solana/core/src/broadcast_stage.rs

723 lines
25 KiB
Rust

//! A stage to broadcast data from a leader node to validators
#![allow(clippy::rc_buffer)]
use self::{
broadcast_duplicates_run::BroadcastDuplicatesRun,
broadcast_fake_shreds_run::BroadcastFakeShredsRun, broadcast_metrics::*,
fail_entry_verification_broadcast_run::FailEntryVerificationBroadcastRun,
standard_broadcast_run::StandardBroadcastRun,
};
use crate::result::{Error, Result};
use crossbeam_channel::{
Receiver as CrossbeamReceiver, RecvTimeoutError as CrossbeamRecvTimeoutError,
Sender as CrossbeamSender,
};
use solana_gossip::{
cluster_info::{self, ClusterInfo, ClusterInfoError},
contact_info::ContactInfo,
crds_gossip_pull::CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS,
weighted_shuffle::weighted_best,
};
use solana_ledger::{blockstore::Blockstore, shred::Shred};
use solana_measure::measure::Measure;
use solana_metrics::{inc_new_counter_error, inc_new_counter_info};
use solana_poh::poh_recorder::WorkingBankEntry;
use solana_runtime::bank::Bank;
use solana_sdk::timing::timestamp;
use solana_sdk::{clock::Slot, pubkey::Pubkey};
use solana_streamer::sendmmsg::send_mmsg;
use std::sync::atomic::AtomicU64;
use std::{
collections::HashMap,
net::UdpSocket,
sync::atomic::{AtomicBool, Ordering},
sync::mpsc::{channel, Receiver, RecvError, RecvTimeoutError, Sender},
sync::{Arc, Mutex},
thread::{self, Builder, JoinHandle},
time::{Duration, Instant},
};
mod broadcast_duplicates_run;
mod broadcast_fake_shreds_run;
pub mod broadcast_metrics;
pub(crate) mod broadcast_utils;
mod fail_entry_verification_broadcast_run;
mod standard_broadcast_run;
pub(crate) const NUM_INSERT_THREADS: usize = 2;
pub(crate) type RetransmitSlotsSender = CrossbeamSender<HashMap<Slot, Arc<Bank>>>;
pub(crate) type RetransmitSlotsReceiver = CrossbeamReceiver<HashMap<Slot, Arc<Bank>>>;
pub(crate) type RecordReceiver = Receiver<(Arc<Vec<Shred>>, Option<BroadcastShredBatchInfo>)>;
pub(crate) type TransmitReceiver = Receiver<(TransmitShreds, Option<BroadcastShredBatchInfo>)>;
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum BroadcastStageReturnType {
ChannelDisconnected,
}
#[derive(PartialEq, Clone, Debug)]
pub struct BroadcastDuplicatesConfig {
/// Percentage of stake to send different version of slots to
pub stake_partition: u8,
/// Number of slots to wait before sending duplicate shreds
pub duplicate_send_delay: usize,
}
#[derive(PartialEq, Clone, Debug)]
pub enum BroadcastStageType {
Standard,
FailEntryVerification,
BroadcastFakeShreds,
BroadcastDuplicates(BroadcastDuplicatesConfig),
}
impl BroadcastStageType {
pub fn new_broadcast_stage(
&self,
sock: Vec<UdpSocket>,
cluster_info: Arc<ClusterInfo>,
receiver: Receiver<WorkingBankEntry>,
retransmit_slots_receiver: RetransmitSlotsReceiver,
exit_sender: &Arc<AtomicBool>,
blockstore: &Arc<Blockstore>,
shred_version: u16,
) -> BroadcastStage {
let keypair = cluster_info.keypair.clone();
match self {
BroadcastStageType::Standard => BroadcastStage::new(
sock,
cluster_info,
receiver,
retransmit_slots_receiver,
exit_sender,
blockstore,
StandardBroadcastRun::new(keypair, shred_version),
),
BroadcastStageType::FailEntryVerification => BroadcastStage::new(
sock,
cluster_info,
receiver,
retransmit_slots_receiver,
exit_sender,
blockstore,
