solana/core/src/repair_service.rs

918 lines
33 KiB
Rust

//! The `repair_service` module implements the tools necessary to generate a thread which
//! regularly finds missing shreds in the ledger and sends repair requests for those shreds
use crate::{
cluster_info::ClusterInfo,
result::Result,
serve_repair::{RepairType, ServeRepair},
};
use solana_ledger::{
bank_forks::BankForks,
blockstore::{Blockstore, CompletedSlotsReceiver, SlotMeta},
};
use solana_sdk::clock::DEFAULT_SLOTS_PER_EPOCH;
use solana_sdk::{clock::Slot, epoch_schedule::EpochSchedule, pubkey::Pubkey};
use std::{
collections::BTreeSet,
net::UdpSocket,
ops::Bound::{Included, Unbounded},
sync::atomic::{AtomicBool, Ordering},
sync::{Arc, RwLock},
thread::sleep,
thread::{self, Builder, JoinHandle},
time::Duration,
};
pub const MAX_REPAIR_LENGTH: usize = 512;
pub const REPAIR_MS: u64 = 100;
pub const MAX_ORPHANS: usize = 5;
const MAX_COMPLETED_SLOT_CACHE_LEN: usize = 256;
const COMPLETED_SLOT_CACHE_FLUSH_TRIGGER: usize = 512;
pub enum RepairStrategy {
RepairRange(RepairSlotRange),
RepairAll {
bank_forks: Arc<RwLock<BankForks>>,
completed_slots_receiver: CompletedSlotsReceiver,
epoch_schedule: EpochSchedule,
},
}
pub struct RepairSlotRange {
pub start: Slot,
pub end: Slot,
}
impl Default for RepairSlotRange {
fn default() -> Self {
RepairSlotRange {
start: 0,
end: std::u64::MAX,
}
}
}
pub struct RepairService {
t_repair: JoinHandle<()>,
}
impl RepairService {
pub fn new(
blockstore: Arc<Blockstore>,
exit: Arc<AtomicBool>,
repair_socket: Arc<UdpSocket>,
cluster_info: Arc<RwLock<ClusterInfo>>,
repair_strategy: RepairStrategy,
) -> Self {
let t_repair = Builder::new()
.name("solana-repair-service".to_string())
.spawn(move || {
Self::run(
&blockstore,
&exit,
&repair_socket,
&cluster_info,
repair_strategy,
)
})
.unwrap();
RepairService { t_repair }
}
fn run(
blockstore: &Arc<Blockstore>,
exit: &Arc<AtomicBool>,
repair_socket: &Arc<UdpSocket>,
cluster_info: &Arc<RwLock<ClusterInfo>>,
repair_strategy: RepairStrategy,
) {
let serve_repair = ServeRepair::new(cluster_info.clone());
let mut epoch_slots: BTreeSet<Slot> = BTreeSet::new();
let mut old_incomplete_slots: BTreeSet<Slot> = BTreeSet::new();
let id = cluster_info.read().unwrap().id();
if let RepairStrategy::RepairAll {
ref epoch_schedule, ..
} = repair_strategy
{
let current_root = blockstore.last_root();
Self::initialize_epoch_slots(
id,
blockstore,
&mut epoch_slots,
&old_incomplete_slots,
current_root,
epoch_schedule,
cluster_info,
);
}
loop {
if exit.load(Ordering::Relaxed) {
break;
}
let repairs = {
match repair_strategy {
RepairStrategy::RepairRange(ref repair_slot_range) => {
// Strategy used by archivers
Self::generate_repairs_in_range(
blockstore,
MAX_REPAIR_LENGTH,
repair_slot_range,
)
}
RepairStrategy::RepairAll {
ref completed_slots_receiver,
..
