//! The `thin_client` module is a client-side object that interfaces with //! a server-side TPU. Client code should use this object instead of writing //! messages to the network directly. The binary encoding of its messages are //! unstable and may change in future releases. use bincode::{deserialize, serialize}; use futures::future::{ok, FutureResult}; use hash::Hash; use request::{Request, Response}; use signature::{KeyPair, PublicKey, Signature}; use std::collections::HashMap; use std::io; use std::net::{SocketAddr, UdpSocket}; use transaction::Transaction; pub struct ThinClient { requests_addr: SocketAddr, requests_socket: UdpSocket, transactions_addr: SocketAddr, transactions_socket: UdpSocket, last_id: Option, transaction_count: u64, balances: HashMap>, } impl ThinClient { /// Create a new ThinClient that will interface with Rpu /// over `requests_socket` and `transactions_socket`. To receive responses, the caller must bind `socket` /// to a public address before invoking ThinClient methods. pub fn new( requests_addr: SocketAddr, requests_socket: UdpSocket, transactions_addr: SocketAddr, transactions_socket: UdpSocket, ) -> Self { let client = ThinClient { requests_addr, requests_socket, transactions_addr, transactions_socket, last_id: None, transaction_count: 0, balances: HashMap::new(), }; client } pub fn recv_response(&self) -> io::Result { let mut buf = vec![0u8; 1024]; trace!("start recv_from"); self.requests_socket.recv_from(&mut buf)?; trace!("end recv_from"); let resp = deserialize(&buf).expect("deserialize balance in thin_client"); Ok(resp) } pub fn process_response(&mut self, resp: Response) { match resp { Response::Balance { key, val } => { trace!("Response balance {:?} {:?}", key, val); self.balances.insert(key, val); } Response::LastId { id } => { info!("Response last_id {:?}", id); self.last_id = Some(id); } Response::TransactionCount { transaction_count } => { info!("Response transaction count {:?}", transaction_count); self.transaction_count = transaction_count; } } } /// Send a signed Transaction to the server for processing. This method /// does not wait for a response. pub fn transfer_signed(&self, tx: Transaction) -> io::Result { let data = serialize(&tx).expect("serialize Transaction in pub fn transfer_signed"); self.transactions_socket .send_to(&data, &self.transactions_addr) } /// Creates, signs, and processes a Transaction. Useful for writing unit-tests. pub fn transfer( &self, n: i64, keypair: &KeyPair, to: PublicKey, last_id: &Hash, ) -> io::Result { let tx = Transaction::new(keypair, to, n, *last_id); let sig = tx.sig; self.transfer_signed(tx).map(|_| sig) } /// Request the balance of the user holding `pubkey`. This method blocks /// until the server sends a response. If the response packet is dropped /// by the network, this method will hang indefinitely. pub fn get_balance(&mut self, pubkey: &PublicKey) -> io::Result { trace!("get_balance"); let req = Request::GetBalance { key: *pubkey }; let data = serialize(&req).expect("serialize GetBalance in pub fn get_balance"); self.requests_socket .send_to(&data, &self.requests_addr) .expect("buffer error in pub fn get_balance"); let mut done = false; while !done { let resp = self.recv_response()?; trace!("recv_response {:?}", resp); if let &Response::Balance { ref key, .. } = &resp { done = key == pubkey; } self.process_response(resp); } self.balances[pubkey].ok_or(io::Error::new(io::ErrorKind::Other, "nokey")) } /// Request the transaction count. If the response packet is dropped by the network, /// this method will hang. pub fn transaction_count(&mut self) -> u64 { info!("transaction_count"); let req = Request::GetTransactionCount; let data = serialize(&req).expect("serialize GetTransactionCount in pub fn transaction_count"); self.requests_socket .send_to(&data, &self.requests_addr) .expect("buffer error in pub fn transaction_count"); let mut done = false; while !done { let resp = self.recv_response().expect("transaction count dropped"); info!