solana/local-cluster/tests/local_cluster.rs

3198 lines
114 KiB
Rust

#![allow(clippy::integer_arithmetic)]
use assert_matches::assert_matches;
use crossbeam_channel::{unbounded, Receiver};
use gag::BufferRedirect;
use log::*;
use serial_test::serial;
use solana_client::{
pubsub_client::PubsubClient,
rpc_client::RpcClient,
rpc_config::{RpcProgramAccountsConfig, RpcSignatureSubscribeConfig},
rpc_response::RpcSignatureResult,
thin_client::{create_client, ThinClient},
};
use solana_core::{
broadcast_stage::{BroadcastDuplicatesConfig, BroadcastStageType},
consensus::{Tower, SWITCH_FORK_THRESHOLD, VOTE_THRESHOLD_DEPTH},
optimistic_confirmation_verifier::OptimisticConfirmationVerifier,
validator::ValidatorConfig,
};
use solana_download_utils::download_snapshot;
use solana_gossip::{
cluster_info::{self, VALIDATOR_PORT_RANGE},
crds_value::{self, CrdsData, CrdsValue},
gossip_service::discover_cluster,
};
use solana_ledger::{
ancestor_iterator::AncestorIterator,
blockstore::{Blockstore, PurgeType},
blockstore_db::AccessType,
leader_schedule::FixedSchedule,
leader_schedule::LeaderSchedule,
};
use solana_local_cluster::{
cluster::{Cluster, ClusterValidatorInfo},
cluster_tests,
local_cluster::{ClusterConfig, LocalCluster},
validator_configs::*,
};
use solana_runtime::{
bank_forks::{ArchiveFormat, SnapshotConfig},
snapshot_utils,
};
use solana_sdk::{
account::AccountSharedData,
client::{AsyncClient, SyncClient},
clock::{self, Slot, DEFAULT_MS_PER_SLOT, DEFAULT_TICKS_PER_SLOT, MAX_RECENT_BLOCKHASHES},
commitment_config::CommitmentConfig,
epoch_schedule::MINIMUM_SLOTS_PER_EPOCH,
genesis_config::ClusterType,
hash::Hash,
poh_config::PohConfig,
pubkey::Pubkey,
signature::{Keypair, Signer},
system_program, system_transaction,
timing::timestamp,
transaction::Transaction,
};
use solana_vote_program::{
vote_instruction,
vote_state::{Vote, MAX_LOCKOUT_HISTORY},
};
use std::{
collections::{BTreeSet, HashMap, HashSet},
fs,
io::Read,
iter,
path::{Path, PathBuf},
sync::atomic::{AtomicBool, Ordering},
sync::Arc,
thread::{sleep, Builder, JoinHandle},
time::{Duration, Instant},
};
use tempfile::TempDir;
const RUST_LOG_FILTER: &str =
"error,solana_core::replay_stage=warn,solana_local_cluster=info,local_cluster=info";
#[test]
#[serial]
fn test_ledger_cleanup_service() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_ledger_cleanup_service");
let num_nodes = 3;
let validator_config = ValidatorConfig {
max_ledger_shreds: Some(100),
..ValidatorConfig::default()
};
let mut config = ClusterConfig {
cluster_lamports: 10_000,
poh_config: PohConfig::new_sleep(Duration::from_millis(50)),
node_stakes: vec![100; num_nodes],
validator_configs: make_identical_validator_configs(&validator_config, num_nodes),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
// 200ms/per * 100 = 20 seconds, so sleep a little longer than that.
sleep(Duration::from_secs(60));
cluster_tests::spend_and_verify_all_nodes(
&cluster.entry_point_info,
&cluster.funding_keypair,
num_nodes,
HashSet::new(),
);
cluster.close_preserve_ledgers();
//check everyone's ledgers and make sure only ~100 slots are stored
for info in cluster.validators.values() {
let mut slots = 0;
let blockstore = Blockstore::open(&info.info.ledger_path).unwrap();
blockstore
.slot_meta_iterator(0)
.unwrap()
.for_each(|_| slots += 1);
// with 3 nodes up to 3 slots can be in progress and not complete so max slots in blockstore should be up to 103
assert!(slots <= 103, "got {}", slots);
}
}
#[test]
#[serial]
fn test_spend_and_verify_all_nodes_1() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_spend_and_verify_all_nodes_1");
let num_nodes = 1;
let local = LocalCluster::new_with_equal_stakes(num_nodes, 10_000, 100);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
);
}
#[test]
#[serial]
fn test_spend_and_verify_all_nodes_2() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_spend_and_verify_all_nodes_2");
let num_nodes = 2;
let local = LocalCluster::new_with_equal_stakes(num_nodes, 10_000, 100);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
);
}
#[test]
#[serial]
fn test_spend_and_verify_all_nodes_3() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_spend_and_verify_all_nodes_3");
let num_nodes = 3;
let local = LocalCluster::new_with_equal_stakes(num_nodes, 10_000, 100);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
);
}
#[test]
#[serial]
fn test_local_cluster_signature_subscribe() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let num_nodes = 2;
let cluster = LocalCluster::new_with_equal_stakes(num_nodes, 10_000, 100);
let nodes = cluster.get_node_pubkeys();
// Get non leader
let non_bootstrap_id = nodes
.into_iter()
.find(|id| *id != cluster.entry_point_info.id)
.unwrap();
let non_bootstrap_info = cluster.get_contact_info(&non_bootstrap_id).unwrap();
let tx_client = create_client(
non_bootstrap_info.client_facing_addr(),
VALIDATOR_PORT_RANGE,
);
let (blockhash, _fee_calculator, _last_valid_slot) = tx_client
.get_recent_blockhash_with_commitment(CommitmentConfig::processed())
.unwrap();
let mut transaction = system_transaction::transfer(
&cluster.funding_keypair,
&solana_sdk::pubkey::new_rand(),
10,
blockhash,
);
let (mut sig_subscribe_client, receiver) = PubsubClient::signature_subscribe(
&format!("ws://{}", &non_bootstrap_info.rpc_pubsub.to_string()),
&transaction.signatures[0],
Some(RpcSignatureSubscribeConfig {
commitment: Some(CommitmentConfig::processed()),
enable_received_notification: Some(true),
}),
)
.unwrap();
tx_client
.retry_transfer(&cluster.funding_keypair, &mut transaction, 5)
.unwrap();
let mut got_received_notification = false;
loop {
let responses: Vec<_> = receiver.try_iter().collect();
let mut should_break = false;
for response in responses {
match response.value {
RpcSignatureResult::ProcessedSignature(_) => {
should_break = true;
break;
}
RpcSignatureResult::ReceivedSignature(_) => {
got_received_notification = true;
}
}
}
if should_break {
break;
}
sleep(Duration::from_millis(100));
}
// If we don't drop the cluster, the blocking web socket service
// won't return, and the `sig_subscribe_client` won't shut down
drop(cluster);
sig_subscribe_client.shutdown().unwrap();
assert!(got_received_notification);
}
#[test]
#[allow(unused_attributes)]
#[ignore]
fn test_spend_and_verify_all_nodes_env_num_nodes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let num_nodes: usize = std::env::var("NUM_NODES")
.expect("please set environment variable NUM_NODES")
.parse()
.expect("could not parse NUM_NODES as a number");
let local = LocalCluster::new_with_equal_stakes(num_nodes, 10_000, 100);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
);
}
// Cluster needs a supermajority to remain, so the minimum size for this test is 4
#[test]
#[serial]
fn test_leader_failure_4() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_leader_failure_4");
let num_nodes = 4;
let validator_config = ValidatorConfig::default();
let mut config = ClusterConfig {
cluster_lamports: 10_000,
node_stakes: vec![100; 4],
validator_configs: make_identical_validator_configs(&validator_config, num_nodes),
..ClusterConfig::default()
};
let local = LocalCluster::new(&mut config);
cluster_tests::kill_entry_and_spend_and_verify_rest(
&local.entry_point_info,
&local
.validators
.get(&local.entry_point_info.id)
.unwrap()
.config
.validator_exit,
&local.funding_keypair,
num_nodes,
config.ticks_per_slot * config.poh_config.target_tick_duration.as_millis() as u64,
);
}
/// This function runs a network, initiates a partition based on a
/// configuration, resolve the partition, then checks that the network
/// continues to achieve consensus
/// # Arguments
/// * `partitions` - A slice of partition configurations, where each partition
/// configuration is a slice of (usize, bool), representing a node's stake and
/// whether or not it should be killed during the partition
/// * `leader_schedule` - An option that specifies whether the cluster should
/// run with a fixed, predetermined leader schedule
#[allow(clippy::cognitive_complexity)]
fn run_cluster_partition<C>(
partitions: &[Vec<usize>],
leader_schedule: Option<(LeaderSchedule, Vec<Arc<Keypair>>)>,
mut context: C,
on_partition_start: impl FnOnce(&mut LocalCluster, &mut C),
on_before_partition_resolved: impl FnOnce(&mut LocalCluster, &mut C),
on_partition_resolved: impl FnOnce(&mut LocalCluster, &mut C),
partition_duration: Option<u64>,
ticks_per_slot: Option<u64>,
additional_accounts: Vec<(Pubkey, AccountSharedData)>,