} => {
let new_root = blockstore.last_root();
let lowest_slot = blockstore.lowest_slot();
Self::update_epoch_slots(
id,
new_root,
lowest_slot,
&mut epoch_slots,
&mut old_incomplete_slots,
&cluster_info,
completed_slots_receiver,
);
Self::generate_repairs(blockstore, new_root, MAX_REPAIR_LENGTH)
}
}
};
if let Ok(repairs) = repairs {
let reqs: Vec<_> = repairs
.into_iter()
.filter_map(|repair_request| {
serve_repair
.repair_request(&repair_request)
.map(|result| (result, repair_request))
.ok()
})
.collect();
for ((to, req), _) in reqs {
repair_socket.send_to(&req, to).unwrap_or_else(|e| {
info!("{} repair req send_to({}) error {:?}", id, to, e);
0
});
}
}
sleep(Duration::from_millis(REPAIR_MS));
}
}
// Generate repairs for all slots `x` in the repair_range.start <= x <= repair_range.end
pub fn generate_repairs_in_range(
blockstore: &Blockstore,
max_repairs: usize,
repair_range: &RepairSlotRange,
) -> Result<Vec<RepairType>> {
// Slot height and shred indexes for shreds we want to repair
let mut repairs: Vec<RepairType> = vec![];
for slot in repair_range.start..=repair_range.end {
if repairs.len() >= max_repairs {
break;
}
let meta = blockstore
.meta(slot)
.expect("Unable to lookup slot meta")
.unwrap_or(SlotMeta {
slot,
..SlotMeta::default()
});
let new_repairs = Self::generate_repairs_for_slot(
blockstore,
slot,
&meta,
max_repairs - repairs.len(),
);
repairs.extend(new_repairs);
}
Ok(repairs)
}
fn generate_repairs(
blockstore: &Blockstore,
root: Slot,
max_repairs: usize,
) -> Result<Vec<RepairType>> {
// Slot height and shred indexes for shreds we want to repair
let mut repairs: Vec<RepairType> = vec![];
Self::generate_repairs_for_fork(blockstore, &mut repairs, max_repairs, root);
// TODO: Incorporate gossip to determine priorities for repair?
// Try to resolve orphans in blockstore
let mut orphans = blockstore.get_orphans(Some(MAX_ORPHANS));
orphans.retain(|x| *x > root);
Self::generate_repairs_for_orphans(&orphans[..], &mut repairs);
Ok(repairs)
}
fn generate_repairs_for_slot(
blockstore: &Blockstore,
slot: Slot,
slot_meta: &SlotMeta,
max_repairs: usize,
) -> Vec<RepairType> {
if slot_meta.is_full() {
vec![]
} else if slot_meta.consumed == slot_meta.received {
vec![RepairType::HighestShred(slot, slot_meta.received)]
} else {
let reqs = blockstore.find_missing_data_indexes(
slot,
slot_meta.first_shred_timestamp,
slot_meta.consumed,
slot_meta.received,
max_repairs,
);
reqs.into_iter()
.map(|i| RepairType::Shred(slot, i))
.collect()
}
}
fn generate_repairs_for_orphans(orphans: &[u64], repairs: &mut Vec<RepairType>) {
repairs.extend(orphans.iter().map(|h| RepairType::Orphan(*h)));
}
/// Repairs any fork starting at the input slot
fn generate_repairs_for_fork(
blockstore: &Blockstore,
repairs: &mut Vec<RepairType>,
max_repairs: usize,
slot: Slot,
) {
let mut pending_slots = vec![slot];
while repairs.len() < max_repairs && !pending_slots.is_empty() {
let slot = pending_slots.pop().unwrap();
if let Some(slot_meta) = blockstore.meta(slot).unwrap() {
let new_repairs = Self::generate_repairs_for_slot(
blockstore,
slot,
&slot_meta,
max_repairs - repairs.len(),
);
repairs.extend(new_repairs);
let next_slots = slot_meta.next_slots;
pending_slots.extend(next_slots);
} else {
break;
}
}
}
fn get_completed_slots_past_root(
blockstore: &Blockstore,
slots_in_gossip: &mut BTreeSet<Slot>,
root: Slot,
epoch_schedule: &EpochSchedule,
) {
let last_confirmed_epoch = epoch_schedule.get_leader_schedule_epoch(root);
let last_epoch_slot = epoch_schedule.get_last_slot_in_epoch(last_confirmed_epoch);
let meta_iter = blockstore
.slot_meta_iterator(root + 1)
.expect("Couldn't get db iterator");
for (current_slot, meta) in meta_iter {
if current_slot > last_epoch_slot {
break;
}
if meta.is_full() {
slots_in_gossip.insert(current_slot);
}
}
}
fn initialize_epoch_slots(
id: Pubkey,
blockstore: &Blockstore,
slots_in_gossip: &mut BTreeSet<Slot>,
old_incomplete_slots: &BTreeSet<Slot>,
root: Slot,
epoch_schedule: &EpochSchedule,
cluster_info: &RwLock<ClusterInfo>,
) {
Self::get_completed_slots_past_root(blockstore, slots_in_gossip, root, epoch_schedule);
// Safe to set into gossip because by this time, the leader schedule cache should
// also be updated with the latest root (done in blockstore_processor) and thus
// will provide a schedule to window_service for any incoming shreds up to the
// last_confirmed_epoch.
