solana/ledger/src/blockstore_db.rs

1947 lines
63 KiB
Rust

pub use rocksdb::Direction as IteratorDirection;
use {
crate::{
blockstore_meta,
blockstore_metrics::{
maybe_enable_rocksdb_perf, report_rocksdb_read_perf, report_rocksdb_write_perf,
BlockstoreRocksDbColumnFamilyMetrics, PerfSamplingStatus, PERF_METRIC_OP_NAME_GET,
PERF_METRIC_OP_NAME_MULTI_GET, PERF_METRIC_OP_NAME_PUT,
PERF_METRIC_OP_NAME_WRITE_BATCH,
},
blockstore_options::{
AccessType, BlockstoreOptions, LedgerColumnOptions, ShredStorageType,
},
},
bincode::{deserialize, serialize},
byteorder::{BigEndian, ByteOrder},
log::*,
prost::Message,
rocksdb::{
self,
compaction_filter::CompactionFilter,
compaction_filter_factory::{CompactionFilterContext, CompactionFilterFactory},
properties as RocksProperties, ColumnFamily, ColumnFamilyDescriptor, CompactionDecision,
DBCompactionStyle, DBIterator, DBPinnableSlice, DBRawIterator, FifoCompactOptions,
IteratorMode as RocksIteratorMode, LiveFile, Options, WriteBatch as RWriteBatch, DB,
},
serde::{de::DeserializeOwned, Serialize},
solana_runtime::hardened_unpack::UnpackError,
solana_sdk::{
clock::{Slot, UnixTimestamp},
pubkey::Pubkey,
signature::Signature,
},
solana_storage_proto::convert::generated,
std::{
collections::{HashMap, HashSet},
ffi::{CStr, CString},
fs,
marker::PhantomData,
path::Path,
sync::{
atomic::{AtomicU64, Ordering},
Arc,
},
},
thiserror::Error,
};
const BLOCKSTORE_METRICS_ERROR: i64 = -1;
const MAX_WRITE_BUFFER_SIZE: u64 = 256 * 1024 * 1024; // 256MB
const FIFO_WRITE_BUFFER_SIZE: u64 = 2 * MAX_WRITE_BUFFER_SIZE;
// Column family for metadata about a leader slot
const META_CF: &str = "meta";
// Column family for slots that have been marked as dead
const DEAD_SLOTS_CF: &str = "dead_slots";
// Column family for storing proof that there were multiple
// versions of a slot
const DUPLICATE_SLOTS_CF: &str = "duplicate_slots";
// Column family storing erasure metadata for a slot
const ERASURE_META_CF: &str = "erasure_meta";
// Column family for orphans data
const ORPHANS_CF: &str = "orphans";
/// Column family for bank hashes
const BANK_HASH_CF: &str = "bank_hashes";
// Column family for root data
const ROOT_CF: &str = "root";
/// Column family for indexes
const INDEX_CF: &str = "index";
/// Column family for Data Shreds
pub const DATA_SHRED_CF: &str = "data_shred";
/// Column family for Code Shreds
const CODE_SHRED_CF: &str = "code_shred";
/// Column family for Transaction Status
const TRANSACTION_STATUS_CF: &str = "transaction_status";
/// Column family for Address Signatures
const ADDRESS_SIGNATURES_CF: &str = "address_signatures";
/// Column family for TransactionMemos
const TRANSACTION_MEMOS_CF: &str = "transaction_memos";
/// Column family for the Transaction Status Index.
/// This column family is used for tracking the active primary index for columns that for
/// query performance reasons should not be indexed by Slot.
const TRANSACTION_STATUS_INDEX_CF: &str = "transaction_status_index";
/// Column family for Rewards
const REWARDS_CF: &str = "rewards";
/// Column family for Blocktime
const BLOCKTIME_CF: &str = "blocktime";
/// Column family for Performance Samples
const PERF_SAMPLES_CF: &str = "perf_samples";
/// Column family for BlockHeight
const BLOCK_HEIGHT_CF: &str = "block_height";
/// Column family for ProgramCosts
const PROGRAM_COSTS_CF: &str = "program_costs";
/// Column family for optimistic slots
const OPTIMISTIC_SLOTS_CF: &str = "optimistic_slots";
#[derive(Error, Debug)]
pub enum BlockstoreError {
ShredForIndexExists,
InvalidShredData(Box<bincode::ErrorKind>),
RocksDb(#[from] rocksdb::Error),
SlotNotRooted,
DeadSlot,
Io(#[from] std::io::Error),
Serialize(#[from] Box<bincode::ErrorKind>),
FsExtraError(#[from] fs_extra::error::Error),
SlotCleanedUp,
UnpackError(#[from] UnpackError),
UnableToSetOpenFileDescriptorLimit,
TransactionStatusSlotMismatch,
EmptyEpochStakes,
NoVoteTimestampsInRange,
ProtobufEncodeError(#[from] prost::EncodeError),
ProtobufDecodeError(#[from] prost::DecodeError),
ParentEntriesUnavailable,
SlotUnavailable,
UnsupportedTransactionVersion,
MissingTransactionMetadata,
}
pub type Result<T> = std::result::Result<T, BlockstoreError>;
impl std::fmt::Display for BlockstoreError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "blockstore error")
}
}
pub enum IteratorMode<Index> {
Start,
End,
From(Index, IteratorDirection),
}
pub mod columns {
#[derive(Debug)]
/// The slot metadata column.
///
/// This column family tracks the status of the received shred data for a
/// given slot. Tracking the progress as the slot fills up allows us to
/// know if the slot (or pieces of the slot) are ready to be replayed.
///
/// index type: u64 (see `SlotColumn`)
/// value type: `blockstore_meta::SlotMeta`
pub struct SlotMeta;
#[derive(Debug)]
/// The orphans column.
///
/// This column family tracks whether a slot has a parent. Slots without a
/// parent are by definition orphan slots. Orphans will have an entry in
/// this column family with true value. Once an orphan slot has a parent,
/// its entry in this column will be deleted.
///
/// index type: u64 (see `SlotColumn`)
/// value type: bool
pub struct Orphans;
#[derive(Debug)]
/// The dead slots column.
/// This column family tracks whether a slot is dead.
///
/// A slot is marked as dead if the validator thinks it will never be able
/// to successfully replay this slot. Example scenarios include errors
/// during the replay of a slot, or the validator believes it will never
/// receive all the shreds of a slot.
///
/// If a slot has been mistakenly marked as dead, the ledger-tool's
/// --remove-dead-slot can unmark a dead slot.
///
/// index type: u64 (see `SlotColumn`)
/// value type: bool
pub struct DeadSlots;
#[derive(Debug)]
/// The duplicate slots column
///
/// index type: u64 (see `SlotColumn`)
/// value type: `blockstore_meta::DuplicateSlotProof`
pub struct DuplicateSlots;
#[derive(Debug)]
/// The erasure meta column.
///
/// This column family stores ErasureMeta which includes metadata about
/// dropped network packets (or erasures) that can be used to recover
/// missing data shreds.
///
/// Its index type is ErasureSetId, which consists of a Slot ID
/// and a FEC (Forward Error Correction) set index.
///
/// index type: `ErasureSetId` (Slot, fec_set_index: u64)
/// value type: `blockstore_meta::ErasureMeta`
pub struct ErasureMeta;
#[derive(Debug)]
/// The bank hash column.
///
/// This column family persists the bank hash of a given slot. Note that
/// not every slot has a bank hash (e.g., a dead slot.)