) {
solana_logger::setup_with_default(RUST_LOG_FILTER);
info!("PARTITION_TEST!");
let num_nodes = partitions.len();
let node_stakes: Vec<_> = partitions
.iter()
.flat_map(|p| p.iter().map(|stake_weight| 100 * *stake_weight as u64))
.collect();
assert_eq!(node_stakes.len(), num_nodes);
let cluster_lamports = node_stakes.iter().sum::<u64>() * 2;
let enable_partition = Arc::new(AtomicBool::new(true));
let mut validator_config = ValidatorConfig {
enable_partition: Some(enable_partition.clone()),
..ValidatorConfig::default()
};
// Returns:
// 1) The keys for the validators
// 2) The amount of time it would take to iterate through one full iteration of the given
// leader schedule
let (validator_keys, leader_schedule_time): (Vec<_>, u64) = {
if let Some((leader_schedule, validator_keys)) = leader_schedule {
assert_eq!(validator_keys.len(), num_nodes);
let num_slots_per_rotation = leader_schedule.num_slots() as u64;
let fixed_schedule = FixedSchedule {
start_epoch: 0,
leader_schedule: Arc::new(leader_schedule),
};
validator_config.fixed_leader_schedule = Some(fixed_schedule);
(
validator_keys,
num_slots_per_rotation * clock::DEFAULT_MS_PER_SLOT,
)
} else {
(
iter::repeat_with(|| Arc::new(Keypair::new()))
.take(partitions.len())
.collect(),
10_000,
)
}
};
let slots_per_epoch = 2048;
let mut config = ClusterConfig {
cluster_lamports,
node_stakes,
validator_configs: make_identical_validator_configs(&validator_config, num_nodes),
validator_keys: Some(
validator_keys
.into_iter()
.zip(iter::repeat_with(|| true))
.collect(),
),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
additional_accounts,
ticks_per_slot: ticks_per_slot.unwrap_or(DEFAULT_TICKS_PER_SLOT),
..ClusterConfig::default()
};
info!(
"PARTITION_TEST starting cluster with {:?} partitions slots_per_epoch: {}",
partitions, config.slots_per_epoch,
);
let mut cluster = LocalCluster::new(&mut config);
info!("PARTITION_TEST spend_and_verify_all_nodes(), ensure all nodes are caught up");
cluster_tests::spend_and_verify_all_nodes(
&cluster.entry_point_info,
&cluster.funding_keypair,
num_nodes,
HashSet::new(),
);
let cluster_nodes = discover_cluster(&cluster.entry_point_info.gossip, num_nodes).unwrap();
// Check epochs have correct number of slots
info!("PARTITION_TEST sleeping until partition starting condition",);
for node in &cluster_nodes {
let node_client = RpcClient::new_socket(node.rpc);
let epoch_info = node_client.get_epoch_info().unwrap();
assert_eq!(epoch_info.slots_in_epoch, slots_per_epoch);
}
info!("PARTITION_TEST start partition");
on_partition_start(&mut cluster, &mut context);
enable_partition.store(false, Ordering::Relaxed);
sleep(Duration::from_millis(
partition_duration.unwrap_or(leader_schedule_time),
));
on_before_partition_resolved(&mut cluster, &mut context);
info!("PARTITION_TEST remove partition");
enable_partition.store(true, Ordering::Relaxed);
// Give partitions time to propagate their blocks from during the partition
// after the partition resolves
let timeout = 10_000;
let propagation_time = leader_schedule_time;
info!(
"PARTITION_TEST resolving partition. sleeping {} ms",
timeout
);
sleep(Duration::from_millis(timeout));
info!(
"PARTITION_TEST waiting for blocks to propagate after partition {}ms",
propagation_time
);
sleep(Duration::from_millis(propagation_time));
info!("PARTITION_TEST resuming normal operation");
on_partition_resolved(&mut cluster, &mut context);
}
#[allow(unused_attributes)]
#[ignore]
#[test]
#[serial]
fn test_cluster_partition_1_2() {
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST");
};
run_cluster_partition(
&[vec![1], vec![1, 1]],
None,
(),
empty,
empty,
on_partition_resolved,
None,
None,
vec![],
)
}
#[test]
#[serial]
fn test_cluster_partition_1_1() {
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST");
};
run_cluster_partition(
&[vec![1], vec![1]],
None,
(),
empty,
empty,
on_partition_resolved,
None,
None,
vec![],
)
}
#[test]
#[serial]
fn test_cluster_partition_1_1_1() {
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST");
};
run_cluster_partition(
&[vec![1], vec![1], vec![1]],
None,
(),
empty,
empty,
on_partition_resolved,
None,
None,
vec![],
)
}
fn create_custom_leader_schedule(
validator_num_slots: &[usize],
) -> (LeaderSchedule, Vec<Arc<Keypair>>) {
let mut leader_schedule = vec![];
let validator_keys: Vec<_> = iter::repeat_with(|| Arc::new(Keypair::new()))
.take(validator_num_slots.len())
.collect();
for (k, num_slots) in validator_keys.iter().zip(validator_num_slots.iter()) {
for _ in 0..*num_slots {
leader_schedule.push(k.pubkey())
}
}
info!("leader_schedule: {}", leader_schedule.len());
(
LeaderSchedule::new_from_schedule(leader_schedule),
validator_keys,
)
}
#[test]
#[serial]
fn test_kill_heaviest_partition() {
// This test:
// 1) Spins up four partitions, the heaviest being the first with more stake
// 2) Schedules the other validators for sufficient slots in the schedule
// so that they will still be locked out of voting for the major partition
// when the partition resolves
// 3) Kills the most staked partition. Validators are locked out, but should all
// eventually choose the major partition
// 4) Check for recovery
let num_slots_per_validator = 8;
let partitions: [Vec<usize>; 4] = [vec![11], vec![10], vec![10], vec![10]];
let (leader_schedule, validator_keys) = create_custom_leader_schedule(&[
num_slots_per_validator * (partitions.len() - 1),
num_slots_per_validator,
num_slots_per_validator,
num_slots_per_validator,
]);
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let validator_to_kill = validator_keys[0].pubkey();
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
info!("Killing validator with id: {}", validator_to_kill);
cluster.exit_node(&validator_to_kill);
cluster.check_for_new_roots(16, "PARTITION_TEST");
};
run_cluster_partition(
&partitions,
Some((leader_schedule, validator_keys)),
(),
empty,
empty,
on_partition_resolved,
None,
None,
vec![],
)
}
#[allow(clippy::assertions_on_constants)]
fn run_kill_partition_switch_threshold<C>(
stakes_to_kill: &[&[(usize, usize)]],
alive_stakes: &[&[(usize, usize)]],
partition_duration: Option<u64>,
ticks_per_slot: Option<u64>,
partition_context: C,
on_partition_start: impl Fn(&mut LocalCluster, &[Pubkey], Vec<ClusterValidatorInfo>, &mut C),
on_before_partition_resolved: impl Fn(&mut LocalCluster, &mut C),
on_partition_resolved: impl Fn(&mut LocalCluster, &mut C),
) {
// Needs to be at least 1/3 or there will be no overlap
// with the confirmation supermajority 2/3
assert!(SWITCH_FORK_THRESHOLD >= 1f64 / 3f64);
info!(
"stakes_to_kill: {:?}, alive_stakes: {:?}",
stakes_to_kill, alive_stakes
);
// This test:
// 1) Spins up three partitions
// 2) Kills the first partition with the stake `failures_stake`
// 5) runs `on_partition_resolved`
let partitions: Vec<&[(usize, usize)]> = stakes_to_kill
.iter()
.cloned()
.chain(alive_stakes.iter().cloned())
.collect();
let stake_partitions: Vec<Vec<usize>> = partitions
.iter()
.map(|stakes_and_slots| stakes_and_slots.iter().map(|(stake, _)| *stake).collect())
.collect();
let num_slots_per_validator: Vec<usize> = partitions
.iter()
.flat_map(|stakes_and_slots| stakes_and_slots.iter().map(|(_, num_slots)| *num_slots))
.collect();
let (leader_schedule, validator_keys) = create_custom_leader_schedule(&num_slots_per_validator);
info!(
"Validator ids: {:?}",
validator_keys
.iter()
.map(|k| k.pubkey())
.collect::<Vec<_>>()
);
let validator_pubkeys: Vec<Pubkey> = validator_keys.iter().map(|k| k.pubkey()).collect();
let on_partition_start = |cluster: &mut LocalCluster, partition_context: &mut C| {
let dead_validator_infos: Vec<ClusterValidatorInfo> = validator_pubkeys
[0..stakes_to_kill.len()]
.iter()
.map(|validator_to_kill| {
info!("Killing validator with id: {}", validator_to_kill);
cluster.exit_node(validator_to_kill)
})
.collect();
on_partition_start(
cluster,
&validator_pubkeys,
dead_validator_infos,
partition_context,
);
};
run_cluster_partition(
&stake_partitions,
Some((leader_schedule, validator_keys)),
partition_context,
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
partition_duration,
ticks_per_slot,
vec![],
)
}
fn find_latest_replayed_slot_from_ledger(
ledger_path: &Path,
mut latest_slot: Slot,
) -> (Slot, HashSet<Slot>) {
loop {
let mut blockstore = open_blockstore(ledger_path);
// This is kind of a hack because we can't query for new frozen blocks over RPC
// since the validator is not voting.