cluster_info.write().unwrap().push_epoch_slots(
id,
root,
blockstore.lowest_slot(),
slots_in_gossip.clone(),
old_incomplete_slots,
);
}
// Update the gossiped structure used for the "Repairmen" repair protocol. See docs
// for details.
fn update_epoch_slots(
id: Pubkey,
latest_known_root: Slot,
lowest_slot: Slot,
completed_slot_cache: &mut BTreeSet<Slot>,
incomplete_slot_stash: &mut BTreeSet<Slot>,
cluster_info: &RwLock<ClusterInfo>,
completed_slots_receiver: &CompletedSlotsReceiver,
) {
let mut should_update = false;
while let Ok(completed_slots) = completed_slots_receiver.try_recv() {
for slot in completed_slots {
let last_slot_in_stash = *incomplete_slot_stash.iter().next_back().unwrap_or(&0);
let removed_from_stash = incomplete_slot_stash.remove(&slot);
// If the newly completed slot was not being tracked in stash, and is > last
// slot being tracked in stash, add it to cache. Also, update gossip
if !removed_from_stash && slot >= last_slot_in_stash {
should_update |= completed_slot_cache.insert(slot);
}
// If the slot was removed from stash, update gossip
should_update |= removed_from_stash;
}
}
if should_update {
if completed_slot_cache.len() >= COMPLETED_SLOT_CACHE_FLUSH_TRIGGER {
Self::stash_old_incomplete_slots(completed_slot_cache, incomplete_slot_stash);
let lowest_completed_slot_in_cache =
*completed_slot_cache.iter().next().unwrap_or(&0);
Self::prune_incomplete_slot_stash(
incomplete_slot_stash,
lowest_completed_slot_in_cache,
);
}
cluster_info.write().unwrap().push_epoch_slots(
id,
latest_known_root,
lowest_slot,
completed_slot_cache.clone(),
incomplete_slot_stash,
);
}
}
fn stash_old_incomplete_slots(cache: &mut BTreeSet<Slot>, stash: &mut BTreeSet<Slot>) {
if cache.len() > MAX_COMPLETED_SLOT_CACHE_LEN {
let mut prev = *cache.iter().next().expect("Expected to find some slot");
cache.remove(&prev);
while cache.len() >= MAX_COMPLETED_SLOT_CACHE_LEN {
let next = *cache.iter().next().expect("Expected to find some slot");
cache.remove(&next);
// Prev slot and next slot are not included in incomplete slot list.
(prev + 1..next).for_each(|slot| {
stash.insert(slot);
});
prev = next;
}
}
}
fn prune_incomplete_slot_stash(
stash: &mut BTreeSet<Slot>,
lowest_completed_slot_in_cache: Slot,
) {
if let Some(oldest_incomplete_slot) = stash.iter().next() {
// Prune old slots
// Prune in batches to reduce overhead. Pruning starts when oldest slot is 1.5 epochs
// earlier than the new root. But, we prune all the slots that are older than 1 epoch.
