solana/runtime/src/cost_model.rs

618 lines
21 KiB
Rust

//! 'cost_model` provides service to estimate a transaction's cost
//! following proposed fee schedule #16984; Relevant cluster cost
//! measuring is described by #19627
//!
//! The main function is `calculate_cost` which returns &TransactionCost.
//!
use {
crate::{block_cost_limits::*, execute_cost_table::ExecuteCostTable},
log::*,
solana_sdk::{
instruction::CompiledInstruction, program_utils::limited_deserialize, pubkey::Pubkey,
system_instruction::SystemInstruction, system_program, transaction::SanitizedTransaction,
},
};
const MAX_WRITABLE_ACCOUNTS: usize = 256;
// costs are stored in number of 'compute unit's
#[derive(Debug)]
pub struct TransactionCost {
pub writable_accounts: Vec<Pubkey>,
pub signature_cost: u64,
pub write_lock_cost: u64,
pub data_bytes_cost: u64,
pub builtins_execution_cost: u64,
pub bpf_execution_cost: u64,
pub account_data_size: u64,
pub is_simple_vote: bool,
}
impl Default for TransactionCost {
fn default() -> Self {
Self {
writable_accounts: Vec::with_capacity(MAX_WRITABLE_ACCOUNTS),
signature_cost: 0u64,
write_lock_cost: 0u64,
data_bytes_cost: 0u64,
builtins_execution_cost: 0u64,
bpf_execution_cost: 0u64,
account_data_size: 0u64,
is_simple_vote: false,
}
}
}
impl TransactionCost {
pub fn new_with_capacity(capacity: usize) -> Self {
Self {
writable_accounts: Vec::with_capacity(capacity),
..Self::default()
}
}
pub fn reset(&mut self) {
self.writable_accounts.clear();
self.signature_cost = 0;
self.write_lock_cost = 0;
self.data_bytes_cost = 0;
self.builtins_execution_cost = 0;
self.bpf_execution_cost = 0;
self.is_simple_vote = false;
}
pub fn sum(&self) -> u64 {
self.sum_without_bpf()
.saturating_add(self.bpf_execution_cost)
}
pub fn sum_without_bpf(&self) -> u64 {
self.signature_cost
.saturating_add(self.write_lock_cost)
.saturating_add(self.data_bytes_cost)
.saturating_add(self.builtins_execution_cost)
}
}
#[derive(Debug, Default)]
pub struct CostModel {
instruction_execution_cost_table: ExecuteCostTable,
}
impl CostModel {
pub fn new() -> Self {
Self {
instruction_execution_cost_table: ExecuteCostTable::default(),
}
}
pub fn initialize_cost_table(&mut self, cost_table: &[(Pubkey, u64)]) {
cost_table
.iter()
.map(|(key, cost)| (key, cost))
.for_each(|(program_id, cost)| {
self.upsert_instruction_cost(program_id, *cost);
});
}
pub fn calculate_cost(&self, transaction: &SanitizedTransaction) -> TransactionCost {
let mut tx_cost = TransactionCost::new_with_capacity(MAX_WRITABLE_ACCOUNTS);
tx_cost.signature_cost = self.get_signature_cost(transaction);
self.get_write_lock_cost(&mut tx_cost, transaction);
self.get_transaction_cost(&mut tx_cost, transaction);
tx_cost.account_data_size = self.calculate_account_data_size(transaction);
tx_cost.is_simple_vote = transaction.is_simple_vote_transaction();
debug!("transaction {:?} has cost {:?}", transaction, tx_cost);
tx_cost
}
pub fn upsert_instruction_cost(&mut self, program_key: &Pubkey, cost: u64) {
self.instruction_execution_cost_table
.upsert(program_key, cost);
}
pub fn find_instruction_cost(&self, program_key: &Pubkey) -> u64 {
match self.instruction_execution_cost_table.get_cost(program_key) {
Some(cost) => *cost,
None => {
let default_value = self
.instruction_execution_cost_table
.get_default_compute_unit_limit();
debug!(
"Program {:?} does not have aggregated cost, using default value {}",
program_key, default_value
);
default_value
}
}
}
fn get_signature_cost(&self, transaction: &SanitizedTransaction) -> u64 {
transaction.signatures().len() as u64 * SIGNATURE_COST
}
fn get_write_lock_cost(
&self,
tx_cost: &mut TransactionCost,
transaction: &SanitizedTransaction,
) {
let message = transaction.message();
message
.account_keys()
.iter()
.enumerate()
.for_each(|(i, k)| {
let is_writable = message.is_writable(i);
if is_writable {
tx_cost.writable_accounts.push(*k);
tx_cost.write_lock_cost += WRITE_LOCK_UNITS;
}
});
}
fn get_transaction_cost(
&self,
tx_cost: &mut TransactionCost,