FailEntryVerificationBroadcastRun::new(keypair, shred_version),
),
BroadcastStageType::BroadcastFakeShreds => BroadcastStage::new(
sock,
cluster_info,
receiver,
retransmit_slots_receiver,
exit_sender,
blockstore,
BroadcastFakeShredsRun::new(keypair, 0, shred_version),
),
BroadcastStageType::BroadcastDuplicates(config) => BroadcastStage::new(
sock,
cluster_info,
receiver,
retransmit_slots_receiver,
exit_sender,
blockstore,
BroadcastDuplicatesRun::new(keypair, shred_version, config.clone()),
),
}
}
}
pub type TransmitShreds = (Option<Arc<HashMap<Pubkey, u64>>>, Arc<Vec<Shred>>);
trait BroadcastRun {
fn run(
&mut self,
blockstore: &Arc<Blockstore>,
receiver: &Receiver<WorkingBankEntry>,
socket_sender: &Sender<(TransmitShreds, Option<BroadcastShredBatchInfo>)>,
blockstore_sender: &Sender<(Arc<Vec<Shred>>, Option<BroadcastShredBatchInfo>)>,
) -> Result<()>;
fn transmit(
&mut self,
receiver: &Arc<Mutex<TransmitReceiver>>,
cluster_info: &ClusterInfo,
sock: &UdpSocket,
) -> Result<()>;
fn record(
&mut self,
receiver: &Arc<Mutex<RecordReceiver>>,
blockstore: &Arc<Blockstore>,
) -> Result<()>;
}
// Implement a destructor for the BroadcastStage thread to signal it exited
// even on panics
struct Finalizer {
exit_sender: Arc<AtomicBool>,
}
impl Finalizer {
fn new(exit_sender: Arc<AtomicBool>) -> Self {
Finalizer { exit_sender }
}
}
// Implement a destructor for Finalizer.
impl Drop for Finalizer {
fn drop(&mut self) {
self.exit_sender.clone().store(true, Ordering::Relaxed);
}
}
pub struct BroadcastStage {
thread_hdls: Vec<JoinHandle<BroadcastStageReturnType>>,
}
impl BroadcastStage {
#[allow(clippy::too_many_arguments)]
fn run(
blockstore: &Arc<Blockstore>,
receiver: &Receiver<WorkingBankEntry>,
socket_sender: &Sender<(TransmitShreds, Option<BroadcastShredBatchInfo>)>,
blockstore_sender: &Sender<(Arc<Vec<Shred>>, Option<BroadcastShredBatchInfo>)>,
mut broadcast_stage_run: impl BroadcastRun,
) -> BroadcastStageReturnType {
loop {
let res =
broadcast_stage_run.run(blockstore, receiver, socket_sender, blockstore_sender);
let res = Self::handle_error(res, "run");
if let Some(res) = res {
return res;
}
}
}
fn handle_error(r: Result<()>, name: &str) -> Option<BroadcastStageReturnType> {
if let Err(e) = r {
match e {
Error::RecvTimeoutError(RecvTimeoutError::Disconnected)
| Error::SendError
| Error::RecvError(RecvError)
| Error::CrossbeamRecvTimeoutError(CrossbeamRecvTimeoutError::Disconnected) => {
return Some(BroadcastStageReturnType::ChannelDisconnected);
}
Error::RecvTimeoutError(RecvTimeoutError::Timeout)
| Error::CrossbeamRecvTimeoutError(CrossbeamRecvTimeoutError::Timeout) => (),
Error::ClusterInfoError(ClusterInfoError::NoPeers) => (), // TODO: Why are the unit-tests throwing hundreds of these?
_ => {
inc_new_counter_error!("streamer-broadcaster-error", 1, 1);
error!("{} broadcaster error: {:?}", name, e);
}
}
}
None
}
/// Service to broadcast messages from the leader to layer 1 nodes.
/// See `cluster_info` for network layer definitions.
/// # Arguments
/// * `sock` - Socket to send from.
/// * `exit` - Boolean to signal system exit.
/// * `cluster_info` - ClusterInfo structure
/// * `window` - Cache of Shreds that we have broadcast
/// * `receiver` - Receive channel for Shreds to be retransmitted to all the layer 1 nodes.
