//! The `log` crate provides the foundational data structures for Proof-of-History, //! an ordered log of events in time. /// Each log entry contains three pieces of data. The 'num_hashes' field is the number /// of hashes performed since the previous entry. The 'end_hash' field is the result /// of hashing 'end_hash' from the previous entry 'num_hashes' times. The 'event' /// field points to an Event that took place shortly after 'end_hash' was generated. /// /// If you divide 'num_hashes' by the amount of time it takes to generate a new hash, you /// get a duration estimate since the last event. Since processing power increases /// over time, one should expect the duration 'num_hashes' represents to decrease proportionally. /// Though processing power varies across nodes, the network gives priority to the /// fastest processor. Duration should therefore be estimated by assuming that the hash /// was generated by the fastest processor at the time the entry was logged. use digest::generic_array::GenericArray; use digest::generic_array::typenum::U32; pub type Sha256Hash = GenericArray; #[derive(Debug, PartialEq, Eq, Clone)] pub struct Entry { pub num_hashes: u64, pub end_hash: Sha256Hash, pub event: Event, } /// When 'event' is Tick, the event represents a simple clock tick, and exists for the /// sole purpose of improving the performance of event log verification. A tick can /// be generated in 'num_hashes' hashes and verified in 'num_hashes' hashes. By logging /// a hash alongside the tick, each tick and be verified in parallel using the 'end_hash' /// of the preceding tick to seed its hashing. #[derive(Debug, PartialEq, Eq, Clone)] pub enum Event { Tick, UserDataKey(Sha256Hash), } impl Entry { /// Creates a Entry from the number of hashes 'num_hashes' since the previous event /// and that resulting 'end_hash'. pub fn new_tick(num_hashes: u64, end_hash: &Sha256Hash) -> Self { Entry { num_hashes, end_hash: *end_hash, event: Event::Tick, } } /// Verifies self.end_hash is the result of hashing a 'start_hash' 'self.num_hashes' times. /// If the event is a UserDataKey, then hash that as well. pub fn verify(self: &Self, start_hash: &Sha256Hash) -> bool { self.end_hash == next_hash(start_hash, self.num_hashes, &self.event) } } pub fn hash(val: &[u8]) -> Sha256Hash { use sha2::{Digest, Sha256}; let mut hasher = Sha256::default(); hasher.input(val); hasher.result() } /// Return the hash of the given hash extended with the given value. pub fn extend_and_hash(end_hash: &Sha256Hash, val: &[u8]) -> Sha256Hash { let mut hash_data = end_hash.to_vec(); hash_data.extend_from_slice(val); hash(&hash_data) } pub fn next_hash(start_hash: &Sha256Hash, num_hashes: u64, event: &Event) -> Sha256Hash { let mut end_hash = *start_hash; for _ in 0..num_hashes { end_hash = hash(&end_hash); } if let Event::UserDataKey(key) = *event { return extend_and_hash(&end_hash, &key); } end_hash } /// Creates the next Tick Entry 'num_hashes' after 'start_hash'. pub fn next_entry(start_hash: &Sha256Hash, num_hashes: u64, event: Event) -> Entry { Entry { num_hashes, end_hash: next_hash(start_hash, num_hashes, &event), event, } } /// Creates the next Tick Entry 'num_hashes' after 'start_hash'. pub fn next_tick(start_hash: &Sha256Hash, num_hashes: u64) -> Entry { next_entry(start_hash, num_hashes, Event::Tick) } /// Verifies the hashes and counts of a slice of events are all consistent. pub fn verify_slice(events: &[Entry], start_hash: &Sha256Hash) -> bool { use rayon::prelude::*; let genesis = [Entry::new_tick(Default::default(), start_hash)]; let event_pairs = genesis.par_iter().chain(events).zip(events); event_pairs.all(|(x0, x1)| x1.verify(&x0.end_hash)) } /// Verifies the hashes and events serially. Exists only for reference. pub fn verify_slice_seq(events: &[Entry], start_hash: &Sha256Hash) -> bool { let genesis = [Entry::new_tick(0, start_hash)]; let mut event_pairs = genesis.iter().chain(events).zip(events); event_pairs.all(|(x0, x1)| x1.verify(&x0.end_hash)) } /// Create a vector of Ticks of length 'len' from 'start_hash' hash and 'num_hashes'. pub fn create_ticks(start_hash: &Sha256Hash, num_hashes: u64, len: usize) -> Vec { use std::iter; let mut end_hash = *start_hash; iter::repeat(Event::Tick) .take(len) .map(|event| { let entry = next_entry(&end_hash, num_hashes, event); end_hash = entry.end_hash; entry }) .collect() } #[cfg(test)] mod tests { use super::*; #[test] fn test_event_verify() { let zero = Sha256Hash::default(); let one = hash(&zero); assert!(Entry::new_tick(0, &zero).verify(&zero)); // base case assert!(!Entry::new_tick(0, &zero).verify(&one)); // base case, bad assert!(next_tick(&zero, 1).verify(&zero)); // inductive step assert!(!next_tick(&zero, 1).verify(&one)); // inductive step, bad } #[test] fn test_next_tick() { let zero = Sha256Hash::default(); assert_eq!(next_tick(&zero, 1).num_hashes, 1) } fn verify_slice_generic(verify_slice: fn(&[Entry], &Sha256Hash) -> bool) { let zero = Sha256Hash::default(); let one = hash(&zero); assert!(verify_slice(&vec![], &zero)); // base case assert!(verify_slice(&vec![Entry::new_tick(0, &zero)], &zero)); // singleton case 1 assert!(!verify_slice(&vec![Entry::new_tick(0, &zero)], &one)); // singleton case 2, bad assert!(verify_slice(&create_ticks(&zero, 0, 2), &zero)); // inductive step let mut bad_ticks = create_ticks(&zero, 0, 2); bad_ticks[1].end_hash = one; assert!(!verify_slice(&bad_ticks, &zero)); // inductive step, bad } #[test] fn test_verify_slice() { verify_slice_generic(verify_slice); } #[test] fn test_verify_slice_seq() { verify_slice_generic(verify_slice_seq); } } #[cfg(all(feature = "unstable", test))] mod bench { extern crate test; use self::test::Bencher; use log::*; #[bench] fn event_bench(bencher: &mut Bencher) { let start_hash = Default::default(); let events = create_ticks(&start_hash, 10_000, 8); bencher.iter(|| { assert!(verify_slice(&events, &start_hash)); }); } #[bench] fn event_bench_seq(bencher: &mut Bencher) { let start_hash = Default::default(); let events = create_ticks(&start_hash, 10_000, 8); bencher.iter(|| { assert!(verify_slice_seq(&events, &start_hash)); }); } }