shredder.shreds[3]; verify_test_data_shred(&shred, 3, slot, slot - 5, &keypair.pubkey(), false); // Test9: Write some data to shredder let data: Vec = (0..25).collect(); assert_eq!(shredder.write(&data).unwrap(), data.len()); // And, finish the slot shredder.finalize_slot(); // We should have a new signed shred assert!(!shredder.shreds.is_empty()); // Must be LastInSlot let shred = &shredder.shreds[4]; verify_test_data_shred(&shred, 4, slot, slot - 5, &keypair.pubkey(), true); } #[test] fn test_small_data_shredder() { let keypair = Arc::new(Keypair::new()); let slot = 0x123456789abcdef0; let mut shredder = Shredder::new(slot, slot - 5, 0.0, &keypair, 0).expect("Failed in creating shredder"); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 0); let data: Vec<_> = (0..25).collect(); let data: Vec = data.iter().map(|x| *x as u8).collect(); let _ = shredder.write(&data).unwrap(); // We should have 0 shreds now assert_eq!(shredder.shreds.len(), 0); shredder.finalize_data(); // We should have 1 shred now assert_eq!(shredder.shreds.len(), 2); let shred = shredder.shreds.remove(0); verify_test_data_shred(&shred, 0, slot, slot - 5, &keypair.pubkey(), true); let shred = shredder.shreds.remove(0); verify_test_data_shred(&shred, 1, slot, slot - 5, &keypair.pubkey(), true); let mut shredder = Shredder::new(0x123456789abcdef0, slot - 5, 0.0, &keypair, 2) .expect("Failed in creating shredder"); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 0); let data: Vec<_> = (0..25).collect(); let data: Vec = data.iter().map(|x| *x as u8).collect(); let _ = shredder.write(&data).unwrap(); // We should have 0 shreds now assert_eq!(shredder.shreds.len(), 0); shredder.finalize_data(); // We should have 1 shred now (LastInFECBlock) assert_eq!(shredder.shreds.len(), 1); let shred = shredder.shreds.remove(0); verify_test_data_shred(&shred, 2, slot, slot - 5, &keypair.pubkey(), true); } #[test] fn test_data_and_code_shredder() { let keypair = Arc::new(Keypair::new()); let slot = 0x123456789abcdef0; // Test that FEC rate cannot be > 1.0 assert_matches!(Shredder::new(slot, slot - 5, 1.001, &keypair, 0), Err(_)); let mut shredder = Shredder::new(0x123456789abcdef0, slot - 5, 1.0, &keypair, 0) .expect("Failed in creating shredder"); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 0); // Write enough data to create a shred (> PACKET_DATA_SIZE) let data: Vec<_> = (0..PACKET_DATA_SIZE).collect(); let data: Vec = data.iter().map(|x| *x as u8).collect(); let _ = shredder.write(&data).unwrap(); let _ = shredder.write(&data).unwrap(); // We should have 2 shreds now assert_eq!(shredder.shreds.len(), 2); shredder.finalize_data(); // Finalize must have created 1 final data shred and 3 coding shreds // assert_eq!(shredder.shreds.len(), 6); let shred = shredder.shreds.remove(0); verify_test_data_shred(&shred, 0, slot, slot - 5, &keypair.pubkey(), true); let shred = shredder.shreds.remove(0); verify_test_data_shred(&shred, 1, slot, slot - 5, &keypair.pubkey(), true); let shred = shredder.shreds.remove(0); verify_test_data_shred(&shred, 2, slot, slot - 5, &keypair.pubkey(), true); let shred = shredder.shreds.remove(0); verify_test_code_shred(&shred, 0, slot, &keypair.pubkey(), true); let shred = shredder.shreds.remove(0); verify_test_code_shred(&shred, 1, slot, &keypair.pubkey(), true); let shred = shredder.shreds.remove(0); verify_test_code_shred(&shred, 2, slot, &keypair.pubkey(), true); } #[test] fn test_large_data_shredder() { let keypair = Arc::new(Keypair::new()); let mut shredder = Shredder::new(1, 0, 0.0, &keypair, 0).expect("Failed in creating shredder"); let data = vec![0u8; 1000 * 1000]; bincode::serialize_into(&mut shredder, &data).unwrap(); assert!(shredder.shreds.len() > data.len() / PACKET_DATA_SIZE); } #[test] fn test_recovery_and_reassembly() { let keypair = Arc::new(Keypair::new()); let slot = 0x123456789abcdef0; let mut shredder = Shredder::new(slot, slot - 5, 1.0, &keypair, 0).expect("Failed in creating shredder"); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 0); let data: Vec<_> = (0..4000).collect(); let data: Vec = data.iter().map(|x| *x as u8).collect(); let mut offset = shredder.write(&data).unwrap(); let approx_shred_payload_size = offset; offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); // We should have some shreds now assert_eq!( shredder.shreds.len(), data.len() / approx_shred_payload_size ); assert_eq!