/// * `exit_sender` - Set to true when this service exits, allows rest of Tpu to exit cleanly.
/// Otherwise, when a Tpu closes, it only closes the stages that come after it. The stages
/// that come before could be blocked on a receive, and never notice that they need to
/// exit. Now, if any stage of the Tpu closes, it will lead to closing the WriteStage (b/c
/// WriteStage is the last stage in the pipeline), which will then close Broadcast service,
/// which will then close FetchStage in the Tpu, and then the rest of the Tpu,
/// completing the cycle.
#[allow(clippy::too_many_arguments)]
#[allow(clippy::same_item_push)]
fn new(
socks: Vec<UdpSocket>,
cluster_info: Arc<ClusterInfo>,
receiver: Receiver<WorkingBankEntry>,
retransmit_slots_receiver: RetransmitSlotsReceiver,
exit_sender: &Arc<AtomicBool>,
blockstore: &Arc<Blockstore>,
broadcast_stage_run: impl BroadcastRun + Send + 'static + Clone,
) -> Self {
let btree = blockstore.clone();
let exit = exit_sender.clone();
let (socket_sender, socket_receiver) = channel();
let (blockstore_sender, blockstore_receiver) = channel();
let bs_run = broadcast_stage_run.clone();
let socket_sender_ = socket_sender.clone();
let thread_hdl = Builder::new()
.name("solana-broadcaster".to_string())
.spawn(move || {
let _finalizer = Finalizer::new(exit);
Self::run(
&btree,
&receiver,
&socket_sender_,
&blockstore_sender,
bs_run,
)
})
.unwrap();
let mut thread_hdls = vec![thread_hdl];
let socket_receiver = Arc::new(Mutex::new(socket_receiver));
for sock in socks.into_iter() {
let socket_receiver = socket_receiver.clone();
let mut bs_transmit = broadcast_stage_run.clone();
let cluster_info = cluster_info.clone();
let t = Builder::new()
.name("solana-broadcaster-transmit".to_string())
.spawn(move || loop {
let res = bs_transmit.transmit(&socket_receiver, &cluster_info, &sock);
let res = Self::handle_error(res, "solana-broadcaster-transmit");
if let Some(res) = res {
return res;
}
})
.unwrap();
thread_hdls.push(t);
}
let blockstore_receiver = Arc::new(Mutex::new(blockstore_receiver));
for _ in 0..NUM_INSERT_THREADS {
let blockstore_receiver = blockstore_receiver.clone();
let mut bs_record = broadcast_stage_run.clone();
let btree = blockstore.clone();
let t = Builder::new()
.name("solana-broadcaster-record".to_string())
.spawn(move || loop {
let res = bs_record.record(&blockstore_receiver, &btree);
let res = Self::handle_error(res, "solana-broadcaster-record");
if let Some(res) = res {
return res;
}
})
.unwrap();
thread_hdls.push(t);
}
let blockstore = blockstore.clone();
let retransmit_thread = Builder::new()
.name("solana-broadcaster-retransmit".to_string())
.spawn(move || loop {
if let Some(res) = Self::handle_error(
Self::check_retransmit_signals(
&blockstore,
&retransmit_slots_receiver,
&socket_sender,
),
"solana-broadcaster-retransmit-check_retransmit_signals",
) {
return res;
}
})
.unwrap();
thread_hdls.push(retransmit_thread);
Self { thread_hdls }
}
fn check_retransmit_signals(
blockstore: &Blockstore,
retransmit_slots_receiver: &RetransmitSlotsReceiver,
socket_sender: &Sender<(TransmitShreds, Option<BroadcastShredBatchInfo>)>,
) -> Result<()> {
let timer = Duration::from_millis(100);
// Check for a retransmit signal
let mut retransmit_slots = retransmit_slots_receiver.recv_timeout(timer)?;
while let Ok(new_retransmit_slots) = retransmit_slots_receiver.try_recv() {