///
/// The bank hash of a slot is derived from hashing the delta state of all
/// the accounts in a slot combined with the bank hash of its parent slot.
/// A bank hash of a slot essentially represents all the account states at
/// that slot.
///
/// index type: u64 (see `SlotColumn`)
/// value type: `blockstore_meta::FrozenHashVersioned`
pub struct BankHash;
#[derive(Debug)]
/// The root column.
///
/// This column family persists whether a slot is a root. Slots on the
/// main fork will be inserted into this column when they are finalized.
///
/// index type: u64 (see `SlotColumn`)
/// value type: bool
pub struct Root;
#[derive(Debug)]
/// The index column
///
/// index type: u64 (see `SlotColumn`)
/// value type: `blockstore_meta::Index`
pub struct Index;
#[derive(Debug)]
/// The shred data column
///
/// index type: (u64, u64)
/// value type: [`Vec<u8>`]
pub struct ShredData;
#[derive(Debug)]
/// The shred erasure code column
///
/// index type: (u64, u64)
/// value type: [`Vec<u8>`]
pub struct ShredCode;
#[derive(Debug)]
/// The transaction status column
///
/// index type: (u64, Signature, Slot)
/// value type: `generated::TransactionStatusMeta`
pub struct TransactionStatus;
#[derive(Debug)]
/// The address signatures column
///
/// index type: (u64, Pubkey, Slot, Signature)
/// value type: `blockstore_meta::AddressSignatureMeta`
pub struct AddressSignatures;
#[derive(Debug)]
/// The transaction memos column
///
/// index type: Signature
/// value type: String
pub struct TransactionMemos;
#[derive(Debug)]
/// The transaction status index column.
///
/// index type: u64 (see `SlotColumn`)
/// value type: `blockstore_meta::TransactionStatusIndexMeta`
pub struct TransactionStatusIndex;
#[derive(Debug)]
/// The rewards column
///
/// index type: u64 (see `SlotColumn`)
/// value type: `generated::Rewards`
pub struct Rewards;
#[derive(Debug)]
/// The blocktime column
///
/// index type: u64 (see `SlotColumn`)
/// value type: `UnixTimestamp`
pub struct Blocktime;
#[derive(Debug)]
/// The performance samples column
///
/// index type: u64 (see `SlotColumn`)
/// value type: `blockstore_meta::PerfSample`
pub struct PerfSamples;
#[derive(Debug)]
/// The block height column
///
/// index type: u64 (see `SlotColumn`)
/// value type: u64
pub struct BlockHeight;
#[derive(Debug)]
/// The program costs column
///
/// index type: `Pubkey`
/// value type: `blockstore_meta::ProgramCost`
pub struct ProgramCosts;
#[derive(Debug)]
/// The optimistic slot column
///
/// index type: u64 (see `SlotColumn`)
/// value type: `blockstore_meta::OptimisticSlotMetaVersioned`
pub struct OptimisticSlots;
// When adding a new column ...
// - Add struct below and implement `Column` and `ColumnName` traits
// - Add descriptor in Rocks::cf_descriptors() and name in Rocks::columns()
// - Account for column in both `run_purge_with_stats()` and
// `compact_storage()` in ledger/src/blockstore/blockstore_purge.rs !!
// - Account for column in `analyze_storage()` in ledger-tool/src/main.rs
}
#[derive(Default, Clone, Debug)]
struct OldestSlot(Arc<AtomicU64>);
impl OldestSlot {
pub fn set(&self, oldest_slot: Slot) {
// this is independently used for compaction_filter without any data dependency.
// also, compaction_filters are created via its factories, creating short-lived copies of
// this atomic value for the single job of compaction. So, Relaxed store can be justified
// in total
self.0.store(oldest_slot, Ordering::Relaxed);
}
pub fn get(&self) -> Slot {
// copy from the AtomicU64 as a general precaution so that the oldest_slot can not mutate
// across single run of compaction for simpler reasoning although this isn't strict
// requirement at the moment
// also eventual propagation (very Relaxed) load is Ok, because compaction by nature doesn't
// require strictly synchronized semantics in this regard
self.0.load(Ordering::Relaxed)
}
}
#[derive(Debug)]
struct Rocks {
db: rocksdb::DB,
access_type: AccessType,
oldest_slot: OldestSlot,
column_options: LedgerColumnOptions,
write_batch_perf_status: PerfSamplingStatus,
}
impl Rocks {
fn open(path: &Path, options: BlockstoreOptions) -> Result<Rocks> {
let access_type = options.access_type.clone();
let recovery_mode = options.recovery_mode.clone();
fs::create_dir_all(path)?;
// Use default database options
if should_disable_auto_compactions(&access_type) {
info!("Disabling rocksdb's automatic compactions...");
}
let mut db_options = get_db_options(&access_type);
if let Some(recovery_mode) = recovery_mode {
db_options.set_wal_recovery_mode(recovery_mode.into());
}
let oldest_slot = OldestSlot::default();
let column_options = options.column_options.clone();
// Open the database
let db = match access_type {
AccessType::Primary | AccessType::PrimaryForMaintenance => Rocks {
db: DB::open_cf_descriptors(
&db_options,
path,
Self::cf_descriptors(&options, &oldest_slot),
)?,
access_type,
oldest_slot,
column_options,
write_batch_perf_status: PerfSamplingStatus::default(),
},
AccessType::Secondary => {
let secondary_path = path.join("solana-secondary");
info!(
"Opening Rocks with secondary (read only) access at: {:?}",
secondary_path
);
info!("This secondary access could temporarily degrade other accesses, such as by solana-validator");
Rocks {
db: DB::open_cf_descriptors_as_secondary(
&db_options,
path,
&secondary_path,
Self::cf_descriptors(&options, &oldest_slot),
)?,
access_type,
oldest_slot,
column_options,
write_batch_perf_status: PerfSamplingStatus::default(),
}
}
};
Ok(db)
}
fn cf_descriptors(
options: &BlockstoreOptions,
oldest_slot: &OldestSlot,
) -> Vec<ColumnFamilyDescriptor> {
use columns::*;
let (cf_descriptor_shred_data, cf_descriptor_shred_code) =
new_cf_descriptor_pair_shreds::<ShredData, ShredCode>(options, oldest_slot);
vec![
new_cf_descriptor::<SlotMeta>(options, oldest_slot),
new_cf_descriptor::<DeadSlots>(options, oldest_slot),
new_cf_descriptor::<DuplicateSlots>(options, oldest_slot),
new_cf_descriptor::<ErasureMeta>(options, oldest_slot),
new_cf_descriptor::<Orphans>(options, oldest_slot),
new_cf_descriptor::<BankHash>(options, oldest_slot),
new_cf_descriptor::<Root>(options, oldest_slot),