(offset, data.len()); shredder.finalize_data(); // We should have 10 shreds now (one additional final shred, and equal number of coding shreds) let expected_shred_count = ((data.len() / approx_shred_payload_size) + 1) * 2; assert_eq!(shredder.shreds.len(), expected_shred_count); let shred_infos = shredder.shreds.clone(); // Test0: Try recovery/reassembly with only data shreds, but not all data shreds. Hint: should fail assert_matches!( Shredder::try_recovery( shred_infos[..3].to_vec(), expected_shred_count / 2, expected_shred_count / 2, 0, slot ), Err(reed_solomon_erasure::Error::TooFewShardsPresent) ); // Test1: Try recovery/reassembly with only data shreds. Hint: should work let recovered_data = Shredder::try_recovery( shred_infos[..4].to_vec(), expected_shred_count / 2, expected_shred_count / 2, 0, slot, ) .unwrap(); assert!(recovered_data.is_empty()); let result = Shredder::deshred(&shred_infos[..4]).unwrap(); assert!(result.len() >= data.len()); assert_eq!(data[..], result[..data.len()]); // Test2: Try recovery/reassembly with missing data shreds + coding shreds. Hint: should work let mut shred_info: Vec = shredder .shreds .iter() .enumerate() .filter_map(|(i, b)| if i % 2 == 0 { Some(b.clone()) } else { None }) .collect(); let mut recovered_data = Shredder::try_recovery( shred_info.clone(), expected_shred_count / 2, expected_shred_count / 2, 0, slot, ) .unwrap(); assert_eq!(recovered_data.len(), 2); // Data shreds 1 and 3 were missing let recovered_shred = recovered_data.remove(0); verify_test_data_shred(&recovered_shred, 1, slot, slot - 5, &keypair.pubkey(), true); shred_info.insert(1, recovered_shred); let recovered_shred = recovered_data.remove(0); verify_test_data_shred(&recovered_shred, 3, slot, slot - 5, &keypair.pubkey(), true); shred_info.insert(3, recovered_shred); let result = Shredder::deshred(&shred_info[..4]).unwrap(); assert!(result.len() >= data.len()); assert_eq!(data[..], result[..data.len()]); // Test3: Try recovery/reassembly with 3 missing data shreds + 2 coding shreds. Hint: should work let mut shred_info: Vec = shredder .shreds .iter() .enumerate() .filter_map(|(i, b)| if i % 2 != 0 { Some(b.clone()) } else { None }) .collect(); let mut recovered_data = Shredder::try_recovery( shred_info.clone(), expected_shred_count / 2, expected_shred_count / 2, 0, slot, ) .unwrap(); assert_eq!(recovered_data.len(), 2); // Data shreds 0, 2 were missing let recovered_shred = recovered_data.remove(0); verify_test_data_shred(&recovered_shred, 0, slot, slot - 5, &keypair.pubkey(), true); shred_info.insert(0, recovered_shred); let recovered_shred = recovered_data.remove(0); verify_test_data_shred(&recovered_shred, 2, slot, slot - 5, &keypair.pubkey(), true); shred_info.insert(2, recovered_shred); let result = Shredder::deshred(&shred_info[..4]).unwrap(); assert!(result.len() >= data.len()); assert_eq!(data[..], result[..data.len()]); // Test4: Try recovery/reassembly full slot with 3 missing data shreds + 2 coding shreds. Hint: should work let mut shredder = Shredder::new(slot, slot - 5, 1.0, &keypair, 0).expect("Failed in creating shredder"); let mut offset = shredder.write(&data).unwrap(); let approx_shred_payload_size = offset; offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); // We should have some shreds now assert_eq!( shredder.shreds.len(), data.len() / approx_shred_payload_size ); assert_eq!(offset, data.len()); shredder.finalize_slot(); // We should have 10 shreds now (one additional final shred, and equal number of coding shreds) let expected_shred_count = ((data.len() / approx_shred_payload_size) + 1) * 2; assert_eq!(shredder.shreds.len(), expected_shred_count); let mut shred_info: Vec = shredder .shreds .iter() .enumerate() .filter_map(|(i, b)| if i % 2 != 0 { Some(b.clone()) } else { None }) .collect(); let mut recovered_data = Shredder::try_recovery( shred_info.clone(), expected_shred_count / 2, expected_shred_count / 2, 0, slot, ) .unwrap(); assert_eq!(recovered_data.len(), 2); // Data shreds 0, 2 were missing let recovered_shred = recovered_data.remove(0); verify_test_data_shred(&recovered_shred, 0, slot, slot - 5, &keypair.pubkey(), true); shred_info.insert(0, recovered_shred); let recovered_shred = recovered_data.remove(0); verify_test_data_shred(&recovered_shred, 2, slot, slot - 5, &keypair.pubkey(), true); shred_info.insert(2, recovered_shred); let result = Shredder::deshred(&shred_info[..4]).unwrap(); assert!