let new_latest_slots: Vec<Slot> = blockstore
.slot_meta_iterator(latest_slot)
.unwrap()
.filter_map(|(s, _)| if s > latest_slot { Some(s) } else { None })
.collect();
for new_latest_slot in new_latest_slots {
latest_slot = new_latest_slot;
info!("Checking latest_slot {}", latest_slot);
// Wait for the slot to be fully received by the validator
let entries;
loop {
info!("Waiting for slot {} to be full", latest_slot);
if blockstore.is_full(latest_slot) {
entries = blockstore.get_slot_entries(latest_slot, 0).unwrap();
assert!(!entries.is_empty());
break;
} else {
sleep(Duration::from_millis(50));
blockstore = open_blockstore(ledger_path);
}
}
// Check the slot has been replayed
let non_tick_entry = entries.into_iter().find(|e| !e.transactions.is_empty());
if let Some(non_tick_entry) = non_tick_entry {
// Wait for the slot to be replayed
loop {
info!("Waiting for slot {} to be replayed", latest_slot);
if !blockstore
.map_transactions_to_statuses(
latest_slot,
non_tick_entry.transactions.clone().into_iter(),
)
.is_empty()
{
return (
latest_slot,
AncestorIterator::new(latest_slot, &blockstore).collect(),
);
} else {
sleep(Duration::from_millis(50));
blockstore = open_blockstore(ledger_path);
}
}
} else {
info!(
"No transactions in slot {}, can't tell if it was replayed",
latest_slot
);
}
}
sleep(Duration::from_millis(50));
}
}
#[test]
#[serial]
fn test_switch_threshold_uses_gossip_votes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let total_stake = 100;
// Minimum stake needed to generate a switching proof
let minimum_switch_stake = (SWITCH_FORK_THRESHOLD as f64 * total_stake as f64) as u64;
// Make the heavier stake insufficient for switching so tha the lighter validator
// cannot switch without seeing a vote from the dead/failure_stake validator.
let heavier_stake = minimum_switch_stake;
let lighter_stake = heavier_stake - 1;
let failures_stake = total_stake - heavier_stake - lighter_stake;
let partitions: &[&[(usize, usize)]] = &[
&[(heavier_stake as usize, 8)],
&[(lighter_stake as usize, 8)],
];
#[derive(Default)]
struct PartitionContext {
heaviest_validator_key: Pubkey,
lighter_validator_key: Pubkey,
dead_validator_info: Option<ClusterValidatorInfo>,
}
let on_partition_start = |_cluster: &mut LocalCluster,
validator_keys: &[Pubkey],
mut dead_validator_infos: Vec<ClusterValidatorInfo>,
context: &mut PartitionContext| {
assert_eq!(dead_validator_infos.len(), 1);
context.dead_validator_info = Some(dead_validator_infos.pop().unwrap());
// validator_keys[0] is the validator that will be killed, i.e. the validator with
// stake == `failures_stake`
context.heaviest_validator_key = validator_keys[1];
context.lighter_validator_key = validator_keys[2];
};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut PartitionContext| {};
// Check that new roots were set after the partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_resolved = |cluster: &mut LocalCluster, context: &mut PartitionContext| {
let lighter_validator_ledger_path = cluster.ledger_path(&context.lighter_validator_key);
let heavier_validator_ledger_path = cluster.ledger_path(&context.heaviest_validator_key);
let (lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
info!(
"Lighter validator's latest vote is for slot {}",
lighter_validator_latest_vote
);
// Lighter partition should stop voting after detecting the heavier partition and try
// to switch. Loop until we see a greater vote by the heavier validator than the last
// vote made by the lighter validator on the lighter fork.
let mut heavier_validator_latest_vote;
let mut heavier_validator_latest_vote_hash;
let heavier_blockstore = open_blockstore(&heavier_validator_ledger_path);
loop {
let (sanity_check_lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
// Lighter validator should stop voting, because `on_partition_resolved` is only
// called after a propagation time where blocks from the other fork should have
// finished propagating
assert_eq!(
sanity_check_lighter_validator_latest_vote,
lighter_validator_latest_vote
);
let (new_heavier_validator_latest_vote, new_heavier_validator_latest_vote_hash) =
last_vote_in_tower(
&heavier_validator_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
heavier_validator_latest_vote = new_heavier_validator_latest_vote;
heavier_validator_latest_vote_hash = new_heavier_validator_latest_vote_hash;
// Latest vote for each validator should be on different forks
assert_ne!(lighter_validator_latest_vote, heavier_validator_latest_vote);
if heavier_validator_latest_vote > lighter_validator_latest_vote {
let heavier_ancestors: HashSet<Slot> =
AncestorIterator::new(heavier_validator_latest_vote, &heavier_blockstore)
.collect();
assert!(!heavier_ancestors.contains(&lighter_validator_latest_vote));
break;
}
}
info!("Checking to make sure lighter validator doesn't switch");
let mut latest_slot = lighter_validator_latest_vote;
// Number of chances the validator had to switch votes but didn't
let mut total_voting_opportunities = 0;
while total_voting_opportunities <= 5 {
let (new_latest_slot, latest_slot_ancestors) =
find_latest_replayed_slot_from_ledger(&lighter_validator_ledger_path, latest_slot);
latest_slot = new_latest_slot;
// Ensure `latest_slot` is on the other fork
if latest_slot_ancestors.contains(&heavier_validator_latest_vote) {
let tower = restore_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
// Check that there was an opportunity to vote
if !tower.is_locked_out(latest_slot, &latest_slot_ancestors) {
// Ensure the lighter blockstore has not voted again
let new_lighter_validator_latest_vote = tower.last_voted_slot().unwrap();
assert_eq!(
new_lighter_validator_latest_vote,
lighter_validator_latest_vote
);
info!(
"Incrementing voting opportunities: {}",
total_voting_opportunities
);
total_voting_opportunities += 1;
} else {
info!(
"Tower still locked out, can't vote for slot: {}",
latest_slot
);
}
} else if latest_slot > heavier_validator_latest_vote {
warn!(
"validator is still generating blocks on its own fork, last processed slot: {}",
latest_slot
);
}
sleep(Duration::from_millis(50));
}
// Make a vote from the killed validator for slot `heavier_validator_latest_vote` in gossip
info!(
"Simulate vote for slot: {} from dead validator",
heavier_validator_latest_vote
);
let vote_keypair = &context
.dead_validator_info
.as_ref()
.unwrap()
.info
.voting_keypair
.clone();
let node_keypair = &context
.dead_validator_info
.as_ref()
.unwrap()
.info
.keypair
.clone();
let vote_ix = vote_instruction::vote(
&vote_keypair.pubkey(),