new_cf_descriptor::<Index>(options, oldest_slot),
cf_descriptor_shred_data,
cf_descriptor_shred_code,
new_cf_descriptor::<TransactionStatus>(options, oldest_slot),
new_cf_descriptor::<AddressSignatures>(options, oldest_slot),
new_cf_descriptor::<TransactionMemos>(options, oldest_slot),
new_cf_descriptor::<TransactionStatusIndex>(options, oldest_slot),
new_cf_descriptor::<Rewards>(options, oldest_slot),
new_cf_descriptor::<Blocktime>(options, oldest_slot),
new_cf_descriptor::<PerfSamples>(options, oldest_slot),
new_cf_descriptor::<BlockHeight>(options, oldest_slot),
new_cf_descriptor::<ProgramCosts>(options, oldest_slot),
new_cf_descriptor::<OptimisticSlots>(options, oldest_slot),
]
}
fn columns() -> Vec<&'static str> {
use columns::*;
vec![
ErasureMeta::NAME,
DeadSlots::NAME,
DuplicateSlots::NAME,
Index::NAME,
Orphans::NAME,
BankHash::NAME,
Root::NAME,
SlotMeta::NAME,
ShredData::NAME,
ShredCode::NAME,
TransactionStatus::NAME,
AddressSignatures::NAME,
TransactionMemos::NAME,
TransactionStatusIndex::NAME,
Rewards::NAME,
Blocktime::NAME,
PerfSamples::NAME,
BlockHeight::NAME,
ProgramCosts::NAME,
OptimisticSlots::NAME,
]
}
fn destroy(path: &Path) -> Result<()> {
DB::destroy(&Options::default(), path)?;
Ok(())
}
fn cf_handle(&self, cf: &str) -> &ColumnFamily {
self.db
.cf_handle(cf)
.expect("should never get an unknown column")
}
fn get_cf(&self, cf: &ColumnFamily, key: &[u8]) -> Result<Option<Vec<u8>>> {
let opt = self.db.get_cf(cf, key)?;
Ok(opt)
}
fn get_pinned_cf(&self, cf: &ColumnFamily, key: &[u8]) -> Result<Option<DBPinnableSlice>> {
let opt = self.db.get_pinned_cf(cf, key)?;
Ok(opt)
}
fn put_cf(&self, cf: &ColumnFamily, key: &[u8], value: &[u8]) -> Result<()> {
self.db.put_cf(cf, key, value)?;
Ok(())
}
fn multi_get_cf(
&self,
cf: &ColumnFamily,
keys: Vec<&[u8]>,
) -> Vec<Result<Option<DBPinnableSlice>>> {
let values = self
.db
.batched_multi_get_cf(cf, keys, false)
.into_iter()
.map(|result| match result {
Ok(opt) => Ok(opt),
Err(e) => Err(BlockstoreError::RocksDb(e)),
})
.collect::<Vec<_>>();
values
}
fn delete_cf(&self, cf: &ColumnFamily, key: &[u8]) -> Result<()> {
self.db.delete_cf(cf, key)?;
Ok(())
}
/// Delete files whose slot range is within \[`from`, `to`\].
fn delete_file_in_range_cf(
&self,
cf: &ColumnFamily,
from_key: &[u8],
to_key: &[u8],
) -> Result<()> {
self.db.delete_file_in_range_cf(cf, from_key, to_key)?;
Ok(())
}
fn iterator_cf<C>(&self, cf: &ColumnFamily, iterator_mode: IteratorMode<C::Index>) -> DBIterator
where
C: Column,
{
let start_key;
let iterator_mode = match iterator_mode {
IteratorMode::From(start_from, direction) => {
start_key = C::key(start_from);
RocksIteratorMode::From(&start_key, direction)
}
IteratorMode::Start => RocksIteratorMode::Start,
IteratorMode::End => RocksIteratorMode::End,
};
self.db.iterator_cf(cf, iterator_mode)
}
fn raw_iterator_cf(&self, cf: &ColumnFamily) -> DBRawIterator {
self.db.raw_iterator_cf(cf)
}
fn batch(&self) -> RWriteBatch {
RWriteBatch::default()
}
fn write(&self, batch: RWriteBatch) -> Result<()> {
let op_start_instant = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.write_batch_perf_status,
);
let result = self.db.write(batch);
if let Some(op_start_instant) = op_start_instant {
report_rocksdb_write_perf(
PERF_METRIC_OP_NAME_WRITE_BATCH, // We use write_batch as cf_name for write batch.
PERF_METRIC_OP_NAME_WRITE_BATCH, // op_name
&op_start_instant.elapsed(),
&self.column_options,
);
}
match result {
Ok(_) => Ok(()),
Err(e) => Err(BlockstoreError::RocksDb(e)),
}
}
fn is_primary_access(&self) -> bool {
self.access_type == AccessType::Primary
|| self.access_type == AccessType::PrimaryForMaintenance
}
/// Retrieves the specified RocksDB integer property of the current
/// column family.
///
/// Full list of properties that return int values could be found
/// [here](https://github.com/facebook/rocksdb/blob/08809f5e6cd9cc4bc3958dd4d59457ae78c76660/include/rocksdb/db.h#L654-L689).
fn get_int_property_cf(&self, cf: &ColumnFamily, name: &'static std::ffi::CStr) -> Result<i64> {
match self.db.property_int_value_cf(cf, name) {
Ok(Some(value)) => Ok(value.try_into().unwrap()),
Ok(None) => Ok(0),
Err(e) => Err(BlockstoreError::RocksDb(e)),
}
}
fn live_files_metadata(&self) -> Result<Vec<LiveFile>> {
match self.db.live_files() {
Ok(live_files) => Ok(live_files),
Err(e) => Err(BlockstoreError::RocksDb(e)),
}
}
}
pub trait Column {
type Index;
fn key_size() -> usize {
std::mem::size_of::<Self::Index>()
}
fn key(index: Self::Index) -> Vec<u8>;
fn index(key: &[u8]) -> Self::Index;
// this return Slot or some u64
fn primary_index(index: Self::Index) -> u64;
fn as_index(slot: Slot) -> Self::Index;
fn slot(index: Self::Index) -> Slot {
Self::primary_index(index)
}
}
pub trait ColumnName {
const NAME: &'static str;
}
pub trait TypedColumn: Column {
type Type: Serialize + DeserializeOwned;
}
impl TypedColumn for columns::AddressSignatures {
type Type = blockstore_meta::AddressSignatureMeta;
}
impl TypedColumn for columns::TransactionMemos {
type Type = String;
}
impl TypedColumn for columns::TransactionStatusIndex {
type Type = blockstore_meta::TransactionStatusIndexMeta;
}
pub trait ProtobufColumn: Column {
type Type: prost::Message + Default;
}
/// SlotColumn is a trait for slot-based column families. Its index is
/// essentially Slot (or more generally speaking, has a 1:1 mapping to Slot).
///
/// The clean-up of any LedgerColumn that implements SlotColumn is managed by
/// `LedgerCleanupService`, which will periodically deprecate and purge
/// oldest entries that are older than the latest root in order to maintain the
/// configured --limit-ledger-size under the validator argument.
pub trait SlotColumn<Index = u64> {}
impl<T: SlotColumn> Column for T {
type Index = u64;
/// Converts a u64 Index to its RocksDB key.
fn key(slot: u64) -> Vec<u8> {
let mut key = vec![0; 8];
BigEndian::write_u64(&mut key[..], slot);
key
}
/// Converts a RocksDB key to its u64 Index.
fn index(key: &[u8]) -> u64 {
BigEndian::read_u64(&key[..8])
}
/// Obtains the primary index from the specified index.
fn primary_index(index: u64) -> Slot {
index
}
/// Converts a Slot to its u64 Index.