retransmit_slots.extend(new_retransmit_slots);
}
for (_, bank) in retransmit_slots.iter() {
let bank_epoch = bank.get_leader_schedule_epoch(bank.slot());
let stakes = bank.epoch_staked_nodes(bank_epoch);
let stakes = stakes.map(Arc::new);
let data_shreds = Arc::new(
blockstore
.get_data_shreds_for_slot(bank.slot(), 0)
.expect("My own shreds must be reconstructable"),
);
if !data_shreds.is_empty() {
socket_sender.send(((stakes.clone(), data_shreds), None))?;
}
let coding_shreds = Arc::new(
blockstore
.get_coding_shreds_for_slot(bank.slot(), 0)
.expect("My own shreds must be reconstructable"),
);
if !coding_shreds.is_empty() {
socket_sender.send(((stakes.clone(), coding_shreds), None))?;
}
}
Ok(())
}
pub fn join(self) -> thread::Result<BroadcastStageReturnType> {
for thread_hdl in self.thread_hdls.into_iter() {
let _ = thread_hdl.join();
}
Ok(BroadcastStageReturnType::ChannelDisconnected)
}
}
fn update_peer_stats(
num_live_peers: i64,
broadcast_len: i64,
last_datapoint_submit: &Arc<AtomicU64>,
) {
let now = timestamp();
let last = last_datapoint_submit.load(Ordering::Relaxed);
#[allow(deprecated)]
if now.saturating_sub(last) > 1000
&& last_datapoint_submit.compare_and_swap(last, now, Ordering::Relaxed) == last
{
datapoint_info!(
"cluster_info-num_nodes",
("live_count", num_live_peers, i64),
("broadcast_count", broadcast_len, i64)
);
}
}
pub fn get_broadcast_peers(
cluster_info: &ClusterInfo,
stakes: Option<&HashMap<Pubkey, u64>>,
) -> (Vec<ContactInfo>, Vec<(u64, usize)>) {
let mut peers = cluster_info.tvu_peers();
let peers_and_stakes = cluster_info::stake_weight_peers(&mut peers, stakes);
(peers, peers_and_stakes)
}
/// broadcast messages from the leader to layer 1 nodes
/// # Remarks
pub fn broadcast_shreds(
s: &UdpSocket,
shreds: &[Shred],
peers_and_stakes: &[(u64, usize)],
peers: &[ContactInfo],
last_datapoint_submit: &Arc<AtomicU64>,
transmit_stats: &mut TransmitShredsStats,
) -> Result<()> {
let broadcast_len = peers_and_stakes.len();
if broadcast_len == 0 {
update_peer_stats(1, 1, last_datapoint_submit);
return Ok(());
}
let mut shred_select = Measure::start("shred_select");
let packets: Vec<_> = shreds
.iter()
.map(|shred| {
let broadcast_index = weighted_best(peers_and_stakes, shred.seed());
(&shred.payload, &peers[broadcast_index].tvu)
})
.collect();
shred_select.stop();
transmit_stats.shred_select += shred_select.as_us();
let mut sent = 0;
let mut send_mmsg_time = Measure::start("send_mmsg");
while sent < packets.len() {
match send_mmsg(s, &packets[sent..]) {
Ok(n) => sent += n,
Err(e) => {
return Err(Error::Io(e));
}
}
}
send_mmsg_time.stop();
transmit_stats.send_mmsg_elapsed += send_mmsg_time.as_us();
let num_live_peers = num_live_peers(peers);
update_peer_stats(
num_live_peers,
broadcast_len as i64 + 1,
last_datapoint_submit,
);
Ok(())
}
fn distance(a: u64, b: u64) -> u64 {
if a > b {
a - b
} else {
b - a
}
}
fn num_live_peers(peers: &[ContactInfo]) -> i64 {
let mut num_live_peers = 1i64;
peers.iter().for_each(|p| {
// A peer is considered live if they generated their contact info recently
if distance(timestamp(), p.wallclock) <= CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS {
num_live_peers += 1;
}
});
num_live_peers
}
#[cfg(test)]
pub mod test {
use super::*;
use crossbeam_channel::unbounded;
use solana_gossip::cluster_info::{ClusterInfo, Node};
use solana_ledger::{