&vote_keypair.pubkey(),
Vote::new(
vec![heavier_validator_latest_vote],
heavier_validator_latest_vote_hash,
),
);
let mut vote_tx = Transaction::new_with_payer(&[vote_ix], Some(&node_keypair.pubkey()));
// Make the vote transaction with a random blockhash. Thus, the vote only lives in gossip but
// never makes it into a block
let blockhash = Hash::new_unique();
vote_tx.partial_sign(&[node_keypair.as_ref()], blockhash);
vote_tx.partial_sign(&[vote_keypair.as_ref()], blockhash);
let heavier_node_gossip = cluster
.get_contact_info(&context.heaviest_validator_key)
.unwrap()
.gossip;
cluster_info::push_messages_to_peer(
vec![CrdsValue::new_signed(
CrdsData::Vote(
0,
crds_value::Vote::new(node_keypair.pubkey(), vote_tx, timestamp()),
),
node_keypair,
)],
context
.dead_validator_info
.as_ref()
.unwrap()
.info
.keypair
.pubkey(),
heavier_node_gossip,
)
.unwrap();
loop {
// Wait for the lighter validator to switch to the heavier fork
let (new_lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
if new_lighter_validator_latest_vote != lighter_validator_latest_vote {
info!(
"Lighter validator switched forks at slot: {}",
new_lighter_validator_latest_vote
);
let (heavier_validator_latest_vote, _) = last_vote_in_tower(
&heavier_validator_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
let (smaller, larger) =
if new_lighter_validator_latest_vote > heavier_validator_latest_vote {
(
heavier_validator_latest_vote,
new_lighter_validator_latest_vote,
)
} else {
(
new_lighter_validator_latest_vote,
heavier_validator_latest_vote,
)
};
// Check the new vote is on the same fork as the heaviest fork
let heavier_blockstore = open_blockstore(&heavier_validator_ledger_path);
let larger_slot_ancestors: HashSet<Slot> =
AncestorIterator::new(larger, &heavier_blockstore)
.chain(std::iter::once(larger))
.collect();
assert!(larger_slot_ancestors.contains(&smaller));
break;
} else {
sleep(Duration::from_millis(50));
}
}
};
let ticks_per_slot = 8;
run_kill_partition_switch_threshold(
&[&[(failures_stake as usize, 0)]],
partitions,
// Partition long enough such that the first vote made by validator with
// `alive_stake_3` won't be ingested due to BlockhashTooOld,
None,
Some(ticks_per_slot),
PartitionContext::default(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_kill_partition_switch_threshold_no_progress() {
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 10_000;
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
let failures_stake = max_failures_stake;
let total_alive_stake = total_stake - failures_stake;
let alive_stake_1 = total_alive_stake / 2;
let alive_stake_2 = total_alive_stake - alive_stake_1;
// Check that no new roots were set 400 slots after partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_start =
|_: &mut LocalCluster, _: &[Pubkey], _: Vec<ClusterValidatorInfo>, _: &mut ()| {};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_no_new_roots(400, "PARTITION_TEST");
};
// This kills `max_failures_stake`, so no progress should be made
run_kill_partition_switch_threshold(
&[&[(failures_stake as usize, 16)]],
&[
&[(alive_stake_1 as usize, 8)],
&[(alive_stake_2 as usize, 8)],
],
None,
None,
(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_kill_partition_switch_threshold_progress() {
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 10_000;
// Kill `< max_failures_stake` of the validators
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
let failures_stake = max_failures_stake - 1;
let total_alive_stake = total_stake - failures_stake;
// Partition the remaining alive validators, should still make progress
// once the partition resolves
let alive_stake_1 = total_alive_stake / 2;
let alive_stake_2 = total_alive_stake - alive_stake_1;
let bigger = std::cmp::max(alive_stake_1, alive_stake_2);
let smaller = std::cmp::min(alive_stake_1, alive_stake_2);
// At least one of the forks must have > SWITCH_FORK_THRESHOLD in order
// to guarantee switching proofs can be created. Make sure the other fork
// is <= SWITCH_FORK_THRESHOLD to make sure progress can be made. Caches
// bugs such as liveness issues bank-weighted fork choice, which may stall
// because the fork with less stake could have more weight, but other fork would:
// 1) Not be able to generate a switching proof
// 2) Other more staked fork stops voting, so doesn't catch up in bank weight.
assert!(
bigger as f64 / total_stake as f64 > SWITCH_FORK_THRESHOLD
&& smaller as f64 / total_stake as f64 <= SWITCH_FORK_THRESHOLD
);
let on_partition_start =
|_: &mut LocalCluster, _: &[Pubkey], _: Vec<ClusterValidatorInfo>, _: &mut ()| {};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST");
};
run_kill_partition_switch_threshold(
&[&[(failures_stake as usize, 16)]],
&[
&[(alive_stake_1 as usize, 8)],
&[(alive_stake_2 as usize, 8)],
],
None,
None,
(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
// Steps in this test:
// We want to create a situation like:
/*
1 (2%, killed and restarted) --- 200 (37%, lighter fork)
/
0
\-------- 4 (38%, heavier fork)
*/
// where the 2% that voted on slot 1 don't see their votes land in a block
// and thus without integrating votes from gossip into fork choice, will
// deem slot 4 the heavier fork and try to switch to slot 4, which doesn't pass the
// switch threshold. This stalls the network.
// We do this by:
// 1) Creating a partition so all three nodes don't see each other
// 2) Kill the validator with 2%
// 3) Wait for longer than blockhash expiration
// 4) Copy in the lighter fork's blocks up, *only* up to the first slot in the lighter fork
// (not all the blocks on the lighter fork!), call this slot `L`
// 5) Restart the validator with 2% so that he votes on `L`, but the vote doesn't land
// due to blockhash expiration
// 6) Resolve the partition so that the 2% repairs the other fork, and tries to switch,
// stalling the network.
fn test_fork_choice_refresh_old_votes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 100;
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
// 1% less than the failure stake, where the 2% is allocated to a validator that
// has no leader slots and thus won't be able to vote on its own fork.
let failures_stake = max_failures_stake;
let total_alive_stake = total_stake - failures_stake;
let alive_stake_1 = total_alive_stake / 2 - 1;
let alive_stake_2 = total_alive_stake - alive_stake_1 - 1;
// Heavier fork still doesn't have enough stake to switch. Both branches need
// the vote to land from the validator with `alive_stake_3` to allow the other
// fork to switch.