fn as_index(slot: Slot) -> u64 {
slot
}
}
impl Column for columns::TransactionStatus {
type Index = (u64, Signature, Slot);
fn key((index, signature, slot): (u64, Signature, Slot)) -> Vec<u8> {
let mut key = vec![0; 8 + 64 + 8]; // size_of u64 + size_of Signature + size_of Slot
BigEndian::write_u64(&mut key[0..8], index);
key[8..72].clone_from_slice(&signature.as_ref()[0..64]);
BigEndian::write_u64(&mut key[72..80], slot);
key
}
fn index(key: &[u8]) -> (u64, Signature, Slot) {
if key.len() != 80 {
Self::as_index(0)
} else {
let index = BigEndian::read_u64(&key[0..8]);
let signature = Signature::new(&key[8..72]);
let slot = BigEndian::read_u64(&key[72..80]);
(index, signature, slot)
}
}
fn primary_index(index: Self::Index) -> u64 {
index.0
}
fn slot(index: Self::Index) -> Slot {
index.2
}
fn as_index(index: u64) -> Self::Index {
(index, Signature::default(), 0)
}
}
impl ColumnName for columns::TransactionStatus {
const NAME: &'static str = TRANSACTION_STATUS_CF;
}
impl ProtobufColumn for columns::TransactionStatus {
type Type = generated::TransactionStatusMeta;
}
impl Column for columns::AddressSignatures {
type Index = (u64, Pubkey, Slot, Signature);
fn key((index, pubkey, slot, signature): (u64, Pubkey, Slot, Signature)) -> Vec<u8> {
let mut key = vec![0; 8 + 32 + 8 + 64]; // size_of u64 + size_of Pubkey + size_of Slot + size_of Signature
BigEndian::write_u64(&mut key[0..8], index);
key[8..40].clone_from_slice(&pubkey.as_ref()[0..32]);
BigEndian::write_u64(&mut key[40..48], slot);
key[48..112].clone_from_slice(&signature.as_ref()[0..64]);
key
}
fn index(key: &[u8]) -> (u64, Pubkey, Slot, Signature) {
let index = BigEndian::read_u64(&key[0..8]);
let pubkey = Pubkey::try_from(&key[8..40]).unwrap();
let slot = BigEndian::read_u64(&key[40..48]);
let signature = Signature::new(&key[48..112]);
(index, pubkey, slot, signature)
}
fn primary_index(index: Self::Index) -> u64 {
index.0
}
fn slot(index: Self::Index) -> Slot {
index.2
}
fn as_index(index: u64) -> Self::Index {
(index, Pubkey::default(), 0, Signature::default())
}
}
impl ColumnName for columns::AddressSignatures {
const NAME: &'static str = ADDRESS_SIGNATURES_CF;
}
impl Column for columns::TransactionMemos {
type Index = Signature;
fn key(signature: Signature) -> Vec<u8> {
let mut key = vec![0; 64]; // size_of Signature
key[0..64].clone_from_slice(&signature.as_ref()[0..64]);
key
}
fn index(key: &[u8]) -> Signature {
Signature::new(&key[0..64])
}
fn primary_index(_index: Self::Index) -> u64 {
unimplemented!()
}
fn slot(_index: Self::Index) -> Slot {
unimplemented!()
}
fn as_index(_index: u64) -> Self::Index {
Signature::default()
}
}
impl ColumnName for columns::TransactionMemos {
const NAME: &'static str = TRANSACTION_MEMOS_CF;
}
impl Column for columns::TransactionStatusIndex {
type Index = u64;
fn key(index: u64) -> Vec<u8> {
let mut key = vec![0; 8];
BigEndian::write_u64(&mut key[..], index);
key
}
fn index(key: &[u8]) -> u64 {
BigEndian::read_u64(&key[..8])
}
fn primary_index(index: u64) -> u64 {
index
}
fn slot(_index: Self::Index) -> Slot {
unimplemented!()
}
fn as_index(slot: u64) -> u64 {
slot
}
}
impl ColumnName for columns::TransactionStatusIndex {
const NAME: &'static str = TRANSACTION_STATUS_INDEX_CF;
}
impl SlotColumn for columns::Rewards {}
impl ColumnName for columns::Rewards {
const NAME: &'static str = REWARDS_CF;
}
impl ProtobufColumn for columns::Rewards {
type Type = generated::Rewards;
}
impl SlotColumn for columns::Blocktime {}
impl ColumnName for columns::Blocktime {
const NAME: &'static str = BLOCKTIME_CF;
}
impl TypedColumn for columns::Blocktime {
type Type = UnixTimestamp;
}
impl SlotColumn for columns::PerfSamples {}
impl ColumnName for columns::PerfSamples {
const NAME: &'static str = PERF_SAMPLES_CF;
}
impl SlotColumn for columns::BlockHeight {}
impl ColumnName for columns::BlockHeight {
const NAME: &'static str = BLOCK_HEIGHT_CF;
}
impl TypedColumn for columns::BlockHeight {
type Type = u64;
}
impl ColumnName for columns::ProgramCosts {
const NAME: &'static str = PROGRAM_COSTS_CF;
}
impl TypedColumn for columns::ProgramCosts {
type Type = blockstore_meta::ProgramCost;
}
impl Column for columns::ProgramCosts {
type Index = Pubkey;
fn key(pubkey: Pubkey) -> Vec<u8> {
let mut key = vec![0; 32]; // size_of Pubkey
key[0..32].clone_from_slice(&pubkey.as_ref()[0..32]);
key
}
fn index(key: &[u8]) -> Self::Index {
Pubkey::try_from(&key[..32]).unwrap()
}
fn primary_index(_index: Self::Index) -> u64 {
unimplemented!()
}
fn slot(_index: Self::Index) -> Slot {
unimplemented!()
}
fn as_index(_index: u64) -> Self::Index {
Pubkey::default()
}
}
impl Column for columns::ShredCode {
type Index = (u64, u64);
fn key(index: (u64, u64)) -> Vec<u8> {
columns::ShredData::key(index)
}
fn index(key: &[u8]) -> (u64, u64) {
columns::ShredData::index(key)
}
fn primary_index(index: Self::Index) -> Slot {
index.0
}
fn as_index(slot: Slot) -> Self::Index {
(slot, 0)
}
}
impl ColumnName for columns::ShredCode {
const NAME: &'static str = CODE_SHRED_CF;
}
impl Column for columns::ShredData {
type Index = (u64, u64);
fn key((slot, index): (u64, u64)) -> Vec<u8> {
let mut key = vec![0; 16];
BigEndian::write_u64(&mut key[..8], slot);
BigEndian::write_u64(&mut key[8..16], index);
key
}
fn index(key: &[u8]) -> (u64, u64) {
let slot = BigEndian::read_u64(&key[..8]);
let index = BigEndian::read_u64(&key[8..16]);
(slot, index)
}
fn primary_index(index: Self::Index) -> Slot {
index.0
}
fn as_index(slot: Slot) -> Self::Index {
(slot, 0)
}
}
impl ColumnName for columns::ShredData {
const NAME: &'static str = DATA_SHRED_CF;
}
impl SlotColumn for columns::Index {}
impl ColumnName for columns::Index {
const NAME: &'static str = INDEX_CF;
}
impl TypedColumn for columns::Index {
type Type = blockstore_meta::Index;
}
impl SlotColumn for columns::DeadSlots {}
impl ColumnName for columns::DeadSlots {
const NAME: &'static str = DEAD_SLOTS_CF;
}
impl TypedColumn for columns::DeadSlots {
type Type = bool;
}
impl SlotColumn for columns::DuplicateSlots {}
impl ColumnName for columns::DuplicateSlots {
const NAME: &'static str = DUPLICATE_SLOTS_CF;
}
impl TypedColumn for columns::DuplicateSlots {
type Type = blockstore_meta::DuplicateSlotProof;
}
impl SlotColumn for columns::Orphans {}
impl ColumnName for columns::Orphans {
const NAME: &'static str = ORPHANS_CF;
}
impl TypedColumn for columns::Orphans {
type Type = bool;
}
impl SlotColumn for columns::BankHash {}
impl ColumnName for columns::BankHash {
