//! The `sigverify` module provides digital signature verification functions. //! By default, signatures are verified in parallel using all available CPU //! cores. When `--features=cuda` is enabled, signature verification is //! offloaded to the GPU. //! use crate::packet::{Packet, Packets}; use crate::result::Result; use solana_metrics::inc_new_counter_debug; use solana_sdk::pubkey::Pubkey; use solana_sdk::short_vec::decode_len; use solana_sdk::signature::Signature; #[cfg(test)] use solana_sdk::transaction::Transaction; use std::mem::size_of; type TxOffsets = (Vec, Vec, Vec, Vec, Vec>); // The serialized size of Message::num_required_signatures. const NUM_REQUIRED_SIGNATURES_SIZE: usize = 1; #[cfg(feature = "cuda")] #[repr(C)] struct Elems { elems: *const Packet, num: u32, } #[cfg(feature = "cuda")] #[link(name = "cuda-crypt")] extern "C" { fn ed25519_init() -> bool; fn ed25519_set_verbose(val: bool); fn ed25519_verify_many( vecs: *const Elems, num: u32, //number of vecs message_size: u32, //size of each element inside the elems field of the vec total_packets: u32, total_signatures: u32, message_lens: *const u32, pubkey_offsets: *const u32, signature_offsets: *const u32, signed_message_offsets: *const u32, out: *mut u8, //combined length of all the items in vecs use_non_default_stream: u8, ) -> u32; pub fn chacha_cbc_encrypt_many_sample( input: *const u8, sha_state: *mut u8, in_len: usize, keys: *const u8, ivec: *mut u8, num_keys: u32, samples: *const u64, num_samples: u32, starting_block: u64, time_us: *mut f32, ); pub fn chacha_init_sha_state(sha_state: *mut u8, num_keys: u32); pub fn chacha_end_sha_state(sha_state_in: *const u8, out: *mut u8, num_keys: u32); } #[cfg(not(feature = "cuda"))] pub fn init() { // stub } fn verify_packet(packet: &Packet) -> u8 { let (sig_len, sig_start, msg_start, pubkey_start) = get_packet_offsets(packet, 0); let mut sig_start = sig_start as usize; let mut pubkey_start = pubkey_start as usize; let msg_start = msg_start as usize; if packet.meta.size <= msg_start { return 0; } let msg_end = packet.meta.size; for _ in 0..sig_len { let pubkey_end = pubkey_start as usize + size_of::(); let sig_end = sig_start as usize + size_of::(); if pubkey_end >= packet.meta.size || sig_end >= packet.meta.size { return 0; } let signature = Signature::new(&packet.data[sig_start..sig_end]); if !signature.verify( &packet.data[pubkey_start..pubkey_end], &packet.data[msg_start..msg_end], ) { return 0; } pubkey_start += size_of::(); sig_start += size_of::(); } 1 } fn batch_size(batches: &[Packets]) -> usize { batches.iter().map(|p| p.packets.len()).sum() } #[cfg(not(feature = "cuda"))] pub fn ed25519_verify(batches: &[Packets]) -> Vec> { ed25519_verify_cpu(batches) } pub fn get_packet_offsets(packet: &Packet, current_offset: u32) -> (u32, u32, u32, u32) { let (sig_len, sig_size) = decode_len(&packet.data); let msg_start_offset = sig_size + sig_len * size_of::(); let (_pubkey_len, pubkey_size) = decode_len(&packet.data[msg_start_offset..]); let sig_start = current_offset as usize + sig_size; let msg_start = current_offset as usize + msg_start_offset; let pubkey_start = msg_start + NUM_REQUIRED_SIGNATURES_SIZE + pubkey_size; ( sig_len as u32, sig_start as u32, msg_start as u32, pubkey_start as u32, ) } pub fn generate_offsets(batches: &[Packets]) -> Result { let mut signature_offsets: Vec<_> = Vec::new(); let mut pubkey_offsets: Vec<_> = Vec::new(); let mut msg_start_offsets: Vec<_> = Vec::new(); let mut msg_sizes: Vec<_> = Vec::new(); let mut current_packet = 0; let mut v_sig_lens = Vec::new(); batches.iter().for_each(|p| { let mut sig_lens = Vec::new(); p.packets.iter().for_each(|packet| { let current_offset = current_packet as u32 * size_of::() as u32; let (sig_len, sig_start, msg_start_offset, pubkey_offset) = get_packet_offsets(packet, current_offset); let mut pubkey_offset = pubkey_offset; sig_lens.push(sig_len); trace!