blockstore::{make_slot_entries, Blockstore},
entry::create_ticks,
genesis_utils::{create_genesis_config, GenesisConfigInfo},
get_tmp_ledger_path,
shred::{max_ticks_per_n_shreds, ProcessShredsStats, Shredder},
};
use solana_runtime::bank::Bank;
use solana_sdk::{
hash::Hash,
pubkey::Pubkey,
signature::{Keypair, Signer},
};
use std::{
path::Path, sync::atomic::AtomicBool, sync::mpsc::channel, sync::Arc, thread::sleep,
};
#[allow(clippy::implicit_hasher)]
pub fn make_transmit_shreds(
slot: Slot,
num: u64,
stakes: Option<Arc<HashMap<Pubkey, u64>>>,
) -> (
Vec<Shred>,
Vec<Shred>,
Vec<TransmitShreds>,
Vec<TransmitShreds>,
) {
let num_entries = max_ticks_per_n_shreds(num, None);
let (data_shreds, _) = make_slot_entries(slot, 0, num_entries);
let keypair = Keypair::new();
let coding_shreds = Shredder::data_shreds_to_coding_shreds(
&keypair,
&data_shreds[0..],
true, // is_last_in_slot
&mut ProcessShredsStats::default(),
)
.unwrap();
(
data_shreds.clone(),
coding_shreds.clone(),
data_shreds
.into_iter()
.map(|s| (stakes.clone(), Arc::new(vec![s])))
.collect(),
coding_shreds
.into_iter()
.map(|s| (stakes.clone(), Arc::new(vec![s])))
.collect(),
)
}
fn check_all_shreds_received(
transmit_receiver: &TransmitReceiver,
mut data_index: u64,
mut coding_index: u64,
num_expected_data_shreds: u64,
num_expected_coding_shreds: u64,
) {
while let Ok((new_retransmit_slots, _)) = transmit_receiver.try_recv() {
if new_retransmit_slots.1[0].is_data() {
for data_shred in new_retransmit_slots.1.iter() {
assert_eq!(data_shred.index() as u64, data_index);
data_index += 1;
}
} else {
assert_eq!(new_retransmit_slots.1[0].index() as u64, coding_index);
for coding_shred in new_retransmit_slots.1.iter() {
assert_eq!(coding_shred.index() as u64, coding_index);
coding_index += 1;
}
}
}
assert_eq!(num_expected_data_shreds, data_index);
assert_eq!(num_expected_coding_shreds, coding_index);
}
#[test]
fn test_num_live_peers() {
let mut ci = ContactInfo {
wallclock: std::u64::MAX,
..ContactInfo::default()
};
assert_eq!(num_live_peers(&[ci.clone()]), 1);
ci.wallclock = timestamp() - 1;
assert_eq!(num_live_peers(&[ci.clone()]), 2);
ci.wallclock = timestamp() - CRDS_GOSSIP_PULL_CRDS_TIMEOUT_MS - 1;
assert_eq!(num_live_peers(&[ci]), 1);
}
#[test]
fn test_duplicate_retransmit_signal() {
// Setup
let ledger_path = get_tmp_ledger_path!();
let blockstore = Arc::new(Blockstore::open(&ledger_path).unwrap());
let (transmit_sender, transmit_receiver) = channel();
let (retransmit_slots_sender, retransmit_slots_receiver) = unbounded();
let GenesisConfigInfo { genesis_config, .. } = create_genesis_config(100_000);
let bank0 = Arc::new(Bank::new(&genesis_config));
// Make some shreds
let updated_slot = 0;
let (all_data_shreds, all_coding_shreds, _, _all_coding_transmit_shreds) =
make_transmit_shreds(updated_slot, 10, None);
let num_data_shreds = all_data_shreds.len();
let num_coding_shreds = all_coding_shreds.len();
assert!(num_data_shreds >= 10);
// Insert all the shreds
blockstore
.insert_shreds(all_data_shreds, None, true)
.unwrap();
blockstore
.insert_shreds(all_coding_shreds, None, true)
.unwrap();
// Insert duplicate retransmit signal, blocks should
// only be retransmitted once
retransmit_slots_sender
.send(vec![(updated_slot, bank0.clone())].into_iter().collect())
.unwrap();
retransmit_slots_sender
.send(vec![(updated_slot, bank0)].into_iter().collect())