const NAME: &'static str = BANK_HASH_CF;
}
impl TypedColumn for columns::BankHash {
type Type = blockstore_meta::FrozenHashVersioned;
}
impl SlotColumn for columns::Root {}
impl ColumnName for columns::Root {
const NAME: &'static str = ROOT_CF;
}
impl TypedColumn for columns::Root {
type Type = bool;
}
impl SlotColumn for columns::SlotMeta {}
impl ColumnName for columns::SlotMeta {
const NAME: &'static str = META_CF;
}
impl TypedColumn for columns::SlotMeta {
type Type = blockstore_meta::SlotMeta;
}
impl Column for columns::ErasureMeta {
type Index = (u64, u64);
fn index(key: &[u8]) -> (u64, u64) {
let slot = BigEndian::read_u64(&key[..8]);
let set_index = BigEndian::read_u64(&key[8..]);
(slot, set_index)
}
fn key((slot, set_index): (u64, u64)) -> Vec<u8> {
let mut key = vec![0; 16];
BigEndian::write_u64(&mut key[..8], slot);
BigEndian::write_u64(&mut key[8..], set_index);
key
}
fn primary_index(index: Self::Index) -> Slot {
index.0
}
fn as_index(slot: Slot) -> Self::Index {
(slot, 0)
}
}
impl ColumnName for columns::ErasureMeta {
const NAME: &'static str = ERASURE_META_CF;
}
impl TypedColumn for columns::ErasureMeta {
type Type = blockstore_meta::ErasureMeta;
}
impl SlotColumn for columns::OptimisticSlots {}
impl ColumnName for columns::OptimisticSlots {
const NAME: &'static str = OPTIMISTIC_SLOTS_CF;
}
impl TypedColumn for columns::OptimisticSlots {
type Type = blockstore_meta::OptimisticSlotMetaVersioned;
}
#[derive(Debug)]
pub struct Database {
backend: Arc<Rocks>,
path: Arc<Path>,
column_options: Arc<LedgerColumnOptions>,
}
#[derive(Debug)]
pub struct LedgerColumn<C>
where
C: Column + ColumnName,
{
backend: Arc<Rocks>,
column: PhantomData<C>,
pub column_options: Arc<LedgerColumnOptions>,
read_perf_status: PerfSamplingStatus,
write_perf_status: PerfSamplingStatus,
}
impl<C: Column + ColumnName> LedgerColumn<C> {
pub fn submit_rocksdb_cf_metrics(&self) {
let cf_rocksdb_metrics = BlockstoreRocksDbColumnFamilyMetrics {
total_sst_files_size: self
.get_int_property(RocksProperties::TOTAL_SST_FILES_SIZE)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
size_all_mem_tables: self
.get_int_property(RocksProperties::SIZE_ALL_MEM_TABLES)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
num_snapshots: self
.get_int_property(RocksProperties::NUM_SNAPSHOTS)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
oldest_snapshot_time: self
.get_int_property(RocksProperties::OLDEST_SNAPSHOT_TIME)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
actual_delayed_write_rate: self
.get_int_property(RocksProperties::ACTUAL_DELAYED_WRITE_RATE)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
is_write_stopped: self
.get_int_property(RocksProperties::IS_WRITE_STOPPED)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
block_cache_capacity: self
.get_int_property(RocksProperties::BLOCK_CACHE_CAPACITY)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
block_cache_usage: self
.get_int_property(RocksProperties::BLOCK_CACHE_USAGE)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
block_cache_pinned_usage: self
.get_int_property(RocksProperties::BLOCK_CACHE_PINNED_USAGE)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
estimate_table_readers_mem: self
.get_int_property(RocksProperties::ESTIMATE_TABLE_READERS_MEM)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
mem_table_flush_pending: self
.get_int_property(RocksProperties::MEM_TABLE_FLUSH_PENDING)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
compaction_pending: self
.get_int_property(RocksProperties::COMPACTION_PENDING)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
num_running_compactions: self
.get_int_property(RocksProperties::NUM_RUNNING_COMPACTIONS)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
num_running_flushes: self
.get_int_property(RocksProperties::NUM_RUNNING_FLUSHES)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
estimate_oldest_key_time: self
.get_int_property(RocksProperties::ESTIMATE_OLDEST_KEY_TIME)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
background_errors: self
.get_int_property(RocksProperties::BACKGROUND_ERRORS)
.unwrap_or(BLOCKSTORE_METRICS_ERROR),
};
cf_rocksdb_metrics.report_metrics(C::NAME, &self.column_options);
}
}
pub struct WriteBatch<'a> {
write_batch: RWriteBatch,
map: HashMap<&'static str, &'a ColumnFamily>,
}
impl Database {
pub fn open(path: &Path, options: BlockstoreOptions) -> Result<Self> {
let column_options = Arc::new(options.column_options.clone());
let backend = Arc::new(Rocks::open(path, options)?);
Ok(Database {
backend,
path: Arc::from(path),
column_options,
})
}
pub fn destroy(path: &Path) -> Result<()> {
Rocks::destroy(path)?;
Ok(())
}
pub fn get<C>(&self, key: C::Index) -> Result<Option<C::Type>>
where
C: TypedColumn + ColumnName,
{
if let Some(pinnable_slice) = self
.backend
.get_pinned_cf(self.cf_handle::<C>(), &C::key(key))?
{
let value = deserialize(pinnable_slice.as_ref())?;
Ok(Some(value))
} else {
Ok(None)
}
}
pub fn iter<C>(
&self,
iterator_mode: IteratorMode<C::Index>,
) -> Result<impl Iterator<Item = (C::Index, Box<[u8]>)> + '_>
where
C: Column + ColumnName,
{
let cf = self.cf_handle::<C>();
let iter = self.backend.iterator_cf::<C>(cf, iterator_mode);
Ok(iter.map(|pair| {
let (key, value) = pair.unwrap();
(C::index(&key), value)
}))
}
#[inline]
pub fn cf_handle<C: ColumnName>(&self) -> &ColumnFamily
where
C: Column + ColumnName,
{
self.backend.cf_handle(C::NAME)
}
pub fn column<C>(&self) -> LedgerColumn<C>
where
C: Column + ColumnName,
{
LedgerColumn {
backend: Arc::clone(&self.backend),
column: PhantomData,
column_options: Arc::clone(&self.column_options),
read_perf_status: PerfSamplingStatus::default(),
write_perf_status: PerfSamplingStatus::default(),
}
}
#[inline]
pub fn raw_iterator_cf(&self, cf: &ColumnFamily) -> Result<DBRawIterator> {
Ok(self.backend.raw_iterator_cf(cf))
}
pub fn batch(&self) -> Result<WriteBatch> {
let write_batch = self.backend.batch();
let map = Rocks::columns()
.into_iter()
.map(|desc| (desc, self.backend.cf_handle(desc)))
.collect();
Ok(WriteBatch { write_batch, map })
}
pub fn write(&self, batch: WriteBatch) -> Result<()> {
self.backend.write(batch.write_batch)
}
pub fn storage_size(&self) -> Result<u64> {
Ok(fs_extra::dir::get_size(&self.path)?)
}
/// Adds a \[`from`, `to`\] range that deletes all entries between the `from` slot
/// and `to` slot inclusively. If `from` slot and `to` slot are the same, then all
/// entries in that slot will be removed.