("recv_response {:?}", resp); if let &Response::TransactionCount { .. } = &resp { done = true; } self.process_response(resp); } self.transaction_count } /// Request the last Entry ID from the server. This method blocks /// until the server sends a response. pub fn get_last_id(&mut self) -> FutureResult { info!("get_last_id"); let req = Request::GetLastId; let data = serialize(&req).expect("serialize GetLastId in pub fn get_last_id"); self.requests_socket .send_to(&data, &self.requests_addr) .expect("buffer error in pub fn get_last_id"); let mut done = false; while !done { let resp = self.recv_response().expect("get_last_id response"); if let &Response::LastId { .. } = &resp { done = true; } self.process_response(resp); } ok(self.last_id.expect("some last_id")) } pub fn poll_get_balance(&mut self, pubkey: &PublicKey) -> io::Result { use std::time::Instant; let mut balance; let now = Instant::now(); loop { balance = self.get_balance(pubkey); if balance.is_ok() || now.elapsed().as_secs() > 1 { break; } } balance } } #[cfg(test)] mod tests { use super::*; use bank::Bank; use budget::Budget; use futures::Future; use logger; use mint::Mint; use server::Server; use signature::{KeyPair, KeyPairUtil}; use std::io::sink; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; use std::thread::sleep; use std::time::Duration; use transaction::{Instruction, Plan}; use tvu::TestNode; #[test] fn test_thin_client() { logger::setup(); let leader = TestNode::new(); let alice = Mint::new(10_000); let bank = Bank::new(&alice); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let server = Server::new_leader( bank, alice.last_id(), Some(Duration::from_millis(30)), leader.data.clone(), leader.sockets.requests, leader.sockets.transaction, leader.sockets.broadcast, leader.sockets.respond, leader.sockets.gossip, exit.clone(), sink(), ); sleep(Duration::from_millis(900)); let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let transactions_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new( leader.data.requests_addr, requests_socket, leader.data.transactions_addr, transactions_socket, ); let last_id = client.get_last_id().wait().unwrap(); let _sig = client .transfer(500, &alice.keypair(), bob_pubkey, &last_id) .unwrap(); let balance = client.poll_get_balance(&bob_pubkey); assert_eq!(balance.unwrap(), 500); exit.store(true, Ordering::Relaxed); for t in server.thread_hdls { t.join().unwrap(); } } #[test] fn test_bad_sig() { logger::setup(); let leader = TestNode::new(); let alice = Mint::new(10_000); let bank = Bank::new(&alice); let bob_pubkey = KeyPair::new().pubkey(); let exit = Arc::new(AtomicBool::new(false)); let server = Server::new_leader( bank, alice.last_id(), Some(Duration::from_millis(30)), leader.data.clone(), leader.sockets.requests, leader.sockets.transaction, leader.sockets.broadcast, leader.sockets.respond, leader.sockets.gossip, exit.clone(), sink(), ); sleep(Duration::from_millis(300)); let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); requests_socket .set_read_timeout(Some(Duration::new(5, 0))) .unwrap(); let transactions_socket = UdpSocket::bind("0.0.0.0:0").unwrap(); let mut client = ThinClient::new( leader.data.requests_addr, requests_socket, leader.data.transactions_addr, transactions_socket, ); let last_id = client.get_last_id().wait().unwrap(); let tx = Transaction::new(&alice.keypair(), bob_pubkey, 500, last_id); let _sig = client.transfer_signed(tx).unwrap(); let last_id = client.get_last_id().wait().unwrap(); let mut tr2 = Transaction::new(&alice.keypair(), bob_pubkey, 501, last_id); if let Instruction::NewContract(contract) = &mut tr2.instruction { contract.tokens = 502; contract.plan = Plan::Budget(Budget::new_payment(502, bob_pubkey)); } let _sig = client.transfer_signed(tr2).unwrap(); let balance = client.poll_get_balance(&bob_pubkey); assert_eq!(balance.unwrap(), 500); exit.store(true, Ordering::Relaxed); for t in server.thread_hdls { t.join().unwrap(); } } }