let alive_stake_3 = 2;
assert!(alive_stake_1 < alive_stake_2);
assert!(alive_stake_1 + alive_stake_3 > alive_stake_2);
let partitions: &[&[(usize, usize)]] = &[
&[(alive_stake_1 as usize, 8)],
&[(alive_stake_2 as usize, 8)],
&[(alive_stake_3 as usize, 0)],
];
#[derive(Default)]
struct PartitionContext {
alive_stake3_info: Option<ClusterValidatorInfo>,
smallest_validator_key: Pubkey,
lighter_fork_validator_key: Pubkey,
heaviest_validator_key: Pubkey,
}
let on_partition_start = |cluster: &mut LocalCluster,
validator_keys: &[Pubkey],
_: Vec<ClusterValidatorInfo>,
context: &mut PartitionContext| {
// Kill validator with alive_stake_3, second in `partitions` slice
let smallest_validator_key = &validator_keys[3];
let info = cluster.exit_node(smallest_validator_key);
context.alive_stake3_info = Some(info);
context.smallest_validator_key = *smallest_validator_key;
// validator_keys[0] is the validator that will be killed, i.e. the validator with
// stake == `failures_stake`
context.lighter_fork_validator_key = validator_keys[1];
// Third in `partitions` slice
context.heaviest_validator_key = validator_keys[2];
};
let ticks_per_slot = 8;
let on_before_partition_resolved =
|cluster: &mut LocalCluster, context: &mut PartitionContext| {
// Equal to ms_per_slot * MAX_RECENT_BLOCKHASHES, rounded up
let sleep_time_ms =
((ticks_per_slot * DEFAULT_MS_PER_SLOT * MAX_RECENT_BLOCKHASHES as u64)
+ DEFAULT_TICKS_PER_SLOT
- 1)
/ DEFAULT_TICKS_PER_SLOT;
info!("Wait for blockhashes to expire, {} ms", sleep_time_ms);
// Wait for blockhashes to expire
sleep(Duration::from_millis(sleep_time_ms));
let smallest_ledger_path = context
.alive_stake3_info
.as_ref()
.unwrap()
.info
.ledger_path
.clone();
let lighter_fork_ledger_path = cluster.ledger_path(&context.lighter_fork_validator_key);
let heaviest_ledger_path = cluster.ledger_path(&context.heaviest_validator_key);
// Open ledgers
let smallest_blockstore = open_blockstore(&smallest_ledger_path);
let lighter_fork_blockstore = open_blockstore(&lighter_fork_ledger_path);
let heaviest_blockstore = open_blockstore(&heaviest_ledger_path);
info!("Opened blockstores");
// Get latest votes
let (lighter_fork_latest_vote, _) = last_vote_in_tower(
&lighter_fork_ledger_path,
&context.lighter_fork_validator_key,
)
.unwrap();
let (heaviest_fork_latest_vote, _) =
last_vote_in_tower(&heaviest_ledger_path, &context.heaviest_validator_key).unwrap();
// Find the first slot on the smaller fork
let lighter_ancestors: BTreeSet<Slot> = std::iter::once(lighter_fork_latest_vote)
.chain(AncestorIterator::new(
lighter_fork_latest_vote,
&lighter_fork_blockstore,
))
.collect();
let heavier_ancestors: BTreeSet<Slot> = std::iter::once(heaviest_fork_latest_vote)
.chain(AncestorIterator::new(
heaviest_fork_latest_vote,
&heaviest_blockstore,
))
.collect();
let first_slot_in_lighter_partition = *lighter_ancestors
.iter()
.zip(heavier_ancestors.iter())
.find(|(x, y)| x != y)
.unwrap()
.0;
// Must have been updated in the above loop
assert!(first_slot_in_lighter_partition != 0);
info!(
"First slot in lighter partition is {}",
first_slot_in_lighter_partition
);
// Copy all the blocks from the smaller partition up to `first_slot_in_lighter_partition`
// into the smallest validator's blockstore
for lighter_slot in std::iter::once(first_slot_in_lighter_partition).chain(
AncestorIterator::new(first_slot_in_lighter_partition, &lighter_fork_blockstore),
) {
let lighter_slot_meta =
lighter_fork_blockstore.meta(lighter_slot).unwrap().unwrap();
assert!(lighter_slot_meta.is_full());
// Get the shreds from the leader of the smaller fork
let lighter_fork_data_shreds = lighter_fork_blockstore
.get_data_shreds_for_slot(lighter_slot, 0)
.unwrap();
// Insert those shreds into the smallest validator's blockstore
smallest_blockstore
.insert_shreds(lighter_fork_data_shreds, None, false)
.unwrap();
// Check insert succeeded
let new_meta = smallest_blockstore.meta(lighter_slot).unwrap().unwrap();
assert!(new_meta.is_full());
assert_eq!(new_meta.last_index, lighter_slot_meta.last_index);
}
// Restart the smallest validator that we killed earlier in `on_partition_start()`
drop(smallest_blockstore);
cluster.restart_node(
&context.smallest_validator_key,
context.alive_stake3_info.take().unwrap(),
);
loop {
// Wait for node to vote on the first slot on the less heavy fork, so it'll need
// a switch proof to flip to the other fork.
// However, this vote won't land because it's using an expired blockhash. The
// fork structure will look something like this after the vote:
/*
1 (2%, killed and restarted) --- 200 (37%, lighter fork)
/
0
\-------- 4 (38%, heavier fork)
*/
if let Some((last_vote_slot, _last_vote_hash)) =
last_vote_in_tower(&smallest_ledger_path, &context.smallest_validator_key)
{
// Check that the heaviest validator on the other fork doesn't have this slot,
// this must mean we voted on a unique slot on this fork
if last_vote_slot == first_slot_in_lighter_partition {
info!(
"Saw vote on first slot in lighter partition {}",
first_slot_in_lighter_partition
);
break;
} else {
info!(
"Haven't seen vote on first slot in lighter partition, latest vote is: {}",
last_vote_slot
);
}
}
sleep(Duration::from_millis(20));
}
// Now resolve partition, allow validator to see the fork with the heavier validator,
// but the fork it's currently on is the heaviest, if only its own vote landed!
};
// Check that new roots were set after the partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut PartitionContext| {
cluster.check_for_new_roots(16, "PARTITION_TEST");
};
run_kill_partition_switch_threshold(
&[&[(failures_stake as usize - 1, 16)]],
partitions,
// Partition long enough such that the first vote made by validator with
// `alive_stake_3` won't be ingested due to BlockhashTooOld,
None,
Some(ticks_per_slot),
PartitionContext::default(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_two_unbalanced_stakes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_two_unbalanced_stakes");
let validator_config = ValidatorConfig::default();
let num_ticks_per_second = 100;
let num_ticks_per_slot = 10;
let num_slots_per_epoch = MINIMUM_SLOTS_PER_EPOCH as u64;
let mut cluster = LocalCluster::new(&mut ClusterConfig {
node_stakes: vec![999_990, 3],
cluster_lamports: 1_000_000,
validator_configs: make_identical_validator_configs(&validator_config, 2),
ticks_per_slot: num_ticks_per_slot,
slots_per_epoch: num_slots_per_epoch,
stakers_slot_offset: num_slots_per_epoch,
poh_config: PohConfig::new_sleep(Duration::from_millis(1000 / num_ticks_per_second)),
..ClusterConfig::default()
});
cluster_tests::sleep_n_epochs(
10.0,
&cluster.genesis_config.poh_config,
num_ticks_per_slot,
num_slots_per_epoch,
);
cluster.close_preserve_ledgers();
let leader_pubkey = cluster.entry_point_info.id;
let leader_ledger = cluster.validators[&leader_pubkey].info.ledger_path.clone();
cluster_tests::verify_ledger_ticks(&leader_ledger, num_ticks_per_slot as usize);
}
#[test]
#[serial]
fn test_forwarding() {
// Set up a cluster where one node is never the leader, so all txs sent to this node
// will be have to be forwarded in order to be confirmed
let mut config = ClusterConfig {
node_stakes: vec![999_990, 3],
cluster_lamports: 2_000_000,
validator_configs: make_identical_validator_configs(&ValidatorConfig::default(), 2),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config);
let cluster_nodes = discover_cluster(&cluster.entry_point_info.gossip, 2).unwrap();
assert!(cluster_nodes.len() >= 2);
let leader_pubkey = cluster.entry_point_info.id;
let validator_info = cluster_nodes
.iter()
.find(|c| c.id != leader_pubkey)
.unwrap();
// Confirm that transactions were forwarded to and processed by the leader.
