solana/client/src/tpu_client.rs

394 lines
13 KiB
Rust

use crate::{
pubsub_client::{PubsubClient, PubsubClientError, PubsubClientSubscription},
rpc_client::RpcClient,
rpc_response::SlotUpdate,
};
use bincode::serialize;
use log::*;
use solana_sdk::{clock::Slot, pubkey::Pubkey, transaction::Transaction};
use std::{
collections::{HashMap, HashSet, VecDeque},
net::{SocketAddr, UdpSocket},
str::FromStr,
sync::{
atomic::{AtomicBool, Ordering},
Arc, RwLock,
},
thread::JoinHandle,
time::{Duration, Instant},
};
use thiserror::Error;
#[derive(Error, Debug)]
pub enum TpuSenderError {
#[error("Pubsub error: {0:?}")]
PubsubError(#[from] PubsubClientError),
#[error("RPC error: {0:?}")]
RpcError(#[from] crate::client_error::ClientError),
#[error("IO error: {0:?}")]
IoError(#[from] std::io::Error),
}
type Result<T> = std::result::Result<T, TpuSenderError>;
/// Default number of slots used to build TPU socket fanout set
pub const DEFAULT_FANOUT_SLOTS: u64 = 12;
/// Maximum number of slots used to build TPU socket fanout set
pub const MAX_FANOUT_SLOTS: u64 = 100;
/// Config params for `TpuClient`
#[derive(Clone, Debug)]
pub struct TpuClientConfig {
/// The range of upcoming slots to include when determining which
/// leaders to send transactions to (min: 1, max: 100)
pub fanout_slots: u64,
}
impl Default for TpuClientConfig {
fn default() -> Self {
Self {
fanout_slots: DEFAULT_FANOUT_SLOTS,
}
}
}
/// Client which sends transactions directly to the current leader's TPU port over UDP.
/// The client uses RPC to determine the current leader and fetch node contact info
pub struct TpuClient {
send_socket: UdpSocket,
fanout_slots: u64,
leader_tpu_service: LeaderTpuService,
exit: Arc<AtomicBool>,
}
impl TpuClient {
/// Serializes and sends a transaction to the current leader's TPU port
pub fn send_transaction(&self, transaction: &Transaction) -> bool {
let wire_transaction = serialize(transaction).expect("serialization should succeed");
self.send_wire_transaction(&wire_transaction)
}
/// Sends a transaction to the current leader's TPU port
pub fn send_wire_transaction(&self, wire_transaction: &[u8]) -> bool {
let mut sent = false;
for tpu_address in self
.leader_tpu_service
.leader_tpu_sockets(self.fanout_slots)
{
if self
.send_socket
.send_to(wire_transaction, tpu_address)
.is_ok()
{
sent = true;
}
}
sent
}
/// Create a new client that disconnects when dropped
pub fn new(
rpc_client: Arc<RpcClient>,
websocket_url: &str,
config: TpuClientConfig,
) -> Result<Self> {
let exit = Arc::new(AtomicBool::new(false));
let leader_tpu_service = LeaderTpuService::new(rpc_client, websocket_url, exit.clone())?;
Ok(Self {
send_socket: UdpSocket::bind("0.0.0.0:0").unwrap(),
fanout_slots: config.fanout_slots.min(MAX_FANOUT_SLOTS).max(1),
leader_tpu_service,
exit,
})
}
}
impl Drop for TpuClient {
fn drop(&mut self) {
self.exit.store(true, Ordering::Relaxed);
self.leader_tpu_service.join();
}
}
struct LeaderTpuCache {
first_slot: Slot,
leaders: Vec<Pubkey>,
leader_tpu_map: HashMap<Pubkey, SocketAddr>,
}
impl LeaderTpuCache {
fn new(rpc_client: &RpcClient, first_slot: Slot) -> Self {
let leaders = Self::fetch_slot_leaders(rpc_client, first_slot).unwrap_or_default();
let leader_tpu_map = Self::fetch_cluster_tpu_sockets(rpc_client).unwrap_or_default();
Self {
first_slot,
leaders,
leader_tpu_map,
}
}
// Last slot that has a cached leader pubkey
fn last_slot(&self) -> Slot {
self.first_slot + self.leaders.len().saturating_sub(1) as u64
}
// Get the TPU sockets for the current leader and upcoming leaders according to fanout size
fn get_leader_sockets(&self, current_slot: Slot, fanout_slots: u64) -> Vec<SocketAddr> {
let mut leader_set = HashSet::new();
let mut leader_sockets = Vec::new();
for leader_slot in current_slot..current_slot + fanout_slots {
if let Some(leader) = self.get_slot_leader(leader_slot) {