// So slots in a batch of half epoch are getting pruned
if oldest_incomplete_slot + DEFAULT_SLOTS_PER_EPOCH + DEFAULT_SLOTS_PER_EPOCH / 2
< lowest_completed_slot_in_cache
{
let oldest_slot_to_retain =
lowest_completed_slot_in_cache.saturating_sub(DEFAULT_SLOTS_PER_EPOCH);
*stash = stash
.range((Included(&oldest_slot_to_retain), Unbounded))
.cloned()
.collect();
}
}
}
pub fn join(self) -> thread::Result<()> {
self.t_repair.join()
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::cluster_info::Node;
use itertools::Itertools;
use rand::seq::SliceRandom;
use rand::{thread_rng, Rng};
use solana_ledger::blockstore::{
make_chaining_slot_entries, make_many_slot_entries, make_slot_entries,
};
use solana_ledger::shred::max_ticks_per_n_shreds;
use solana_ledger::{blockstore::Blockstore, get_tmp_ledger_path};
use std::thread::Builder;
#[test]
pub fn test_repair_orphan() {
let blockstore_path = get_tmp_ledger_path!();
{
let blockstore = Blockstore::open(&blockstore_path).unwrap();
// Create some orphan slots
let (mut shreds, _) = make_slot_entries(1, 0, 1);
let (shreds2, _) = make_slot_entries(5, 2, 1);
shreds.extend(shreds2);
blockstore.insert_shreds(shreds, None, false).unwrap();
assert_eq!(
RepairService::generate_repairs(&blockstore, 0, 2).unwrap(),
vec![RepairType::HighestShred(0, 0), RepairType::Orphan(2)]
);
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_repair_empty_slot() {
let blockstore_path = get_tmp_ledger_path!();
{
let blockstore = Blockstore::open(&blockstore_path).unwrap();
let (shreds, _) = make_slot_entries(2, 0, 1);
// Write this shred to slot 2, should chain to slot 0, which we haven't received
// any shreds for
blockstore.insert_shreds(shreds, None, false).unwrap();
// Check that repair tries to patch the empty slot
assert_eq!(
RepairService::generate_repairs(&blockstore, 0, 2).unwrap(),
vec![RepairType::HighestShred(0, 0)]
);
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_generate_repairs() {
let blockstore_path = get_tmp_ledger_path!();
{
let blockstore = Blockstore::open(&blockstore_path).unwrap();
let nth = 3;
let num_slots = 2;
// Create some shreds
let (mut shreds, _) = make_many_slot_entries(0, num_slots as u64, 150 as u64);
let num_shreds = shreds.len() as u64;
let num_shreds_per_slot = num_shreds / num_slots;
// write every nth shred
let mut shreds_to_write = vec![];
let mut missing_indexes_per_slot = vec![];
for i in (0..num_shreds).rev() {
let index = i % num_shreds_per_slot;
if index % nth == 0 {
shreds_to_write.insert(0, shreds.remove(i as usize));
} else if i < num_shreds_per_slot {
missing_indexes_per_slot.insert(0, index);
}
}
blockstore
.insert_shreds(shreds_to_write, None, false)
.unwrap();
// sleep so that the holes are ready for repair
sleep(Duration::from_secs(1));
let expected: Vec<RepairType> = (0..num_slots)
.flat_map(|slot| {
missing_indexes_per_slot
.iter()
.map(move |shred_index| RepairType::Shred(slot as u64, *shred_index))
})
.collect();
assert_eq!(
RepairService::generate_repairs(&blockstore, 0, std::usize::MAX).unwrap(),
expected
);
assert_eq!(
RepairService::generate_repairs(&blockstore, 0, expected.len() - 2).unwrap()[..],
expected[0..expected.len() - 2]
);
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_generate_highest_repair() {
let blockstore_path = get_tmp_ledger_path!();
{
let blockstore = Blockstore::open(&blockstore_path).unwrap();
let num_entries_per_slot = 100;
// Create some shreds
let (mut shreds, _) = make_slot_entries(0, 0, num_entries_per_slot as u64);
let num_shreds_per_slot = shreds.len() as u64;
// Remove last shred (which is also last in slot) so that slot is not complete
shreds.pop();
blockstore.insert_shreds(shreds, None, false).unwrap();
// We didn't get the last shred for this slot, so ask for the highest shred for that slot