.unwrap();
BroadcastStage::check_retransmit_signals(
&blockstore,
&retransmit_slots_receiver,
&transmit_sender,
)
.unwrap();
// Check all the data shreds were received only once
check_all_shreds_received(
&transmit_receiver,
0,
0,
num_data_shreds as u64,
num_coding_shreds as u64,
);
}
struct MockBroadcastStage {
blockstore: Arc<Blockstore>,
broadcast_service: BroadcastStage,
bank: Arc<Bank>,
}
fn setup_dummy_broadcast_service(
leader_pubkey: &Pubkey,
ledger_path: &Path,
entry_receiver: Receiver<WorkingBankEntry>,
retransmit_slots_receiver: RetransmitSlotsReceiver,
) -> MockBroadcastStage {
// Make the database ledger
let blockstore = Arc::new(Blockstore::open(ledger_path).unwrap());
// Make the leader node and scheduler
let leader_info = Node::new_localhost_with_pubkey(leader_pubkey);
// Make a node to broadcast to
let buddy_keypair = Keypair::new();
let broadcast_buddy = Node::new_localhost_with_pubkey(&buddy_keypair.pubkey());
// Fill the cluster_info with the buddy's info
let cluster_info = ClusterInfo::new_with_invalid_keypair(leader_info.info.clone());
cluster_info.insert_info(broadcast_buddy.info);
let cluster_info = Arc::new(cluster_info);
let exit_sender = Arc::new(AtomicBool::new(false));
let GenesisConfigInfo { genesis_config, .. } = create_genesis_config(10_000);
let bank = Arc::new(Bank::new(&genesis_config));
let leader_keypair = cluster_info.keypair.clone();
// Start up the broadcast stage
let broadcast_service = BroadcastStage::new(
leader_info.sockets.broadcast,
cluster_info,
entry_receiver,
retransmit_slots_receiver,
&exit_sender,
&blockstore,
StandardBroadcastRun::new(leader_keypair, 0),
);
MockBroadcastStage {
blockstore,
broadcast_service,
bank,
}
}
#[test]
fn test_broadcast_ledger() {
solana_logger::setup();
let ledger_path = get_tmp_ledger_path!();
{
// Create the leader scheduler
let leader_keypair = Keypair::new();
let (entry_sender, entry_receiver) = channel();
let (retransmit_slots_sender, retransmit_slots_receiver) = unbounded();
let broadcast_service = setup_dummy_broadcast_service(
&leader_keypair.pubkey(),
&ledger_path,
entry_receiver,
retransmit_slots_receiver,
);
let start_tick_height;
let max_tick_height;
let ticks_per_slot;
let slot;
{
let bank = broadcast_service.bank.clone();
start_tick_height = bank.tick_height();
max_tick_height = bank.max_tick_height();
ticks_per_slot = bank.ticks_per_slot();
slot = bank.slot();
let ticks = create_ticks(max_tick_height - start_tick_height, 0, Hash::default());
for (i, tick) in ticks.into_iter().enumerate() {
entry_sender
.send((bank.clone(), (tick, i as u64 + 1)))
.expect("Expect successful send to broadcast service");
}
}
trace!(
"[broadcast_ledger] max_tick_height: {}, start_tick_height: {}, ticks_per_slot: {}",
max_tick_height,
start_tick_height,
ticks_per_slot,
);
let mut entries = vec![];
for _ in 0..10 {
entries = broadcast_service
.blockstore
.get_slot_entries(slot, 0)
.expect("Expect entries to be present");
if entries.len() >= max_tick_height as usize {
break;
}
sleep(Duration::from_millis(1000));
}
assert_eq!(entries.len(), max_tick_height as usize);
drop(entry_sender);
drop(retransmit_slots_sender);
broadcast_service
.broadcast_service
.join()
.expect("Expect successful join of broadcast service");
}
Blockstore::destroy(&ledger_path).expect("Expected successful database destruction");
}
}