(result.len() >= data.len()); assert_eq!(data[..], result[..data.len()]); // Test5: Try recovery/reassembly with 3 missing data shreds + 3 coding shreds. Hint: should fail let shreds: Vec = shredder .shreds .iter() .enumerate() .filter_map(|(i, s)| { if (i < 4 && i % 2 != 0) || (i >= 4 && i % 2 == 0) { Some(s.clone()) } else { None } }) .collect(); assert_eq!(shreds.len(), 4); assert_matches!( Shredder::deshred(&shreds), Err(reed_solomon_erasure::Error::TooFewDataShards) ); // Test6: Try recovery/reassembly with non zero index full slot with 3 missing data shreds + 2 coding shreds. Hint: should work let mut shredder = Shredder::new(slot, slot - 5, 1.0, &keypair, 25).expect("Failed in creating shredder"); let mut offset = shredder.write(&data).unwrap(); let approx_shred_payload_size = offset; offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); offset += shredder.write(&data[offset..]).unwrap(); // We should have some shreds now assert_eq!( shredder.shreds.len(), data.len() / approx_shred_payload_size ); assert_eq!(offset, data.len()); shredder.finalize_slot(); // We should have 10 shreds now (one additional final shred, and equal number of coding shreds) let expected_shred_count = ((data.len() / approx_shred_payload_size) + 1) * 2; assert_eq!(shredder.shreds.len(), expected_shred_count); let mut shred_info: Vec = shredder .shreds .iter() .enumerate() .filter_map(|(i, b)| if i % 2 != 0 { Some(b.clone()) } else { None }) .collect(); let mut recovered_data = Shredder::try_recovery( shred_info.clone(), expected_shred_count / 2, expected_shred_count / 2, 25, slot, ) .unwrap(); assert_eq!(recovered_data.len(), 2); // Data shreds 0, 2 were missing let recovered_shred = recovered_data.remove(0); verify_test_data_shred( &recovered_shred, 25, slot, slot - 5, &keypair.pubkey(), true, ); shred_info.insert(0, recovered_shred); let recovered_shred = recovered_data.remove(0); verify_test_data_shred( &recovered_shred, 27, slot, slot - 5, &keypair.pubkey(), true, ); shred_info.insert(2, recovered_shred); let result = Shredder::deshred(&shred_info[..4]).unwrap(); assert!(result.len() >= data.len()); assert_eq!(data[..], result[..data.len()]); // Test7: Try recovery/reassembly with incorrect slot. Hint: does not recover any shreds let recovered_data = Shredder::try_recovery( shred_info.clone(), expected_shred_count / 2, expected_shred_count / 2, 25, slot + 1, ) .unwrap(); assert!(recovered_data.is_empty()); // Test8: Try recovery/reassembly with incorrect index. Hint: does not recover any shreds assert_matches!( Shredder::try_recovery( shred_info.clone(), expected_shred_count / 2, expected_shred_count / 2, 15, slot, ), Err(reed_solomon_erasure::Error::TooFewShardsPresent) ); // Test9: Try recovery/reassembly with incorrect index. Hint: does not recover any shreds assert_matches!( Shredder::try_recovery( shred_info, expected_shred_count / 2, expected_shred_count / 2, 35, slot, ), Err(reed_solomon_erasure::Error::TooFewShardsPresent) ); } #[test] fn test_multi_fec_block_coding() { let keypair = Arc::new(Keypair::new()); let slot = 0x123456789abcdef0; let mut shredder = Shredder::new(slot, slot - 5, 1.0, &keypair, 0).expect("Failed in creating shredder"); assert!(shredder.shreds.is_empty()); assert_eq!(shredder.active_offset, 0); let data: Vec<_> = (0..MAX_DATA_SHREDS_PER_FEC_BLOCK * 1200 * 3).collect(); let data: Vec = data.iter().map(|x| *x as u8).collect(); let mut offset = shredder.write(&data).unwrap(); let approx_shred_payload_size = offset; while offset < data.len() { offset += shredder.write(&data[offset..]).unwrap(); } // We should have some shreds now assert!(shredder.shreds.len() > data.len() / approx_shred_payload_size); assert_eq!(offset, data.len()); shredder.finalize_data(); let expected_shred_count = ((data.len() / approx_shred_payload_size) + 1) * 2; assert_eq!(shredder.shreds.len(), expected_shred_count); let mut index = 0; while index < shredder.shreds.len() { let num_data_shreds = std::cmp::min( MAX_DATA_SHREDS_PER_FEC_BLOCK as usize, (shredder.shreds.len() - index) / 2, ); let coding_start = index + num_data_shreds; shredder.shreds[index..coding_start] .iter() .for_each(|s| assert!(s.is_data())); index = coding_start + num_data_shreds; shredder.shreds[coding_start..index] .iter() .for_each(|s| assert!(!s.is_data())); } } }