///
pub fn delete_range_cf<C>(&self, batch: &mut WriteBatch, from: Slot, to: Slot) -> Result<()>
where
C: Column + ColumnName,
{
let cf = self.cf_handle::<C>();
// Note that the default behavior of rocksdb's delete_range_cf deletes
// files within [from, to), while our purge logic applies to [from, to].
//
// For consistency, we make our delete_range_cf works for [from, to] by
// adjusting the `to` slot range by 1.
let from_index = C::as_index(from);
let to_index = C::as_index(to.saturating_add(1));
batch.delete_range_cf::<C>(cf, from_index, to_index)
}
/// Delete files whose slot range is within \[`from`, `to`\].
pub fn delete_file_in_range_cf<C>(&self, from: Slot, to: Slot) -> Result<()>
where
C: Column + ColumnName,
{
self.backend.delete_file_in_range_cf(
self.cf_handle::<C>(),
&C::key(C::as_index(from)),
&C::key(C::as_index(to)),
)
}
pub fn is_primary_access(&self) -> bool {
self.backend.is_primary_access()
}
pub fn set_oldest_slot(&self, oldest_slot: Slot) {
self.backend.oldest_slot.set(oldest_slot);
}
pub fn live_files_metadata(&self) -> Result<Vec<LiveFile>> {
self.backend.live_files_metadata()
}
}
impl<C> LedgerColumn<C>
where
C: Column + ColumnName,
{
pub fn get_bytes(&self, key: C::Index) -> Result<Option<Vec<u8>>> {
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.read_perf_status,
);
let result = self.backend.get_cf(self.handle(), &C::key(key));
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_read_perf(
C::NAME,
PERF_METRIC_OP_NAME_GET,
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
pub fn multi_get_bytes(&self, keys: Vec<C::Index>) -> Vec<Result<Option<Vec<u8>>>> {
let rocks_keys: Vec<_> = keys.into_iter().map(|key| C::key(key)).collect();
{
let ref_rocks_keys: Vec<_> = rocks_keys.iter().map(|k| &k[..]).collect();
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.read_perf_status,
);
let result = self
.backend
.multi_get_cf(self.handle(), ref_rocks_keys)
.into_iter()
.map(|r| match r {
Ok(opt) => match opt {
Some(pinnable_slice) => Ok(Some(pinnable_slice.as_ref().to_vec())),
None => Ok(None),
},
Err(e) => Err(e),
})
.collect::<Vec<Result<Option<_>>>>();
if let Some(op_start_instant) = is_perf_enabled {
// use multi-get instead
report_rocksdb_read_perf(
C::NAME,
PERF_METRIC_OP_NAME_MULTI_GET,
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
}
pub fn iter(
&self,
iterator_mode: IteratorMode<C::Index>,
) -> Result<impl Iterator<Item = (C::Index, Box<[u8]>)> + '_> {
let cf = self.handle();
let iter = self.backend.iterator_cf::<C>(cf, iterator_mode);
Ok(iter.map(|pair| {
let (key, value) = pair.unwrap();
(C::index(&key), value)
}))
}
pub fn delete_slot(
&self,
batch: &mut WriteBatch,
from: Option<Slot>,
to: Option<Slot>,
) -> Result<bool>
where
C::Index: PartialOrd + Copy + ColumnName,
{
let mut end = true;
let iter_config = match from {
Some(s) => IteratorMode::From(C::as_index(s), IteratorDirection::Forward),
None => IteratorMode::Start,
};
let iter = self.iter(iter_config)?;
for (index, _) in iter {
if let Some(to) = to {
if C::primary_index(index) > to {
end = false;
break;
}
};
if let Err(e) = batch.delete::<C>(index) {
error!(
"Error: {:?} while adding delete from_slot {:?} to batch {:?}",
e,
from,
C::NAME
)
}
}
Ok(end)
}
pub fn compact_range(&self, from: Slot, to: Slot) -> Result<bool>
where
C::Index: PartialOrd + Copy,
{
let cf = self.handle();
let from = Some(C::key(C::as_index(from)));
let to = Some(C::key(C::as_index(to)));
self.backend.db.compact_range_cf(cf, from, to);
Ok(true)
}
#[inline]
pub fn handle(&self) -> &ColumnFamily {
self.backend.cf_handle(C::NAME)
}
#[cfg(test)]
pub fn is_empty(&self) -> Result<bool> {
let mut iter = self.backend.raw_iterator_cf(self.handle());
iter.seek_to_first();
Ok(!iter.valid())
}
pub fn put_bytes(&self, key: C::Index, value: &[u8]) -> Result<()> {
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.write_perf_status,
);
let result = self.backend.put_cf(self.handle(), &C::key(key), value);
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_write_perf(
C::NAME,
PERF_METRIC_OP_NAME_PUT,
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
/// Retrieves the specified RocksDB integer property of the current
/// column family.
///
/// Full list of properties that return int values could be found
/// [here](https://github.com/facebook/rocksdb/blob/08809f5e6cd9cc4bc3958dd4d59457ae78c76660/include/rocksdb/db.h#L654-L689).
pub fn get_int_property(&self, name: &'static std::ffi::CStr) -> Result<i64> {
self.backend.get_int_property_cf(self.handle(), name)
}
}
impl<C> LedgerColumn<C>
where
C: TypedColumn + ColumnName,
{
pub fn multi_get(&self, keys: Vec<C::Index>) -> Vec<Result<Option<C::Type>>> {
let rocks_keys: Vec<_> = keys.into_iter().map(|key| C::key(key)).collect();
{
let ref_rocks_keys: Vec<_> = rocks_keys.iter().map(|k| &k[..]).collect();
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.read_perf_status,
);
let result = self
.backend
.multi_get_cf(self.handle(), ref_rocks_keys)
.into_iter()
.map(|r| match r {
Ok(opt) => match opt {
Some(pinnable_slice) => Ok(Some(deserialize(pinnable_slice.as_ref())?)),
None => Ok(None),
},
Err(e) => Err(e),
})
.collect::<Vec<Result<Option<_>>>>();
if let Some(op_start_instant) = is_perf_enabled {
// use multi-get instead
report_rocksdb_read_perf(
C::NAME,
PERF_METRIC_OP_NAME_MULTI_GET,
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
}
pub fn get(&self, key: C::Index) -> Result<Option<C::Type>> {
let mut result = Ok(None);
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.read_perf_status,
);
if let Some(pinnable_slice) = self.backend.get_pinned_cf(self.handle(), &C::key(key))? {
let value = deserialize(pinnable_slice.as_ref())?;
result = Ok(Some(value))
}
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_read_perf(
C::NAME,
PERF_METRIC_OP_NAME_GET,
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
pub fn put(&self, key: C::Index, value: &C::Type) -> Result<()> {
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.write_perf_status,
);
let serialized_value = serialize(value)?;
let result = self
.backend
.put_cf(self.handle(), &C::key(key), &serialized_value);
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_write_perf(
C::NAME,
PERF_METRIC_OP_NAME_PUT,
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
pub fn delete(&self, key: C::Index) -> Result<()> {
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.write_perf_status,
);
let result = self.backend.delete_cf(self.handle(), &C::key(key));
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_write_perf(
C::NAME,
"delete",
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
}
impl<C> LedgerColumn<C>
where
C: ProtobufColumn + ColumnName,
{
pub fn get_protobuf_or_bincode<T: DeserializeOwned + Into<C::Type>>(
&self,
key: C::Index,
) -> Result<Option<C::Type>> {
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.read_perf_status,
);
let result = self.backend.get_pinned_cf(self.handle(), &C::key(key));
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_read_perf(
C::NAME,
PERF_METRIC_OP_NAME_GET,
&op_start_instant.elapsed(),
&self.column_options,
);
}
if let Some(pinnable_slice) = result? {
let value = match C::Type::decode(pinnable_slice.as_ref()) {
Ok(value) => value,
Err(_) => deserialize::<T>(pinnable_slice.as_ref())?.into(),
};
Ok(Some(value))
} else {
Ok(None)
}
}
pub fn get_protobuf(&self, key: C::Index) -> Result<Option<C::Type>> {
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.read_perf_status,
);
let result = self.backend.get_pinned_cf(self.handle(), &C::key(key));
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_read_perf(
C::NAME,
PERF_METRIC_OP_NAME_GET,
&op_start_instant.elapsed(),
&self.column_options,
);
}
if let Some(pinnable_slice) = result? {
Ok(Some(C::Type::decode(pinnable_slice.as_ref())?))