if let Some(tpu_socket) = self.leader_tpu_map.get(leader) {
if leader_set.insert(*leader) {
leader_sockets.push(*tpu_socket);
}
}
}
}
leader_sockets
}
fn get_slot_leader(&self, slot: Slot) -> Option<&Pubkey> {
if slot >= self.first_slot {
let index = slot - self.first_slot;
self.leaders.get(index as usize)
} else {
None
}
}
fn fetch_cluster_tpu_sockets(rpc_client: &RpcClient) -> Result<HashMap<Pubkey, SocketAddr>> {
let cluster_contact_info = rpc_client.get_cluster_nodes()?;
Ok(cluster_contact_info
.into_iter()
.filter_map(|contact_info| {
Some((
Pubkey::from_str(&contact_info.pubkey).ok()?,
contact_info.tpu?,
))
})
.collect())
}
fn fetch_slot_leaders(rpc_client: &RpcClient, start_slot: Slot) -> Result<Vec<Pubkey>> {
Ok(rpc_client.get_slot_leaders(start_slot, 2 * MAX_FANOUT_SLOTS)?)
}
}
// 48 chosen because it's unlikely that 12 leaders in a row will miss their slots
const MAX_SLOT_SKIP_DISTANCE: u64 = 48;
#[derive(Clone, Debug)]
struct RecentLeaderSlots(Arc<RwLock<VecDeque<Slot>>>);
impl RecentLeaderSlots {
fn new(current_slot: Slot) -> Self {
let mut recent_slots = VecDeque::new();
recent_slots.push_back(current_slot);
Self(Arc::new(RwLock::new(recent_slots)))
}
fn record_slot(&self, current_slot: Slot) {
let mut recent_slots = self.0.write().unwrap();
recent_slots.push_back(current_slot);
// 12 recent slots should be large enough to avoid a misbehaving
// validator from affecting the median recent slot
while recent_slots.len() > 12 {
recent_slots.pop_front();
}
}
// Estimate the current slot from recent slot notifications.
fn estimated_current_slot(&self) -> Slot {
let mut recent_slots: Vec<Slot> = self.0.read().unwrap().iter().cloned().collect();
assert!(!recent_slots.is_empty());
recent_slots.sort_unstable();
// Validators can broadcast invalid blocks that are far in the future
// so check if the current slot is in line with the recent progression.
let max_index = recent_slots.len() - 1;
let median_index = max_index / 2;
let median_recent_slot = recent_slots[median_index];
let expected_current_slot = median_recent_slot + (max_index - median_index) as u64;
let max_reasonable_current_slot = expected_current_slot + MAX_SLOT_SKIP_DISTANCE;
// Return the highest slot that doesn't exceed what we believe is a
// reasonable slot.
recent_slots
.into_iter()
.rev()
.find(|slot| *slot <= max_reasonable_current_slot)
.unwrap()
}
}
#[cfg(test)]
impl From<Vec<Slot>> for RecentLeaderSlots {
fn from(recent_slots: Vec<Slot>) -> Self {
assert!(!recent_slots.is_empty());
Self(Arc::new(RwLock::new(recent_slots.into_iter().collect())))
}
}
/// Service that tracks upcoming leaders and maintains an up-to-date mapping
/// of leader id to TPU socket address.
struct LeaderTpuService {
recent_slots: RecentLeaderSlots,
leader_tpu_cache: Arc<RwLock<LeaderTpuCache>>,
subscription: Option<PubsubClientSubscription<SlotUpdate>>,
t_leader_tpu_service: Option<JoinHandle<()>>,
}
impl LeaderTpuService {
fn new(rpc_client: Arc<RpcClient>, websocket_url: &str, exit: Arc<AtomicBool>) -> Result<Self> {
let start_slot = rpc_client.get_max_shred_insert_slot()?;
let recent_slots = RecentLeaderSlots::new(start_slot);
let leader_tpu_cache = Arc::new(RwLock::new(LeaderTpuCache::new(&rpc_client, start_slot)));
let subscription = if !websocket_url.is_empty() {
let recent_slots = recent_slots.clone();
Some(PubsubClient::slot_updates_subscribe(
websocket_url,
move |update| {
let current_slot = match update {
// This update indicates that a full slot was received by the connected
// node so we can stop sending transactions to the leader for that slot
SlotUpdate::Completed { slot, .. } => slot.saturating_add(1),
// This update indicates that we have just received the first shred from
// the leader for this slot and they are probably still accepting transactions.