cluster_tests::send_many_transactions(validator_info, &cluster.funding_keypair, 10, 20);
}
#[test]
#[serial]
fn test_restart_node() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_restart_node");
let slots_per_epoch = MINIMUM_SLOTS_PER_EPOCH * 2;
let ticks_per_slot = 16;
let validator_config = ValidatorConfig::default();
let mut cluster = LocalCluster::new(&mut ClusterConfig {
node_stakes: vec![100; 1],
cluster_lamports: 100,
validator_configs: vec![safe_clone_config(&validator_config)],
ticks_per_slot,
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
..ClusterConfig::default()
});
let nodes = cluster.get_node_pubkeys();
cluster_tests::sleep_n_epochs(
1.0,
&cluster.genesis_config.poh_config,
clock::DEFAULT_TICKS_PER_SLOT,
slots_per_epoch,
);
cluster.exit_restart_node(&nodes[0], validator_config);
cluster_tests::sleep_n_epochs(
0.5,
&cluster.genesis_config.poh_config,
clock::DEFAULT_TICKS_PER_SLOT,
slots_per_epoch,
);
cluster_tests::send_many_transactions(
&cluster.entry_point_info,
&cluster.funding_keypair,
10,
1,
);
}
#[test]
#[serial]
fn test_listener_startup() {
let mut config = ClusterConfig {
node_stakes: vec![100; 1],
cluster_lamports: 1_000,
num_listeners: 3,
validator_configs: make_identical_validator_configs(&ValidatorConfig::default(), 1),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config);
let cluster_nodes = discover_cluster(&cluster.entry_point_info.gossip, 4).unwrap();
assert_eq!(cluster_nodes.len(), 4);
}
#[test]
#[serial]
fn test_mainnet_beta_cluster_type() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let mut config = ClusterConfig {
cluster_type: ClusterType::MainnetBeta,
node_stakes: vec![100; 1],
cluster_lamports: 1_000,
validator_configs: make_identical_validator_configs(&ValidatorConfig::default(), 1),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config);
let cluster_nodes = discover_cluster(&cluster.entry_point_info.gossip, 1).unwrap();
assert_eq!(cluster_nodes.len(), 1);
let client = create_client(
cluster.entry_point_info.client_facing_addr(),
VALIDATOR_PORT_RANGE,
);
// Programs that are available at epoch 0
for program_id in [
&solana_config_program::id(),
&solana_sdk::system_program::id(),
&solana_sdk::stake::program::id(),
&solana_vote_program::id(),
&solana_sdk::bpf_loader_deprecated::id(),
&solana_sdk::bpf_loader::id(),
]
.iter()
{
assert_matches!(
(
program_id,
client
.get_account_with_commitment(program_id, CommitmentConfig::processed())
.unwrap()
),
(_program_id, Some(_))
);
}
// Programs that are not available at epoch 0
for program_id in [&solana_sdk::bpf_loader_upgradeable::id()].iter() {
assert_eq!(
(
program_id,
client
.get_account_with_commitment(program_id, CommitmentConfig::processed())
.unwrap()
),
(program_id, None)
);
}
}
fn generate_frozen_account_panic(mut cluster: LocalCluster, frozen_account: Arc<Keypair>) {
let client = cluster
.get_validator_client(&frozen_account.pubkey())
.unwrap();
// Check the validator is alive by poking it over RPC
trace!(
"validator slot: {}",
client
.get_slot_with_commitment(CommitmentConfig::processed())
.expect("get slot")
);
// Reset the frozen account panic signal
solana_runtime::accounts_db::FROZEN_ACCOUNT_PANIC.store(false, Ordering::Relaxed);
// Wait for the frozen account panic signal
let mut i = 0;
while !solana_runtime::accounts_db::FROZEN_ACCOUNT_PANIC.load(Ordering::Relaxed) {
// Transfer from frozen account
let (blockhash, _fee_calculator, _last_valid_slot) = client
.get_recent_blockhash_with_commitment(CommitmentConfig::processed())
.unwrap();
client
.async_transfer(
1,
&frozen_account,
&solana_sdk::pubkey::new_rand(),
blockhash,
)
.unwrap();
sleep(Duration::from_secs(1));
i += 1;
if i > 10 {
panic!("FROZEN_ACCOUNT_PANIC still false");
}
}
// The validator is now broken and won't shutdown properly. Avoid LocalCluster panic in Drop
// with some manual cleanup:
cluster.exit();
cluster.validators = HashMap::default();
}
#[test]
#[serial]
fn test_frozen_account_from_genesis() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_identity =
Arc::new(solana_sdk::signature::keypair_from_seed(&[0u8; 32]).unwrap());
let mut config = ClusterConfig {
validator_keys: Some(vec![(validator_identity.clone(), true)]),
node_stakes: vec![100; 1],
cluster_lamports: 1_000,
validator_configs: vec![ValidatorConfig {
// Freeze the validator identity account
frozen_accounts: vec![validator_identity.pubkey()],
..ValidatorConfig::default()
}],
..ClusterConfig::default()
};
generate_frozen_account_panic(LocalCluster::new(&mut config), validator_identity);
}
#[test]
#[serial]
fn test_frozen_account_from_snapshot() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_identity =
Arc::new(solana_sdk::signature::keypair_from_seed(&[0u8; 32]).unwrap());
let mut snapshot_test_config = setup_snapshot_validator_config(5, 1);
// Freeze the validator identity account
snapshot_test_config.validator_config.frozen_accounts = vec![validator_identity.pubkey()];
let mut config = ClusterConfig {
validator_keys: Some(vec![(validator_identity.clone(), true)]),
node_stakes: vec![100; 1],
cluster_lamports: 1_000,
validator_configs: make_identical_validator_configs(
&snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
let snapshot_package_output_path = &snapshot_test_config
.validator_config
.snapshot_config
.as_ref()
.unwrap()
.snapshot_package_output_path;
trace!("Waiting for snapshot at {:?}", snapshot_package_output_path);
let (archive_filename, _archive_snapshot_hash) =
wait_for_next_snapshot(&cluster, snapshot_package_output_path);
trace!("Found snapshot: {:?}", archive_filename);
// Restart the validator from a snapshot
let validator_info = cluster.exit_node(&validator_identity.pubkey());
cluster.restart_node(&validator_identity.pubkey(), validator_info);
generate_frozen_account_panic(cluster, validator_identity);
}
#[test]
#[serial]
fn test_consistency_halt() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let snapshot_interval_slots = 20;
let num_account_paths = 1;
// Create cluster with a leader producing bad snapshot hashes.
let mut leader_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
leader_snapshot_test_config
.validator_config
.accounts_hash_fault_injection_slots = 40;
let validator_stake = 10_000;
let mut config = ClusterConfig {
node_stakes: vec![validator_stake],
cluster_lamports: 100_000,
validator_configs: vec![leader_snapshot_test_config.validator_config],
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
sleep(Duration::from_millis(5000));
let cluster_nodes = discover_cluster(&cluster.entry_point_info.gossip, 1).unwrap();
info!("num_nodes: {}", cluster_nodes.len());
// Add a validator with the leader as trusted, it should halt when it detects
// mismatch.
let mut validator_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let mut trusted_validators = HashSet::new();
trusted_validators.insert(cluster_nodes[0].id);
validator_snapshot_test_config
.validator_config
.trusted_validators = Some(trusted_validators);
validator_snapshot_test_config
.validator_config
.halt_on_trusted_validators_accounts_hash_mismatch = true;
warn!("adding a validator");
cluster.add_validator(
&validator_snapshot_test_config.validator_config,
validator_stake as u64,
Arc::new(Keypair::new()),
None,
);
let num_nodes = 2;
assert_eq!(
discover_cluster(&cluster.entry_point_info.gossip, num_nodes)
.unwrap()
.len(),
num_nodes
);
// Check for only 1 node on the network.
let mut encountered_error = false;
loop {
let discover = discover_cluster(&cluster.entry_point_info.gossip, 2);
match discover {
Err(_) => {
encountered_error = true;
break;
}
Ok(nodes) => {
if nodes.len() < 2 {
encountered_error = true;
break;
}
info!("checking cluster for fewer nodes.. {:?}", nodes.len());
}
}
let client = cluster
.get_validator_client(&cluster.entry_point_info.id)
.unwrap();
if let Ok(slot) = client.get_slot() {
if slot > 210 {
break;
}
info!("slot: {}", slot);
}
sleep(Duration::from_millis(1000));
}
assert!(encountered_error);
}
#[test]
#[serial]
fn test_snapshot_download() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 1 node
let snapshot_interval_slots = 50;
let num_account_paths = 3;
let leader_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let validator_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let stake = 10_000;
let mut config = ClusterConfig {
node_stakes: vec![stake],
cluster_lamports: 1_000_000,
validator_configs: make_identical_validator_configs(
&leader_snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
// Get slot after which this was generated
let snapshot_package_output_path = &leader_snapshot_test_config
.validator_config
.snapshot_config
.as_ref()
.unwrap()
.snapshot_package_output_path;
trace!("Waiting for snapshot");
let (archive_filename, archive_snapshot_hash) =
wait_for_next_snapshot(&cluster, snapshot_package_output_path);
trace!("found: {:?}", archive_filename);
let validator_archive_path = snapshot_utils::get_snapshot_archive_path(
validator_snapshot_test_config
.snapshot_output_path
.path()
.to_path_buf(),
&archive_snapshot_hash,
ArchiveFormat::TarBzip2,
);
// Download the snapshot, then boot a validator from it.