} else {
Ok(None)
}
}
pub fn put_protobuf(&self, key: C::Index, value: &C::Type) -> Result<()> {
let mut buf = Vec::with_capacity(value.encoded_len());
value.encode(&mut buf)?;
let is_perf_enabled = maybe_enable_rocksdb_perf(
self.column_options.rocks_perf_sample_interval,
&self.write_perf_status,
);
let result = self.backend.put_cf(self.handle(), &C::key(key), &buf);
if let Some(op_start_instant) = is_perf_enabled {
report_rocksdb_write_perf(
C::NAME,
PERF_METRIC_OP_NAME_PUT,
&op_start_instant.elapsed(),
&self.column_options,
);
}
result
}
}
impl<'a> WriteBatch<'a> {
pub fn put_bytes<C: Column + ColumnName>(&mut self, key: C::Index, bytes: &[u8]) -> Result<()> {
self.write_batch
.put_cf(self.get_cf::<C>(), C::key(key), bytes);
Ok(())
}
pub fn delete<C: Column + ColumnName>(&mut self, key: C::Index) -> Result<()> {
self.write_batch.delete_cf(self.get_cf::<C>(), C::key(key));
Ok(())
}
pub fn put<C: TypedColumn + ColumnName>(
&mut self,
key: C::Index,
value: &C::Type,
) -> Result<()> {
let serialized_value = serialize(&value)?;
self.write_batch
.put_cf(self.get_cf::<C>(), C::key(key), serialized_value);
Ok(())
}
#[inline]
fn get_cf<C: Column + ColumnName>(&self) -> &'a ColumnFamily {
self.map[C::NAME]
}
/// Adds a \[`from`, `to`) range deletion entry to the batch.
///
/// Note that the \[`from`, `to`) deletion range of WriteBatch::delete_range_cf
/// is different from \[`from`, `to`\] of Database::delete_range_cf as we makes
/// the semantics of Database::delete_range_cf matches the blockstore purge
/// logic.
fn delete_range_cf<C: Column>(
&mut self,
cf: &ColumnFamily,
from: C::Index,
to: C::Index, // exclusive
) -> Result<()> {
self.write_batch
.delete_range_cf(cf, C::key(from), C::key(to));
Ok(())
}
}
struct PurgedSlotFilter<C: Column + ColumnName> {
oldest_slot: Slot,
name: CString,
_phantom: PhantomData<C>,
}
impl<C: Column + ColumnName> CompactionFilter for PurgedSlotFilter<C> {
fn filter(&mut self, _level: u32, key: &[u8], _value: &[u8]) -> CompactionDecision {
use rocksdb::CompactionDecision::*;
let slot_in_key = C::slot(C::index(key));
// Refer to a comment about periodic_compaction_seconds, especially regarding implicit
// periodic execution of compaction_filters
if slot_in_key >= self.oldest_slot {
Keep
} else {
Remove
}
}
fn name(&self) -> &CStr {
&self.name
}
}
struct PurgedSlotFilterFactory<C: Column + ColumnName> {
oldest_slot: OldestSlot,
name: CString,
_phantom: PhantomData<C>,
}
impl<C: Column + ColumnName> CompactionFilterFactory for PurgedSlotFilterFactory<C> {
type Filter = PurgedSlotFilter<C>;
fn create(&mut self, _context: CompactionFilterContext) -> Self::Filter {
let copied_oldest_slot = self.oldest_slot.get();
PurgedSlotFilter::<C> {
oldest_slot: copied_oldest_slot,
name: CString::new(format!(
"purged_slot_filter({}, {:?})",
C::NAME,
copied_oldest_slot
))
.unwrap(),
_phantom: PhantomData::default(),
}
}
fn name(&self) -> &CStr {
&self.name
}
}
fn new_cf_descriptor<C: 'static + Column + ColumnName>(
options: &BlockstoreOptions,
oldest_slot: &OldestSlot,
) -> ColumnFamilyDescriptor {
ColumnFamilyDescriptor::new(C::NAME, get_cf_options::<C>(options, oldest_slot))
}
fn get_cf_options<C: 'static + Column + ColumnName>(
options: &BlockstoreOptions,
oldest_slot: &OldestSlot,
) -> Options {
let mut cf_options = Options::default();
// 256 * 8 = 2GB. 6 of these columns should take at most 12GB of RAM
cf_options.set_max_write_buffer_number(8);
cf_options.set_write_buffer_size(MAX_WRITE_BUFFER_SIZE as usize);
let file_num_compaction_trigger = 4;
// Recommend that this be around the size of level 0. Level 0 estimated size in stable state is
// write_buffer_size * min_write_buffer_number_to_merge * level0_file_num_compaction_trigger
// Source: https://docs.rs/rocksdb/0.6.0/rocksdb/struct.Options.html#method.set_level_zero_file_num_compaction_trigger
let total_size_base = MAX_WRITE_BUFFER_SIZE * file_num_compaction_trigger;
let file_size_base = total_size_base / 10;
cf_options.set_level_zero_file_num_compaction_trigger(file_num_compaction_trigger as i32);
cf_options.set_max_bytes_for_level_base(total_size_base);
cf_options.set_target_file_size_base(file_size_base);
let disable_auto_compactions = should_disable_auto_compactions(&options.access_type);
if disable_auto_compactions {
cf_options.set_disable_auto_compactions(true);
}
if !disable_auto_compactions && !should_exclude_from_compaction(C::NAME) {
cf_options.set_compaction_filter_factory(PurgedSlotFilterFactory::<C> {
oldest_slot: oldest_slot.clone(),
name: CString::new(format!("purged_slot_filter_factory({})", C::NAME)).unwrap(),
_phantom: PhantomData::default(),
});
}
process_cf_options_advanced::<C>(&mut cf_options, &options.column_options);
cf_options
}
fn process_cf_options_advanced<C: 'static + Column + ColumnName>(
cf_options: &mut Options,
column_options: &LedgerColumnOptions,
) {
if should_enable_compression::<C>() {
cf_options.set_compression_type(
column_options
.compression_type
.to_rocksdb_compression_type(),
);
}
}
/// Creates and returns the column family descriptors for both data shreds and
/// coding shreds column families.