SlotUpdate::FirstShredReceived { slot, .. } => slot,
_ => return,
};
recent_slots.record_slot(current_slot);
},
)?)
} else {
None
};
let t_leader_tpu_service = Some({
let recent_slots = recent_slots.clone();
let leader_tpu_cache = leader_tpu_cache.clone();
std::thread::Builder::new()
.name("ldr-tpu-srv".to_string())
.spawn(move || Self::run(rpc_client, recent_slots, leader_tpu_cache, exit))
.unwrap()
});
Ok(LeaderTpuService {
recent_slots,
leader_tpu_cache,
subscription,
t_leader_tpu_service,
})
}
fn join(&mut self) {
if let Some(mut subscription) = self.subscription.take() {
let _ = subscription.send_unsubscribe();
let _ = subscription.shutdown();
}
if let Some(t_handle) = self.t_leader_tpu_service.take() {
t_handle.join().unwrap();
}
}
fn leader_tpu_sockets(&self, fanout_slots: u64) -> Vec<SocketAddr> {
let current_slot = self.recent_slots.estimated_current_slot();
self.leader_tpu_cache
.read()
.unwrap()
.get_leader_sockets(current_slot, fanout_slots)
}
fn run(
rpc_client: Arc<RpcClient>,
recent_slots: RecentLeaderSlots,
leader_tpu_cache: Arc<RwLock<LeaderTpuCache>>,
exit: Arc<AtomicBool>,
) {
let mut last_cluster_refresh = Instant::now();
let mut sleep_ms = 1000;
loop {
if exit.load(Ordering::Relaxed) {
break;
}
// Refresh cluster TPU ports every 5min in case validators restart with new port configuration
// or new validators come online
if last_cluster_refresh.elapsed() > Duration::from_secs(5 * 60) {
if let Ok(leader_tpu_map) = LeaderTpuCache::fetch_cluster_tpu_sockets(&rpc_client) {
leader_tpu_cache.write().unwrap().leader_tpu_map = leader_tpu_map;
last_cluster_refresh = Instant::now();
} else {
sleep_ms = 100;
continue;
}
}
// Sleep a few slots before checking if leader cache needs to be refreshed again
std::thread::sleep(Duration::from_millis(sleep_ms));
let current_slot = recent_slots.estimated_current_slot();
if current_slot
>= leader_tpu_cache
.read()
.unwrap()
.last_slot()
.saturating_sub(MAX_FANOUT_SLOTS)
{
if let Ok(slot_leaders) =
LeaderTpuCache::fetch_slot_leaders(&rpc_client, current_slot)
{
let mut leader_tpu_cache = leader_tpu_cache.write().unwrap();
leader_tpu_cache.first_slot = current_slot;
leader_tpu_cache.leaders = slot_leaders;
} else {
sleep_ms = 100;
continue;
}
}
sleep_ms = 1000;
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn assert_slot(recent_slots: RecentLeaderSlots, expected_slot: Slot) {
assert_eq!(recent_slots.estimated_current_slot(), expected_slot);
}
#[test]
fn test_recent_leader_slots() {
assert_slot(RecentLeaderSlots::new(0), 0);
let mut recent_slots: Vec<Slot> = (1..=12).collect();
assert_slot(RecentLeaderSlots::from(recent_slots.clone()), 12);
recent_slots.reverse();
assert_slot(RecentLeaderSlots::from(recent_slots), 12);
assert_slot(
RecentLeaderSlots::from(vec![0, 1 + MAX_SLOT_SKIP_DISTANCE]),
1 + MAX_SLOT_SKIP_DISTANCE,
);
assert_slot(
RecentLeaderSlots::from(vec![0, 2 + MAX_SLOT_SKIP_DISTANCE]),
0,
);
assert_slot(RecentLeaderSlots::from(vec![1]), 1);
assert_slot(RecentLeaderSlots::from(vec![1, 100]), 1);
assert_slot(RecentLeaderSlots::from(vec![1, 2, 100]), 2);
assert_slot(RecentLeaderSlots::from(vec![1, 2, 3, 100]), 3);
assert_slot(RecentLeaderSlots::from(vec![1, 2, 3, 99, 100]), 3);
}
}