transaction: &SanitizedTransaction,
) {
let mut builtin_costs = 0u64;
let mut bpf_costs = 0u64;
let mut data_bytes_len_total = 0u64;
for (program_id, instruction) in transaction.message().program_instructions_iter() {
// to keep the same behavior, look for builtin first
if let Some(builtin_cost) = BUILT_IN_INSTRUCTION_COSTS.get(program_id) {
builtin_costs = builtin_costs.saturating_add(*builtin_cost);
} else {
let instruction_cost = self.find_instruction_cost(program_id);
trace!(
"instruction {:?} has cost of {}",
instruction,
instruction_cost
);
bpf_costs = bpf_costs.saturating_add(instruction_cost);
}
data_bytes_len_total =
data_bytes_len_total.saturating_add(instruction.data.len() as u64);
}
tx_cost.builtins_execution_cost = builtin_costs;
tx_cost.bpf_execution_cost = bpf_costs;
tx_cost.data_bytes_cost = data_bytes_len_total / DATA_BYTES_UNITS;
}
fn calculate_account_data_size_on_deserialized_system_instruction(
instruction: SystemInstruction,
) -> u64 {
match instruction {
SystemInstruction::CreateAccount {
lamports: _lamports,
space,
owner: _owner,
} => space,
SystemInstruction::CreateAccountWithSeed {
base: _base,
seed: _seed,
lamports: _lamports,
space,
owner: _owner,
} => space,
SystemInstruction::Allocate { space } => space,
SystemInstruction::AllocateWithSeed {
base: _base,
seed: _seed,
space,
owner: _owner,
} => space,
_ => 0,
}
}
fn calculate_account_data_size_on_instruction(
program_id: &Pubkey,
instruction: &CompiledInstruction,
) -> u64 {
if program_id == &system_program::id() {
if let Ok(instruction) = limited_deserialize(&instruction.data) {
return Self::calculate_account_data_size_on_deserialized_system_instruction(
instruction,
);
}
}
0
}
/// eventually, potentially determine account data size of all writable accounts
/// at the moment, calculate account data size of account creation
fn calculate_account_data_size(&self, transaction: &SanitizedTransaction) -> u64 {
transaction
.message()
.program_instructions_iter()
.map(|(program_id, instruction)| {
Self::calculate_account_data_size_on_instruction(program_id, instruction)
})
.sum()
}
}
#[cfg(test)]
mod tests {
use {
super::*,
crate::{
bank::Bank,
genesis_utils::{create_genesis_config, GenesisConfigInfo},
},
solana_sdk::{
bpf_loader,
hash::Hash,
instruction::CompiledInstruction,
message::Message,
signature::{Keypair, Signer},
system_instruction::{self},
system_program, system_transaction,
transaction::Transaction,
},
std::{
str::FromStr,
sync::{Arc, RwLock},
thread::{self, JoinHandle},
},
};
fn test_setup() -> (Keypair, Hash) {
solana_logger::setup();
let GenesisConfigInfo {
genesis_config,
mint_keypair,
..
} = create_genesis_config(10);
let bank = Arc::new(Bank::new_no_wallclock_throttle_for_tests(&genesis_config));
let start_hash = bank.last_blockhash();
(mint_keypair, start_hash)
}
#[test]
fn test_cost_model_instruction_cost() {
let mut testee = CostModel::default();
let known_key = Pubkey::from_str("known11111111111111111111111111111111111111").unwrap();
testee.upsert_instruction_cost(&known_key, 100);
// find cost for known programs
assert_eq!(100, testee.find_instruction_cost(&known_key));
testee.upsert_instruction_cost(&bpf_loader::id(), 1999);
assert_eq!(1999, testee.find_instruction_cost(&bpf_loader::id()));
// unknown program is assigned with default cost
assert_eq!(
testee
.instruction_execution_cost_table
.get_default_compute_unit_limit(),
testee.find_instruction_cost(
&Pubkey::from_str("unknown111111111111111111111111111111111111").unwrap()
)
);
}
#[test]
fn test_cost_model_data_len_cost() {
let lamports = 0;
let owner = Pubkey::default();
let seed = String::default();
let space = 100;
let base = Pubkey::default();
for instruction in [
SystemInstruction::CreateAccount {
lamports,
space,
owner,
},
SystemInstruction::CreateAccountWithSeed {
base,
seed: seed.clone(),
lamports,
space,
owner,
},
SystemInstruction::Allocate { space },
SystemInstruction::AllocateWithSeed {
base,
seed,
space,
owner,
},
] {