download_snapshot(
&cluster.entry_point_info.rpc,
&validator_archive_path,
archive_snapshot_hash,
false,
snapshot_utils::DEFAULT_MAX_SNAPSHOTS_TO_RETAIN,
&mut None,
)
.unwrap();
cluster.add_validator(
&validator_snapshot_test_config.validator_config,
stake,
Arc::new(Keypair::new()),
None,
);
}
#[allow(unused_attributes)]
#[test]
#[serial]
fn test_snapshot_restart_tower() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let snapshot_interval_slots = 10;
let num_account_paths = 2;
let leader_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let validator_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let mut config = ClusterConfig {
node_stakes: vec![10000, 10],
cluster_lamports: 100_000,
validator_configs: vec![
safe_clone_config(&leader_snapshot_test_config.validator_config),
safe_clone_config(&validator_snapshot_test_config.validator_config),
],
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
// Let the nodes run for a while, then stop one of the validators
sleep(Duration::from_millis(5000));
let all_pubkeys = cluster.get_node_pubkeys();
let validator_id = all_pubkeys
.into_iter()
.find(|x| *x != cluster.entry_point_info.id)
.unwrap();
let validator_info = cluster.exit_node(&validator_id);
// Get slot after which this was generated
let snapshot_package_output_path = &leader_snapshot_test_config
.validator_config
.snapshot_config
.as_ref()
.unwrap()
.snapshot_package_output_path;
let (archive_filename, archive_snapshot_hash) =
wait_for_next_snapshot(&cluster, snapshot_package_output_path);
// Copy archive to validator's snapshot output directory
let validator_archive_path = snapshot_utils::get_snapshot_archive_path(
validator_snapshot_test_config
.snapshot_output_path
.path()
.to_path_buf(),
&archive_snapshot_hash,
ArchiveFormat::TarBzip2,
);
fs::hard_link(archive_filename, &validator_archive_path).unwrap();
// Restart validator from snapshot, the validator's tower state in this snapshot
// will contain slots < the root bank of the snapshot. Validator should not panic.
cluster.restart_node(&validator_id, validator_info);
// Test cluster can still make progress and get confirmations in tower
// Use the restarted node as the discovery point so that we get updated
// validator's ContactInfo
let restarted_node_info = cluster.get_contact_info(&validator_id).unwrap();
cluster_tests::spend_and_verify_all_nodes(
restarted_node_info,
&cluster.funding_keypair,
1,
HashSet::new(),
);
}
#[test]
#[serial]
fn test_snapshots_blockstore_floor() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 1 snapshotting leader
let snapshot_interval_slots = 10;
let num_account_paths = 4;
let leader_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let mut validator_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let snapshot_package_output_path = &leader_snapshot_test_config
.validator_config
.snapshot_config
.as_ref()
.unwrap()
.snapshot_package_output_path;
let mut config = ClusterConfig {
node_stakes: vec![10000],
cluster_lamports: 100_000,
validator_configs: make_identical_validator_configs(
&leader_snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
trace!("Waiting for snapshot tar to be generated with slot",);
let (archive_filename, (archive_slot, archive_hash, _)) = loop {
let archive =
snapshot_utils::get_highest_snapshot_archive_path(&snapshot_package_output_path);
if archive.is_some() {
trace!("snapshot exists");
break archive.unwrap();
}
sleep(Duration::from_millis(5000));
};
// Copy archive to validator's snapshot output directory
let validator_archive_path = snapshot_utils::get_snapshot_archive_path(
validator_snapshot_test_config
.snapshot_output_path
.path()
.to_path_buf(),
&(archive_slot, archive_hash),
ArchiveFormat::TarBzip2,
);
fs::hard_link(archive_filename, &validator_archive_path).unwrap();
let slot_floor = archive_slot;
// Start up a new node from a snapshot
let validator_stake = 5;
let cluster_nodes = discover_cluster(&cluster.entry_point_info.gossip, 1).unwrap();
let mut trusted_validators = HashSet::new();
trusted_validators.insert(cluster_nodes[0].id);
validator_snapshot_test_config
.validator_config
.trusted_validators = Some(trusted_validators);
cluster.add_validator(
&validator_snapshot_test_config.validator_config,
validator_stake,
Arc::new(Keypair::new()),
None,
);
let all_pubkeys = cluster.get_node_pubkeys();
let validator_id = all_pubkeys
.into_iter()
.find(|x| *x != cluster.entry_point_info.id)
.unwrap();
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
let mut current_slot = 0;
// Let this validator run a while with repair
let target_slot = slot_floor + 40;
while current_slot <= target_slot {
trace!("current_slot: {}", current_slot);
if let Ok(slot) = validator_client.get_slot_with_commitment(CommitmentConfig::processed()) {
current_slot = slot;
} else {
continue;
}
sleep(Duration::from_secs(1));
}
// Check the validator ledger doesn't contain any slots < slot_floor
cluster.close_preserve_ledgers();
let validator_ledger_path = &cluster.validators[&validator_id];
let blockstore = Blockstore::open(&validator_ledger_path.info.ledger_path).unwrap();
// Skip the zeroth slot in blockstore that the ledger is initialized with
let (first_slot, _) = blockstore.slot_meta_iterator(1).unwrap().next().unwrap();
assert_eq!(first_slot, slot_floor);
}
#[test]
#[serial]
fn test_snapshots_restart_validity() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let snapshot_interval_slots = 10;
let num_account_paths = 1;
let mut snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let snapshot_package_output_path = &snapshot_test_config
.validator_config
.snapshot_config
.as_ref()
.unwrap()
.snapshot_package_output_path;
// Set up the cluster with 1 snapshotting validator
let mut all_account_storage_dirs = vec![vec![]];
std::mem::swap(
&mut all_account_storage_dirs[0],
&mut snapshot_test_config.account_storage_dirs,
);
let mut config = ClusterConfig {
node_stakes: vec![10000],
cluster_lamports: 100_000,
validator_configs: make_identical_validator_configs(
&snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
// Create and reboot the node from snapshot `num_runs` times
let num_runs = 3;
let mut expected_balances = HashMap::new();
let mut cluster = LocalCluster::new(&mut config);
for i in 1..num_runs {
info!("run {}", i);
// Push transactions to one of the nodes and confirm that transactions were
// forwarded to and processed.