("pubkey_offset: {}", pubkey_offset); let mut sig_offset = sig_start; for _ in 0..sig_len { signature_offsets.push(sig_offset); sig_offset += size_of::() as u32; pubkey_offsets.push(pubkey_offset); pubkey_offset += size_of::() as u32; msg_start_offsets.push(msg_start_offset); msg_sizes.push(current_offset + (packet.meta.size as u32) - msg_start_offset); } current_packet += 1; }); v_sig_lens.push(sig_lens); }); Ok(( signature_offsets, pubkey_offsets, msg_start_offsets, msg_sizes, v_sig_lens, )) } pub fn ed25519_verify_cpu(batches: &[Packets]) -> Vec> { use rayon::prelude::*; let count = batch_size(batches); debug!("CPU ECDSA for {}", batch_size(batches)); let rv = batches .into_par_iter() .map(|p| p.packets.par_iter().map(verify_packet).collect()) .collect(); inc_new_counter_debug!("ed25519_verify_cpu", count); rv } pub fn ed25519_verify_disabled(batches: &[Packets]) -> Vec> { use rayon::prelude::*; let count = batch_size(batches); debug!("disabled ECDSA for {}", batch_size(batches)); let rv = batches .into_par_iter() .map(|p| vec![1u8; p.packets.len()]) .collect(); inc_new_counter_debug!("ed25519_verify_disabled", count); rv } #[cfg(feature = "cuda")] pub fn init() { unsafe { ed25519_set_verbose(true); if !ed25519_init() { panic!("ed25519_init() failed"); } ed25519_set_verbose(false); } } #[cfg(feature = "cuda")] pub fn ed25519_verify(batches: &[Packets]) -> Vec> { use crate::packet::PACKET_DATA_SIZE; let count = batch_size(batches); // micro-benchmarks show GPU time for smallest batch around 15-20ms // and CPU speed for 64-128 sigverifies around 10-20ms. 64 is a nice // power-of-two number around that accounting for the fact that the CPU // may be busy doing other things while being a real fullnode // TODO: dynamically adjust this crossover if count < 64 { return ed25519_verify_cpu(batches); } let (signature_offsets, pubkey_offsets, msg_start_offsets, msg_sizes, sig_lens) = generate_offsets(batches).unwrap(); debug!("CUDA ECDSA for {}", batch_size(batches)); let mut out = Vec::new(); let mut elems = Vec::new(); let mut rvs = Vec::new(); let mut num_packets = 0; for p in batches { elems.push(Elems { elems: p.packets.as_ptr(), num: p.packets.len() as u32, }); let mut v = Vec::new(); v.resize(p.packets.len(), 0); rvs.push(v); num_packets += p.packets.len(); } out.resize(signature_offsets.len(), 0); trace!("Starting verify num packets: {}", num_packets); trace!("elem len: {}", elems.len() as u32); trace!("packet sizeof: {}", size_of::() as u32); trace!("len offset: {}", PACKET_DATA_SIZE as u32); const USE_NON_DEFAULT_STREAM: u8 = 1; unsafe { let res = ed25519_verify_many( elems.as_ptr(), elems.len() as u32, size_of::() as u32, num_packets as u32, signature_offsets.len() as u32, msg_sizes.as_ptr(), pubkey_offsets.as_ptr(), signature_offsets.as_ptr(), msg_start_offsets.as_ptr(), out.as_mut_ptr(), USE_NON_DEFAULT_STREAM, ); if res != 0 { trace!("RETURN!!!: {}", res); } } trace!("done verify"); let mut num = 0; for (vs, sig_vs) in rvs.iter_mut().zip(sig_lens.iter()) { for (v, sig_v) in vs.iter_mut().zip(sig_vs.iter()) { let mut vout = 1; for _ in 0..*sig_v { if 0 == out[num] { vout = 0; } num += 1; } *v = vout; if *v != 0 { trace!("VERIFIED PACKET!!!!!"); } } } inc_new_counter_debug!("ed25519_verify_gpu", count); rvs } #[cfg(test)] pub fn make_packet_from_transaction(tx: Transaction) -> Packet { use bincode::serialize; let tx_bytes = serialize(&tx).unwrap(); let mut packet = Packet::default(); packet.meta.size = tx_bytes.len(); packet.data[..packet.meta.size].copy_from_slice(&tx_bytes); return packet; } #[cfg(test)] mod tests { use crate::packet::{Packet, Packets}; use crate::sigverify; use crate::test_tx::{test_multisig_tx, test_tx}; use bincode::{deserialize, serialize}; use solana_sdk::transaction::Transaction; const SIG_OFFSET: usize = 1; pub fn memfind(a: &[A], b: &[A]) -> Option { assert!(a.len() >= b.len()); let end = a.len() - b.len() + 1; for i in 0..end { if a[i..i + b.len()] == b[..] { return Some(i); } } None } #[test] fn test_layout() { let tx = test_tx(); let tx_bytes = serialize(&tx).unwrap(); let packet = serialize(&tx).unwrap(); assert_matches!(memfind(&packet, &tx_bytes), Some(0)); assert_matches!