///
/// @return a pair of ColumnFamilyDescriptor where the first / second elements
/// are associated to the first / second template class respectively.
fn new_cf_descriptor_pair_shreds<
D: 'static + Column + ColumnName, // Column Family for Data Shred
C: 'static + Column + ColumnName, // Column Family for Coding Shred
>(
options: &BlockstoreOptions,
oldest_slot: &OldestSlot,
) -> (ColumnFamilyDescriptor, ColumnFamilyDescriptor) {
match &options.column_options.shred_storage_type {
ShredStorageType::RocksLevel => (
new_cf_descriptor::<D>(options, oldest_slot),
new_cf_descriptor::<C>(options, oldest_slot),
),
ShredStorageType::RocksFifo(fifo_options) => (
new_cf_descriptor_fifo::<D>(&fifo_options.shred_data_cf_size, &options.column_options),
new_cf_descriptor_fifo::<C>(&fifo_options.shred_code_cf_size, &options.column_options),
),
}
}
fn new_cf_descriptor_fifo<C: 'static + Column + ColumnName>(
max_cf_size: &u64,
column_options: &LedgerColumnOptions,
) -> ColumnFamilyDescriptor {
if *max_cf_size > FIFO_WRITE_BUFFER_SIZE {
ColumnFamilyDescriptor::new(
C::NAME,
get_cf_options_fifo::<C>(max_cf_size, column_options),
)
} else {
panic!(
"{} cf_size must be greater than write buffer size {} when using ShredStorageType::RocksFifo.",
C::NAME, FIFO_WRITE_BUFFER_SIZE
);
}
}
/// Returns the RocksDB Column Family Options which use FIFO Compaction.
///
/// Note that this CF options is optimized for workloads which write-keys
/// are mostly monotonically increasing over time. For workloads where
/// write-keys do not follow any order in general should use get_cf_options
/// instead.
///
/// - [`max_cf_size`]: the maximum allowed column family size. Note that
/// rocksdb will start deleting the oldest SST file when the column family
/// size reaches `max_cf_size` - `FIFO_WRITE_BUFFER_SIZE` to strictly
/// maintain the size limit.
fn get_cf_options_fifo<C: 'static + Column + ColumnName>(
max_cf_size: &u64,
column_options: &LedgerColumnOptions,
) -> Options {
let mut options = Options::default();
options.set_max_write_buffer_number(8);
options.set_write_buffer_size(FIFO_WRITE_BUFFER_SIZE as usize);
// FIFO always has its files in L0 so we only have one level.
options.set_num_levels(1);
// Since FIFO puts all its file in L0, it is suggested to have unlimited
// number of open files. The actual total number of open files will
// be close to max_cf_size / write_buffer_size.
options.set_max_open_files(-1);
let mut fifo_compact_options = FifoCompactOptions::default();
// Note that the following actually specifies size trigger for deleting
// the oldest SST file instead of specifying the size limit as its name
// might suggest. As a result, we should trigger the file deletion when
// the size reaches `max_cf_size - write_buffer_size` in order to correctly
// maintain the storage size limit.
fifo_compact_options
.set_max_table_files_size((*max_cf_size).saturating_sub(FIFO_WRITE_BUFFER_SIZE));
options.set_compaction_style(DBCompactionStyle::Fifo);
options.set_fifo_compaction_options(&fifo_compact_options);
process_cf_options_advanced::<C>(&mut options, column_options);
options
}
fn get_db_options(access_type: &AccessType) -> Options {
let mut options = Options::default();
// Create missing items to support a clean start
options.create_if_missing(true);
options.create_missing_column_families(true);
// Per the docs, a good value for this is the number of cores on the machine
options.increase_parallelism(num_cpus::get() as i32);
let mut env = rocksdb::Env::default().unwrap();
// While a compaction is ongoing, all the background threads
// could be used by the compaction. This can stall writes which
// need to flush the memtable. Add some high-priority background threads
// which can service these writes.
env.set_high_priority_background_threads(4);
options.set_env(&env);
// Set max total wal size to 4G.
options.set_max_total_wal_size(4 * 1024 * 1024 * 1024);
if should_disable_auto_compactions(access_type) {
options.set_disable_auto_compactions(true);
}
// Allow Rocks to open/keep open as many files as it needs for performance;
// however, this is also explicitly required for a secondary instance.
// See https://github.com/facebook/rocksdb/wiki/Secondary-instance
options.set_max_open_files(-1);
options
}
// Returns whether automatic compactions should be disabled based upon access type
fn should_disable_auto_compactions(access_type: &AccessType) -> bool {
// Leave automatic compactions enabled (do not disable) in Primary mode;
// disable in all other modes to prevent accidental cleaning
!matches!(access_type, AccessType::Primary)
}
// Returns whether the supplied column (name) should be excluded from compaction
fn should_exclude_from_compaction(cf_name: &str) -> bool {
// List of column families to be excluded from compactions
let no_compaction_cfs: HashSet<&'static str> = vec![
columns::TransactionStatusIndex::NAME,
columns::ProgramCosts::NAME,
columns::TransactionMemos::NAME,
]
.into_iter()
.collect();
no_compaction_cfs.get(cf_name).is_some()
}
// Returns true if the column family enables compression.
fn should_enable_compression<C: 'static + Column + ColumnName>() -> bool {
C::NAME == columns::TransactionStatus::NAME
}
#[cfg(test)]
pub mod tests {
use {super::*, crate::blockstore_db::columns::ShredData};
#[test]
fn test_compaction_filter() {
// this doesn't implement Clone...
let dummy_compaction_filter_context = || CompactionFilterContext {
is_full_compaction: true,
is_manual_compaction: true,
};
let oldest_slot = OldestSlot::default();
let mut factory = PurgedSlotFilterFactory::<ShredData> {
oldest_slot: oldest_slot.clone(),
name: CString::new("test compaction filter").unwrap(),
_phantom: PhantomData::default(),
};
let mut compaction_filter = factory.create(dummy_compaction_filter_context());
let dummy_level = 0;
let key = ShredData::key(ShredData::as_index(0));
let dummy_value = vec![];
// we can't use assert_matches! because CompactionDecision doesn't implement Debug
assert!(matches!(
compaction_filter.filter(dummy_level, &key, &dummy_value),
CompactionDecision::Keep
));
// mutating oldest_slot doesn't affect existing compaction filters...
oldest_slot.set(1);
assert!(matches!(
compaction_filter.filter(dummy_level, &key, &dummy_value),
CompactionDecision::Keep
));
// recreating compaction filter starts to expire the key
let mut compaction_filter = factory.create(dummy_compaction_filter_context());
assert!(matches!(
compaction_filter.filter(dummy_level, &key, &dummy_value),
CompactionDecision::Remove
));
// newer key shouldn't be removed
let key = ShredData::key(ShredData::as_index(1));
matches!(
compaction_filter.filter(dummy_level, &key, &dummy_value),
CompactionDecision::Keep
);
}
#[test]
fn test_cf_names_and_descriptors_equal_length() {
let options = BlockstoreOptions::default();
let oldest_slot = OldestSlot::default();
// The names and descriptors don't need to be in the same order for our use cases;
// however, there should be the same number of each. For example, adding a new column
// should update both lists.
assert_eq!(
Rocks::columns().len(),
Rocks::cf_descriptors(&options, &oldest_slot).len()
);
}
#[test]
fn test_should_disable_auto_compactions() {
assert!(!should_disable_auto_compactions(&AccessType::Primary));
assert!(should_disable_auto_compactions(
&AccessType::PrimaryForMaintenance
));
assert!(should_disable_auto_compactions(&AccessType::Secondary));
}
#[test]
fn test_should_exclude_from_compaction() {
// currently there are three CFs excluded from compaction:
assert!(should_exclude_from_compaction(
columns::TransactionStatusIndex::NAME
));
assert!(should_exclude_from_compaction(columns::ProgramCosts::NAME));
assert!(should_exclude_from_compaction(
columns::TransactionMemos::NAME
));
assert!(!should_exclude_from_compaction("something else"));
}
}