let expected: Vec<RepairType> =
vec![RepairType::HighestShred(0, num_shreds_per_slot - 1)];
assert_eq!(
RepairService::generate_repairs(&blockstore, 0, std::usize::MAX).unwrap(),
expected
);
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_repair_range() {
let blockstore_path = get_tmp_ledger_path!();
{
let blockstore = Blockstore::open(&blockstore_path).unwrap();
let slots: Vec<u64> = vec![1, 3, 5, 7, 8];
let num_entries_per_slot = max_ticks_per_n_shreds(1) + 1;
let shreds = make_chaining_slot_entries(&slots, num_entries_per_slot);
for (mut slot_shreds, _) in shreds.into_iter() {
slot_shreds.remove(0);
blockstore.insert_shreds(slot_shreds, None, false).unwrap();
}
// sleep to make slot eligible for repair
sleep(Duration::from_secs(1));
// Iterate through all possible combinations of start..end (inclusive on both
// sides of the range)
for start in 0..slots.len() {
for end in start..slots.len() {
let mut repair_slot_range = RepairSlotRange::default();
repair_slot_range.start = slots[start];
repair_slot_range.end = slots[end];
let expected: Vec<RepairType> = (repair_slot_range.start
..=repair_slot_range.end)
.map(|slot_index| {
if slots.contains(&(slot_index as u64)) {
RepairType::Shred(slot_index as u64, 0)
} else {
RepairType::HighestShred(slot_index as u64, 0)
}
})
.collect();
assert_eq!(
RepairService::generate_repairs_in_range(
&blockstore,
std::usize::MAX,
&repair_slot_range
)
.unwrap(),
expected
);
}
}
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_repair_range_highest() {
let blockstore_path = get_tmp_ledger_path!();
{
let blockstore = Blockstore::open(&blockstore_path).unwrap();
let num_entries_per_slot = 10;
let num_slots = 1;
let start = 5;
// Create some shreds in slots 0..num_slots
for i in start..start + num_slots {
let parent = if i > 0 { i - 1 } else { 0 };
let (shreds, _) = make_slot_entries(i, parent, num_entries_per_slot as u64);
blockstore.insert_shreds(shreds, None, false).unwrap();
}
let end = 4;
let expected: Vec<RepairType> = vec![
RepairType::HighestShred(end - 2, 0),
RepairType::HighestShred(end - 1, 0),
RepairType::HighestShred(end, 0),
];
let mut repair_slot_range = RepairSlotRange::default();
repair_slot_range.start = 2;
repair_slot_range.end = end;
assert_eq!(
RepairService::generate_repairs_in_range(
&blockstore,
std::usize::MAX,
&repair_slot_range
)
.unwrap(),
expected
);
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_get_completed_slots_past_root() {
let blockstore_path = get_tmp_ledger_path!();
{
let blockstore = Blockstore::open(&blockstore_path).unwrap();
let num_entries_per_slot = 10;
let root = 10;
let fork1 = vec![5, 7, root, 15, 20, 21];
let fork1_shreds: Vec<_> = make_chaining_slot_entries(&fork1, num_entries_per_slot)
.into_iter()
.flat_map(|(shreds, _)| shreds)
.collect();
let fork2 = vec![8, 12];
let fork2_shreds = make_chaining_slot_entries(&fork2, num_entries_per_slot);
// Remove the last shred from each slot to make an incomplete slot
let fork2_incomplete_shreds: Vec<_> = fork2_shreds
.into_iter()
.flat_map(|(mut shreds, _)| {
shreds.pop();
shreds
})
.collect();
let mut full_slots = BTreeSet::new();
blockstore.insert_shreds(fork1_shreds, None, false).unwrap();
blockstore
.insert_shreds(fork2_incomplete_shreds, None, false)
.unwrap();
// Test that only slots > root from fork1 were included
let epoch_schedule = EpochSchedule::custom(32, 32, false);
RepairService::get_completed_slots_past_root(
&blockstore,
&mut full_slots,
root,
&epoch_schedule,
);
let mut expected: BTreeSet<_> = fork1.into_iter().filter(|x| *x > root).collect();
assert_eq!(full_slots, expected);
// Test that slots past the last confirmed epoch boundary don't get included
let last_epoch = epoch_schedule.get_leader_schedule_epoch(root);