(memfind(&packet, &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), None); } #[test] fn test_system_transaction_layout() { let tx = test_tx(); let tx_bytes = serialize(&tx).unwrap(); let message_data = tx.message_data(); let packet = sigverify::make_packet_from_transaction(tx.clone()); let (sig_len, sig_start, msg_start_offset, pubkey_offset) = sigverify::get_packet_offsets(&packet, 0); assert_eq!( memfind(&tx_bytes, &tx.signatures[0].as_ref()), Some(SIG_OFFSET) ); assert_eq!( memfind(&tx_bytes, &tx.message().account_keys[0].as_ref()), Some(pubkey_offset as usize) ); assert_eq!( memfind(&tx_bytes, &message_data), Some(msg_start_offset as usize) ); assert_eq!( memfind(&tx_bytes, &tx.signatures[0].as_ref()), Some(sig_start as usize) ); assert_eq!(sig_len, 1); } #[test] fn test_system_transaction_data_layout() { use crate::packet::PACKET_DATA_SIZE; let mut tx0 = test_tx(); tx0.message.instructions[0].data = vec![1, 2, 3]; let message0a = tx0.message_data(); let tx_bytes = serialize(&tx0).unwrap(); assert!(tx_bytes.len() < PACKET_DATA_SIZE); assert_eq!( memfind(&tx_bytes, &tx0.signatures[0].as_ref()), Some(SIG_OFFSET) ); let tx1 = deserialize(&tx_bytes).unwrap(); assert_eq!(tx0, tx1); assert_eq!(tx1.message().instructions[0].data, vec![1, 2, 3]); tx0.message.instructions[0].data = vec![1, 2, 4]; let message0b = tx0.message_data(); assert_ne!(message0a, message0b); } // Just like get_packet_offsets, but not returning redundant information. fn get_packet_offsets_from_tx(tx: Transaction, current_offset: u32) -> (u32, u32, u32, u32) { let packet = sigverify::make_packet_from_transaction(tx); let (sig_len, sig_start, msg_start_offset, pubkey_offset) = sigverify::get_packet_offsets(&packet, current_offset); ( sig_len, sig_start - current_offset, msg_start_offset - sig_start, pubkey_offset - msg_start_offset, ) } #[test] fn test_get_packet_offsets() { assert_eq!(get_packet_offsets_from_tx(test_tx(), 0), (1, 1, 64, 2)); assert_eq!(get_packet_offsets_from_tx(test_tx(), 100), (1, 1, 64, 2)); // Ensure we're not indexing packet by the `current_offset` parameter. assert_eq!( get_packet_offsets_from_tx(test_tx(), 1_000_000), (1, 1, 64, 2) ); // Ensure we're returning sig_len, not sig_size. assert_eq!( get_packet_offsets_from_tx(test_multisig_tx(), 0), (2, 1, 128, 2) ); } fn generate_packet_vec( packet: &Packet, num_packets_per_batch: usize, num_batches: usize, ) -> Vec { // generate packet vector let batches: Vec<_> = (0..num_batches) .map(|_| { let mut packets = Packets::default(); packets.packets.resize(0, Packet::default()); for _ in 0..num_packets_per_batch { packets.packets.push(packet.clone()); } assert_eq!(packets.packets.len(), num_packets_per_batch); packets }) .collect(); assert_eq!(batches.len(), num_batches); batches } fn test_verify_n(n: usize, modify_data: bool) { let tx = test_tx(); let mut packet = sigverify::make_packet_from_transaction(tx); // jumble some data to test failure if modify_data { packet.data[20] = packet.data[20].wrapping_add(10); } let batches = generate_packet_vec(&packet, n, 2); // verify packets let ans = sigverify::ed25519_verify(&batches); // check result let ref_ans = if modify_data { 0u8 } else { 1u8 }; assert_eq!(ans, vec![vec![ref_ans; n], vec![ref_ans; n]]); } #[test] fn test_verify_zero() { test_verify_n(0, false); } #[test] fn test_verify_one() { test_verify_n(1, false); } #[test] fn test_verify_seventy_one() { test_verify_n(71, false); } #[test] fn test_verify_multisig() { solana_logger::setup(); let tx = test_multisig_tx(); let mut packet = sigverify::make_packet_from_transaction(tx); let n = 4; let num_batches = 3; let mut batches = generate_packet_vec(&packet, n, num_batches); packet.data[40] = packet.data[40].wrapping_add(8); batches[0].packets.push(packet); // verify packets let ans = sigverify::ed25519_verify(&batches); // check result let ref_ans = 1u8; let mut ref_vec = vec![vec![ref_ans; n]; num_batches]; ref_vec[0].push(0u8); assert_eq!(ans, ref_vec); } #[test] fn test_verify_fail() { test_verify_n(5, true); } }