assert_eq!(
space,
CostModel::calculate_account_data_size_on_deserialized_system_instruction(
instruction
)
);
}
assert_eq!(
0,
CostModel::calculate_account_data_size_on_deserialized_system_instruction(
SystemInstruction::TransferWithSeed {
lamports,
from_seed: String::default(),
from_owner: Pubkey::default(),
}
)
);
}
#[test]
fn test_cost_model_simple_transaction() {
let (mint_keypair, start_hash) = test_setup();
let keypair = Keypair::new();
let simple_transaction = SanitizedTransaction::from_transaction_for_tests(
system_transaction::transfer(&mint_keypair, &keypair.pubkey(), 2, start_hash),
);
debug!(
"system_transaction simple_transaction {:?}",
simple_transaction
);
// expected cost for one system transfer instructions
let expected_execution_cost = BUILT_IN_INSTRUCTION_COSTS
.get(&system_program::id())
.unwrap();
let testee = CostModel::default();
let mut tx_cost = TransactionCost::default();
testee.get_transaction_cost(&mut tx_cost, &simple_transaction);
assert_eq!(*expected_execution_cost, tx_cost.builtins_execution_cost);
assert_eq!(0, tx_cost.bpf_execution_cost);
assert_eq!(0, tx_cost.data_bytes_cost);
}
#[test]
fn test_cost_model_transaction_many_transfer_instructions() {
let (mint_keypair, start_hash) = test_setup();
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let instructions =
system_instruction::transfer_many(&mint_keypair.pubkey(), &[(key1, 1), (key2, 1)]);
let message = Message::new(&instructions, Some(&mint_keypair.pubkey()));
let tx = SanitizedTransaction::from_transaction_for_tests(Transaction::new(
&[&mint_keypair],
message,
start_hash,
));
debug!("many transfer transaction {:?}", tx);
// expected cost for two system transfer instructions
let program_cost = BUILT_IN_INSTRUCTION_COSTS
.get(&system_program::id())
.unwrap();
let expected_cost = program_cost * 2;
let testee = CostModel::default();
let mut tx_cost = TransactionCost::default();
testee.get_transaction_cost(&mut tx_cost, &tx);
assert_eq!(expected_cost, tx_cost.builtins_execution_cost);
assert_eq!(0, tx_cost.bpf_execution_cost);
assert_eq!(1, tx_cost.data_bytes_cost);
}
#[test]
fn test_cost_model_message_many_different_instructions() {
let (mint_keypair, start_hash) = test_setup();
// construct a transaction with multiple random instructions
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let prog1 = solana_sdk::pubkey::new_rand();
let prog2 = solana_sdk::pubkey::new_rand();
let instructions = vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
];
let tx = SanitizedTransaction::from_transaction_for_tests(
Transaction::new_with_compiled_instructions(
&[&mint_keypair],
&[key1, key2],
start_hash,
vec![prog1, prog2],
instructions,
),
);
debug!("many random transaction {:?}", tx);
let testee = CostModel::default();
let expected_cost = testee
.instruction_execution_cost_table
.get_default_compute_unit_limit()
* 2;
let mut tx_cost = TransactionCost::default();
testee.get_transaction_cost(&mut tx_cost, &tx);
assert_eq!(0, tx_cost.builtins_execution_cost);
assert_eq!(expected_cost, tx_cost.bpf_execution_cost);
assert_eq!(0, tx_cost.data_bytes_cost);
}
#[test]
fn test_cost_model_sort_message_accounts_by_type() {
// construct a transaction with two random instructions with same signer
let signer1 = Keypair::new();
let signer2 = Keypair::new();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let prog1 = Pubkey::new_unique();
let prog2 = Pubkey::new_unique();
let instructions = vec![
CompiledInstruction::new(4, &(), vec![0, 2]),
CompiledInstruction::new(5, &(), vec![1, 3]),
];
let tx = SanitizedTransaction::from_transaction_for_tests(
Transaction::new_with_compiled_instructions(
&[&signer1, &signer2],
&[key1, key2],
Hash::new_unique(),
vec![prog1, prog2],
instructions,
),
);
let cost_model = CostModel::default();
let tx_cost = cost_model.calculate_cost(&tx);
assert_eq!(2 + 2, tx_cost.writable_accounts.len());
assert_eq!(signer1.pubkey(), tx_cost.writable_accounts[0]);
assert_eq!(signer2.pubkey(), tx_cost.writable_accounts[1]);