let last_slot = epoch_schedule.get_last_slot_in_epoch(last_epoch);
let fork3 = vec![last_slot, last_slot + 1];
let fork3_shreds: Vec<_> = make_chaining_slot_entries(&fork3, num_entries_per_slot)
.into_iter()
.flat_map(|(shreds, _)| shreds)
.collect();
blockstore.insert_shreds(fork3_shreds, None, false).unwrap();
RepairService::get_completed_slots_past_root(
&blockstore,
&mut full_slots,
root,
&epoch_schedule,
);
expected.insert(last_slot);
assert_eq!(full_slots, expected);
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
pub fn test_update_epoch_slots() {
let blockstore_path = get_tmp_ledger_path!();
{
// Create blockstore
let (blockstore, _, completed_slots_receiver) =
Blockstore::open_with_signal(&blockstore_path).unwrap();
let blockstore = Arc::new(blockstore);
let mut root = 0;
let num_slots = 100;
let entries_per_slot = 5;
let blockstore_ = blockstore.clone();
// Spin up thread to write to blockstore
let writer = Builder::new()
.name("writer".to_string())
.spawn(move || {
let slots: Vec<_> = (1..num_slots + 1).collect();
let mut shreds: Vec<_> = make_chaining_slot_entries(&slots, entries_per_slot)
.into_iter()
.flat_map(|(shreds, _)| shreds)
.collect();
shreds.shuffle(&mut thread_rng());
let mut i = 0;
let max_step = entries_per_slot * 4;
let repair_interval_ms = 10;
let mut rng = rand::thread_rng();
let num_shreds = shreds.len();
while i < num_shreds {
let step = rng.gen_range(1, max_step + 1) as usize;
let step = std::cmp::min(step, num_shreds - i);
let shreds_to_insert = shreds.drain(..step).collect_vec();
blockstore_
.insert_shreds(shreds_to_insert, None, false)
.unwrap();
sleep(Duration::from_millis(repair_interval_ms));
i += step;
}
})
.unwrap();
let mut completed_slots = BTreeSet::new();
let node_info = Node::new_localhost_with_pubkey(&Pubkey::default());
let cluster_info = RwLock::new(ClusterInfo::new_with_invalid_keypair(
node_info.info.clone(),
));
let mut old_incomplete_slots: BTreeSet<Slot> = BTreeSet::new();
while completed_slots.len() < num_slots as usize {
RepairService::update_epoch_slots(
Pubkey::default(),
root,
blockstore.lowest_slot(),
&mut completed_slots,
&mut old_incomplete_slots,
&cluster_info,
&completed_slots_receiver,
);
}
let mut expected: BTreeSet<_> = (1..num_slots + 1).collect();
assert_eq!(completed_slots, expected);
// Update with new root, should filter out the slots <= root
root = num_slots / 2;
let (shreds, _) = make_slot_entries(num_slots + 2, num_slots + 1, entries_per_slot);
blockstore.insert_shreds(shreds, None, false).unwrap();
RepairService::update_epoch_slots(
Pubkey::default(),
root,
0,
&mut completed_slots,
&mut old_incomplete_slots,
&cluster_info,
&completed_slots_receiver,
);
expected.insert(num_slots + 2);
assert_eq!(completed_slots, expected);
writer.join().unwrap();
}
Blockstore::destroy(&blockstore_path).expect("Expected successful database destruction");
}
#[test]
fn test_stash_old_incomplete_slots() {
let mut cache: BTreeSet<Slot> = BTreeSet::new();
let mut stash: BTreeSet<Slot> = BTreeSet::new();
// When cache is empty.
RepairService::stash_old_incomplete_slots(&mut cache, &mut stash);
assert_eq!(stash.len(), 0);
// Insert some slots in cache ( < MAX_COMPLETED_SLOT_CACHE_LEN + 1)
cache.insert(101);
cache.insert(102);
cache.insert(104);
cache.insert(105);
// Not enough slots in cache. So stash should remain empty.
RepairService::stash_old_incomplete_slots(&mut cache, &mut stash);
assert_eq!(stash.len(), 0);
assert_eq!(cache.len(), 4);
// Insert slots in cache ( = MAX_COMPLETED_SLOT_CACHE_LEN)
let mut cache: BTreeSet<Slot> = BTreeSet::new();
(0..MAX_COMPLETED_SLOT_CACHE_LEN as u64)
.into_iter()
.for_each(|slot| {
cache.insert(slot);
});
// Not enough slots in cache. So stash should remain empty.
