solana/benches/banking_stage.rs

232 lines
7.6 KiB
Rust

#![feature(test)]
extern crate bincode;
extern crate rand;
extern crate rayon;
extern crate solana;
extern crate solana_sdk;
extern crate test;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use solana::bank::{Bank, MAX_ENTRY_IDS};
use solana::banking_stage::{BankingStage, NUM_THREADS};
use solana::entry::Entry;
use solana::mint::Mint;
use solana::packet::to_packets_chunked;
use solana_sdk::hash::hash;
use solana_sdk::pubkey::Pubkey;
use solana_sdk::signature::{KeypairUtil, Signature};
use solana_sdk::system_transaction::SystemTransaction;
use solana_sdk::transaction::Transaction;
use std::iter;
use std::sync::mpsc::{channel, Receiver};
use std::sync::Arc;
use std::time::Duration;
use test::Bencher;
fn check_txs(receiver: &Receiver<Vec<Entry>>, ref_tx_count: usize) {
let mut total = 0;
loop {
let entries = receiver.recv_timeout(Duration::new(1, 0));
if let Ok(entries) = entries {
for entry in &entries {
total += entry.transactions.len();
}
} else {
break;
}
if total >= ref_tx_count {
break;
}
}
assert_eq!(total, ref_tx_count);
}
#[bench]
fn bench_banking_stage_multi_accounts(bencher: &mut Bencher) {
let txes = 1000 * NUM_THREADS;
let mint_total = 1_000_000_000_000;
let mint = Mint::new(mint_total);
let (verified_sender, verified_receiver) = channel();
let bank = Arc::new(Bank::new(&mint));
let dummy = Transaction::system_move(
&mint.keypair(),
mint.keypair().pubkey(),
1,
mint.last_id(),
0,
);
let transactions: Vec<_> = (0..txes)
.into_par_iter()
.map(|_| {
let mut new = dummy.clone();
let from: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
let to: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
let sig: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
new.account_keys[0] = Pubkey::new(&from[0..32]);
new.account_keys[1] = Pubkey::new(&to[0..32]);
new.signatures = vec![Signature::new(&sig[0..64])];
new
})
.collect();
// fund all the accounts
transactions.iter().for_each(|tx| {
let fund = Transaction::system_move(
&mint.keypair(),
tx.account_keys[0],
mint_total / txes as u64,
mint.last_id(),
0,
);
let x = bank.process_transaction(&fund);
assert!(x.is_ok());
});
//sanity check, make sure all the transactions can execute sequentially
transactions.iter().for_each(|tx| {
let res = bank.process_transaction(&tx);
assert!(res.is_ok(), "sanity test transactions");
});
bank.clear_signatures();
//sanity check, make sure all the transactions can execute in parallel
let res = bank.process_transactions(&transactions);
for r in res {
assert!(r.is_ok(), "sanity parallel execution");
}
bank.clear_signatures();
let verified: Vec<_> = to_packets_chunked(&transactions.clone(), 192)
.into_iter()
.map(|x| {
let len = x.read().unwrap().packets.len();
(x, iter::repeat(1).take(len).collect())
})
.collect();
let (_stage, signal_receiver) = BankingStage::new(
&bank,
verified_receiver,
Default::default(),
&mint.last_id(),
None,
);
let mut id = mint.last_id();
for _ in 0..MAX_ENTRY_IDS {
id = hash(&id.as_ref());
bank.register_tick(&id);
}
bencher.iter(move || {
// make sure the tx last id is still registered
if bank.count_valid_ids(&[mint.last_id()]).len() == 0 {
bank.register_tick(&mint.last_id());
}
for v in verified.chunks(verified.len() / NUM_THREADS) {
verified_sender.send(v.to_vec()).unwrap();
}
check_txs(&signal_receiver, txes);
bank.clear_signatures();
});
}
#[bench]
fn bench_banking_stage_multi_programs(bencher: &mut Bencher) {
let progs = 4;
let txes = 1000 * NUM_THREADS;
let mint_total = 1_000_000_000_000;
let mint = Mint::new(mint_total);
let (verified_sender, verified_receiver) = channel();
let bank = Arc::new(Bank::new(&mint));
let dummy = Transaction::system_move(
&mint.keypair(),
mint.keypair().pubkey(),
1,
mint.last_id(),
0,
);
let transactions: Vec<_> = (0..txes)
.into_par_iter()
.map(|_| {
let mut new = dummy.clone();
let from: Vec<u8> = (0..32).map(|_| thread_rng().gen()).collect();
let sig: Vec<u8> = (0..64).map(|_| thread_rng().gen()).collect();
let to: Vec<u8> = (0..32).map(|_| thread_rng().gen()).collect();
new.account_keys[0] = Pubkey::new(&from[0..32]);
new.account_keys[1] = Pubkey::new(&to[0..32]);
let prog = new.instructions[0].clone();
for i in 1..progs {
//generate programs that spend to random keys
let to: Vec<u8> = (0..32).map(|_| thread_rng().gen()).collect();
let to_key = Pubkey::new(&to[0..32]);
new.account_keys.push(to_key);
assert_eq!(new.account_keys.len(), i + 2);
new.instructions.push(prog.clone());
assert_eq!(new.instructions.len(), i + 1);
new.instructions[i].accounts[1] = 1 + i as u8;
assert_eq!(new.key(i, 1), Some(&to_key));
assert_eq!(
new.account_keys[new.instructions[i].accounts[1] as usize],
to_key
);
}
assert_eq!(new.instructions.len(), progs);
new.signatures = vec![Signature::new(&sig[0..64])];
new
})
.collect();
transactions.iter().for_each(|tx| {
let fund = Transaction::system_move(
&mint.keypair(),
tx.account_keys[0],
mint_total / txes as u64,
mint.last_id(),
0,
);
assert!(bank.process_transaction(&fund).is_ok());
});
//sanity check, make sure all the transactions can execute sequentially
transactions.iter().for_each(|tx| {
let res = bank.process_transaction(&tx);
assert!(res.is_ok(), "sanity test transactions");
});
bank.clear_signatures();
//sanity check, make sure all the transactions can execute in parallel
let res = bank.process_transactions(&transactions);
for r in res {
assert!(r.is_ok(), "sanity parallel execution");
}
bank.clear_signatures();
let verified: Vec<_> = to_packets_chunked(&transactions.clone(), 96)
.into_iter()
.map(|x| {
let len = x.read().unwrap().packets.len();
(x, iter::repeat(1).take(len).collect())
})
.collect();
let (_stage, signal_receiver) = BankingStage::new(
&bank,
verified_receiver,
Default::default(),
&mint.last_id(),
None,
);
let mut id = mint.last_id();
for _ in 0..MAX_ENTRY_IDS {
id = hash(&id.as_ref());
bank.register_tick(&id);
}
bencher.iter(move || {
// make sure the transactions are still valid
if bank.count_valid_ids(&[mint.last_id()]).len() == 0 {
bank.register_tick(&mint.last_id());
}
for v in verified.chunks(verified.len() / NUM_THREADS) {
verified_sender.send(v.to_vec()).unwrap();
}
check_txs(&signal_receiver, txes);
bank.clear_signatures();
});
}