assert_eq!(key1, tx_cost.writable_accounts[2]);
assert_eq!(key2, tx_cost.writable_accounts[3]);
}
#[test]
fn test_cost_model_insert_instruction_cost() {
let key1 = Pubkey::new_unique();
let cost1 = 100;
let mut cost_model = CostModel::default();
// Using default cost for unknown instruction
assert_eq!(
cost_model
.instruction_execution_cost_table
.get_default_compute_unit_limit(),
cost_model.find_instruction_cost(&key1)
);
// insert instruction cost to table
cost_model.upsert_instruction_cost(&key1, cost1);
// now it is known instruction with known cost
assert_eq!(cost1, cost_model.find_instruction_cost(&key1));
}
#[test]
fn test_cost_model_calculate_cost() {
let (mint_keypair, start_hash) = test_setup();
let tx = SanitizedTransaction::from_transaction_for_tests(system_transaction::transfer(
&mint_keypair,
&Keypair::new().pubkey(),
2,
start_hash,
));
let expected_account_cost = WRITE_LOCK_UNITS * 2;
let expected_execution_cost = BUILT_IN_INSTRUCTION_COSTS
.get(&system_program::id())
.unwrap();
let cost_model = CostModel::default();
let tx_cost = cost_model.calculate_cost(&tx);
assert_eq!(expected_account_cost, tx_cost.write_lock_cost);
assert_eq!(*expected_execution_cost, tx_cost.builtins_execution_cost);
assert_eq!(2, tx_cost.writable_accounts.len());
}
#[test]
fn test_cost_model_update_instruction_cost() {
let key1 = Pubkey::new_unique();
let cost1 = 100;
let cost2 = 200;
let updated_cost = (cost1 + cost2) / 2;
let mut cost_model = CostModel::default();
// insert instruction cost to table
cost_model.upsert_instruction_cost(&key1, cost1);
assert_eq!(cost1, cost_model.find_instruction_cost(&key1));
// update instruction cost
cost_model.upsert_instruction_cost(&key1, cost2);
assert_eq!(updated_cost, cost_model.find_instruction_cost(&key1));
}
#[test]
fn test_cost_model_can_be_shared_concurrently_with_rwlock() {
let (mint_keypair, start_hash) = test_setup();
// construct a transaction with multiple random instructions
let key1 = solana_sdk::pubkey::new_rand();
let key2 = solana_sdk::pubkey::new_rand();
let prog1 = solana_sdk::pubkey::new_rand();
let prog2 = solana_sdk::pubkey::new_rand();
let instructions = vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
];
let tx = Arc::new(SanitizedTransaction::from_transaction_for_tests(
Transaction::new_with_compiled_instructions(
&[&mint_keypair],
&[key1, key2],
start_hash,
vec![prog1, prog2],
instructions,
),
));
let number_threads = 10;
let expected_account_cost = WRITE_LOCK_UNITS * 3;
let cost1 = 100;
let cost2 = 200;
// execution cost can be either 2 * Default (before write) or cost1+cost2 (after write)
let cost_model: Arc<RwLock<CostModel>> = Arc::new(RwLock::new(CostModel::default()));
let thread_handlers: Vec<JoinHandle<()>> = (0..number_threads)
.map(|i| {
let cost_model = cost_model.clone();
let tx = tx.clone();
if i == 5 {
thread::spawn(move || {
let mut cost_model = cost_model.write().unwrap();
cost_model.upsert_instruction_cost(&prog1, cost1);
cost_model.upsert_instruction_cost(&prog2, cost2);
})
} else {
thread::spawn(move || {
let cost_model = cost_model.write().unwrap();
let tx_cost = cost_model.calculate_cost(&tx);
assert_eq!(3, tx_cost.writable_accounts.len());
assert_eq!(expected_account_cost, tx_cost.write_lock_cost);
})
}
})
.collect();
for th in thread_handlers {
th.join().unwrap();
}
}
#[test]
fn test_initialize_cost_table() {
// build cost table
let cost_table = vec![
(Pubkey::new_unique(), 10),
(Pubkey::new_unique(), 20),
(Pubkey::new_unique(), 30),
];
// init cost model
let mut cost_model = CostModel::default();
cost_model.initialize_cost_table(&cost_table);
// verify
for (id, cost) in cost_table.iter() {
assert_eq!(*cost, cost_model.find_instruction_cost(id));
}
// verify built-in programs are not in bpf_costs
assert!(cost_model
.instruction_execution_cost_table
.get_cost(&system_program::id())
.is_none());
assert!(cost_model
.instruction_execution_cost_table
.get_cost(&solana_vote_program::id())
.is_none());
}
}