RepairService::stash_old_incomplete_slots(&mut cache, &mut stash);
assert_eq!(stash.len(), 0);
assert_eq!(cache.len(), MAX_COMPLETED_SLOT_CACHE_LEN);
// Insert 1 more to cross the threshold
cache.insert(MAX_COMPLETED_SLOT_CACHE_LEN as u64);
RepairService::stash_old_incomplete_slots(&mut cache, &mut stash);
// Stash is still empty, as no missing slots
assert_eq!(stash.len(), 0);
// It removed some entries from cache
assert_eq!(cache.len(), MAX_COMPLETED_SLOT_CACHE_LEN - 1);
// Insert more slots to create a missing slot
let mut cache: BTreeSet<Slot> = BTreeSet::new();
cache.insert(0);
(2..=MAX_COMPLETED_SLOT_CACHE_LEN as u64 + 2)
.into_iter()
.for_each(|slot| {
cache.insert(slot);
});
RepairService::stash_old_incomplete_slots(&mut cache, &mut stash);
// Stash is not empty
assert!(stash.contains(&1));
// It removed some entries from cache
assert_eq!(cache.len(), MAX_COMPLETED_SLOT_CACHE_LEN - 1);
// Test multiple missing slots at dispersed locations
let mut cache: BTreeSet<Slot> = BTreeSet::new();
(0..MAX_COMPLETED_SLOT_CACHE_LEN as u64 * 2)
.into_iter()
.for_each(|slot| {
cache.insert(slot);
});
cache.remove(&10);
cache.remove(&11);
cache.remove(&28);
cache.remove(&29);
cache.remove(&148);
cache.remove(&149);
cache.remove(&150);
cache.remove(&151);
RepairService::stash_old_incomplete_slots(&mut cache, &mut stash);
// Stash is not empty
assert!(stash.contains(&10));
assert!(stash.contains(&11));
assert!(stash.contains(&28));
assert!(stash.contains(&29));
assert!(stash.contains(&148));
assert!(stash.contains(&149));
assert!(stash.contains(&150));
assert!(stash.contains(&151));
assert!(!stash.contains(&147));
assert!(!stash.contains(&152));
// It removed some entries from cache
assert_eq!(cache.len(), MAX_COMPLETED_SLOT_CACHE_LEN - 1);
(MAX_COMPLETED_SLOT_CACHE_LEN + 1..MAX_COMPLETED_SLOT_CACHE_LEN * 2)
.into_iter()
.for_each(|slot| {
let slot: u64 = slot as u64;
assert!(cache.contains(&slot));
});
}
#[test]
fn test_prune_incomplete_slot_stash() {
// Prune empty stash
let mut stash: BTreeSet<Slot> = BTreeSet::new();
RepairService::prune_incomplete_slot_stash(&mut stash, 0);
assert!(stash.is_empty());
// Prune stash with slots < DEFAULT_SLOTS_PER_EPOCH
stash.insert(0);
stash.insert(10);
stash.insert(11);
stash.insert(50);
assert_eq!(stash.len(), 4);
RepairService::prune_incomplete_slot_stash(&mut stash, 100);
assert_eq!(stash.len(), 4);
// Prune stash with slots > DEFAULT_SLOTS_PER_EPOCH, but < 1.5 * DEFAULT_SLOTS_PER_EPOCH
stash.insert(DEFAULT_SLOTS_PER_EPOCH + 50);
assert_eq!(stash.len(), 5);
RepairService::prune_incomplete_slot_stash(&mut stash, DEFAULT_SLOTS_PER_EPOCH + 100);
assert_eq!(stash.len(), 5);
// Prune stash with slots > 1.5 * DEFAULT_SLOTS_PER_EPOCH
stash.insert(DEFAULT_SLOTS_PER_EPOCH + DEFAULT_SLOTS_PER_EPOCH / 2);
assert_eq!(stash.len(), 6);
RepairService::prune_incomplete_slot_stash(
&mut stash,
DEFAULT_SLOTS_PER_EPOCH + DEFAULT_SLOTS_PER_EPOCH / 2 + 1,
);
assert_eq!(stash.len(), 2);
}
}