trace!("Sending transactions");
let new_balances = cluster_tests::send_many_transactions(
&cluster.entry_point_info,
&cluster.funding_keypair,
10,
10,
);
expected_balances.extend(new_balances);
wait_for_next_snapshot(&cluster, snapshot_package_output_path);
// Create new account paths since validator exit is not guaranteed to cleanup RPC threads,
// which may delete the old accounts on exit at any point
let (new_account_storage_dirs, new_account_storage_paths) =
generate_account_paths(num_account_paths);
all_account_storage_dirs.push(new_account_storage_dirs);
snapshot_test_config.validator_config.account_paths = new_account_storage_paths;
// Restart node
trace!("Restarting cluster from snapshot");
let nodes = cluster.get_node_pubkeys();
cluster.exit_restart_node(
&nodes[0],
safe_clone_config(&snapshot_test_config.validator_config),
);
// Verify account balances on validator
trace!("Verifying balances");
cluster_tests::verify_balances(expected_balances.clone(), &cluster.entry_point_info);
// Check that we can still push transactions
trace!("Spending and verifying");
cluster_tests::spend_and_verify_all_nodes(
&cluster.entry_point_info,
&cluster.funding_keypair,
1,
HashSet::new(),
);
}
}
#[test]
#[serial]
#[allow(unused_attributes)]
#[ignore]
fn test_fail_entry_verification_leader() {
test_faulty_node(BroadcastStageType::FailEntryVerification);
}
#[test]
#[serial]
#[ignore]
#[allow(unused_attributes)]
fn test_fake_shreds_broadcast_leader() {
test_faulty_node(BroadcastStageType::BroadcastFakeShreds);
}
#[test]
#[serial]
#[ignore]
#[allow(unused_attributes)]
fn test_duplicate_shreds_broadcast_leader() {
test_faulty_node(BroadcastStageType::BroadcastDuplicates(
BroadcastDuplicatesConfig {
stake_partition: 50,
duplicate_send_delay: 1,
},
));
}
fn test_faulty_node(faulty_node_type: BroadcastStageType) {
solana_logger::setup_with_default("solana_local_cluster=info");
let num_nodes = 3;
let error_validator_config = ValidatorConfig {
broadcast_stage_type: faulty_node_type,
..ValidatorConfig::default()
};
let mut validator_configs = Vec::with_capacity(num_nodes);
validator_configs.resize_with(num_nodes - 1, ValidatorConfig::default);
validator_configs.push(error_validator_config);
let mut validator_keys = Vec::with_capacity(num_nodes);
validator_keys.resize_with(num_nodes, || (Arc::new(Keypair::new()), true));
let node_stakes = vec![60, 50, 60];
assert_eq!(node_stakes.len(), num_nodes);
assert_eq!(validator_keys.len(), num_nodes);
let mut cluster_config = ClusterConfig {
cluster_lamports: 10_000,
node_stakes,
validator_configs,
validator_keys: Some(validator_keys),
slots_per_epoch: MINIMUM_SLOTS_PER_EPOCH * 2u64,
stakers_slot_offset: MINIMUM_SLOTS_PER_EPOCH * 2u64,
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut cluster_config);
// Check for new roots
cluster.check_for_new_roots(16, "test_faulty_node");
}
#[test]
fn test_wait_for_max_stake() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_config = ValidatorConfig::default();
let mut config = ClusterConfig {
cluster_lamports: 10_000,
node_stakes: vec![100; 4],
validator_configs: make_identical_validator_configs(&validator_config, 4),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config);
let client = RpcClient::new_socket(cluster.entry_point_info.rpc);
assert!(client
.wait_for_max_stake(CommitmentConfig::default(), 33.0f32)
.is_ok());
assert!(client.get_slot().unwrap() > 10);
}
#[test]
// Test that when a leader is leader for banks B_i..B_{i+n}, and B_i is not
// votable, then B_{i+1} still chains to B_i
fn test_no_voting() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_config = ValidatorConfig {
voting_disabled: true,
..ValidatorConfig::default()
};
let mut config = ClusterConfig {
cluster_lamports: 10_000,
node_stakes: vec![100],
validator_configs: vec![validator_config],
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
let client = cluster
.get_validator_client(&cluster.entry_point_info.id)
.unwrap();
loop {
let last_slot = client
.get_slot_with_commitment(CommitmentConfig::processed())
.expect("Couldn't get slot");
if last_slot > 4 * VOTE_THRESHOLD_DEPTH as u64 {
break;
}
sleep(Duration::from_secs(1));
}
cluster.close_preserve_ledgers();
let leader_pubkey = cluster.entry_point_info.id;
let ledger_path = cluster.validators[&leader_pubkey].info.ledger_path.clone();
let ledger = Blockstore::open(&ledger_path).unwrap();
for i in 0..2 * VOTE_THRESHOLD_DEPTH {
let meta = ledger.meta(i as u64).unwrap().unwrap();
let parent = meta.parent_slot;
let expected_parent = i.saturating_sub(1);
assert_eq!(parent, expected_parent as u64);
}
}
#[test]
#[serial]
#[ignore]
fn test_optimistic_confirmation_violation_detection() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![51, 50];
let validator_keys: Vec<_> = vec![
"4qhhXNTbKD1a5vxDDLZcHKj7ELNeiivtUBxn3wUK1F5VRsQVP89VUhfXqSfgiFB14GfuBgtrQ96n9NvWQADVkcCg",
"3kHBzVwie5vTEaY6nFCPeFT8qDpoXzn7dCEioGRNBTnUDpvwnG85w8Wq63gVWpVTP8k2a8cgcWRjSXyUkEygpXWS",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect();
let mut config = ClusterConfig {
cluster_lamports: 100_000,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
let entry_point_id = cluster.entry_point_info.id;
// Let the nodes run for a while. Wait for validators to vote on slot `S`
// so that the vote on `S-1` is definitely in gossip and optimistic confirmation is
// detected on slot `S-1` for sure, then stop the heavier of the two
// validators
let client = cluster.get_validator_client(&entry_point_id).unwrap();
let mut prev_voted_slot = 0;
loop {
let last_voted_slot = client
.get_slot_with_commitment(CommitmentConfig::processed())
.unwrap();
if last_voted_slot > 50 {
if prev_voted_slot == 0 {
prev_voted_slot = last_voted_slot;
} else {
break;
}
}
sleep(Duration::from_millis(100));
}
let exited_validator_info = cluster.exit_node(&entry_point_id);
// Mark fork as dead on the heavier validator, this should make the fork effectively
// dead, even though it was optimistically confirmed. The smaller validator should
// create and jump over to a new fork
// Also, remove saved tower to intentionally make the restarted validator to violate the
// optimistic confirmation
{
let blockstore = open_blockstore(&exited_validator_info.info.ledger_path);
info!(
"Setting slot: {} on main fork as dead, should cause fork",
prev_voted_slot
);
// Necessary otherwise tower will inform this validator that it's latest
// vote is on slot `prev_voted_slot`. This will then prevent this validator
// from resetting to the parent of `prev_voted_slot` to create an alternative fork because
// 1) Validator can't vote on earlier ancestor of last vote due to switch threshold (can't vote
// on ancestors of last vote)
// 2) Won't reset to this earlier ancestor becasue reset can only happen on same voted fork if
// it's for the last vote slot or later
remove_tower(&exited_validator_info.info.ledger_path, &entry_point_id);
blockstore.set_dead_slot(prev_voted_slot).unwrap();
}
{
// Buffer stderr to detect optimistic slot violation log
let buf = std::env::var("OPTIMISTIC_CONF_TEST_DUMP_LOG")
.err()
.map(|_| BufferRedirect::stderr().unwrap());
cluster.restart_node(&entry_point_id, exited_validator_info);
// Wait for a root > prev_voted_slot to be set. Because the root is on a
// different fork than `prev_voted_slot`, then optimistic confirmation is
// violated
let client = cluster.get_validator_client(&entry_point_id).unwrap();
loop {
let last_root = client
.get_slot_with_commitment(CommitmentConfig::finalized())
.unwrap();
if last_root > prev_voted_slot {
break;
}
sleep(Duration::from_millis(100));
}
// Check to see that validator detected optimistic confirmation for
// `prev_voted_slot` failed
let expected_log =
OptimisticConfirmationVerifier::format_optimistic_confirmed_slot_violation_log(
prev_voted_slot,
);
// Violation detection thread can be behind so poll logs up to 10 seconds
if let Some(mut buf) = buf {
let start = Instant::now();
let mut success = false;
let mut output = String::new();
while start.elapsed().as_secs() < 10 {
buf.read_to_string(&mut output).unwrap();
if output.contains(&expected_log) {
success = true;
break;
}
sleep(Duration::from_millis(10));
}
print!("{}", output);
assert!(success);
} else {
panic!("dumped log and disabled testing");
}
}
// Make sure validator still makes progress
cluster_tests::check_for_new_roots(
16,
&[cluster.get_contact_info(&entry_point_id).unwrap().clone()],
"test_optimistic_confirmation_violation",
);
}
#[test]
#[serial]
fn test_validator_saves_tower() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_config = ValidatorConfig {
require_tower: true,
..ValidatorConfig::default()
};
let validator_identity_keypair = Arc::new(Keypair::new());
let validator_id = validator_identity_keypair.pubkey();
let mut config = ClusterConfig {
cluster_lamports: 10_000,
node_stakes: vec![100],
validator_configs: vec![validator_config],
validator_keys: Some(vec![(validator_identity_keypair.clone(), true)]),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
let ledger_path = cluster
.validators
.get(&validator_id)
.unwrap()
.info
.ledger_path
.clone();
// Wait for some votes to be generated
let mut last_replayed_root;
loop {
if let Ok(slot) = validator_client.get_slot_with_commitment(CommitmentConfig::processed()) {
trace!("current slot: {}", slot);
if slot > 2 {
// this will be the root next time a validator starts
last_replayed_root = slot;
break;
}
}
sleep(Duration::from_millis(10));
}
// Stop validator and check saved tower
let validator_info = cluster.exit_node(&validator_id);
let tower1 = Tower::restore(&ledger_path, &validator_id).unwrap();
trace!("tower1: {:?}", tower1);
assert_eq!(tower1.root(), 0);
// Restart the validator and wait for a new root
cluster.restart_node(&validator_id, validator_info);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
// Wait for the first root
loop {
#[allow(deprecated)]
// This test depends on knowing the immediate root, without any delay from the commitment
// service, so the deprecated CommitmentConfig::root() is retained
if let Ok(root) = validator_client.get_slot_with_commitment(CommitmentConfig::root()) {
trace!("current root: {}", root);
if root > last_replayed_root + 1 {
last_replayed_root = root;
break;
}
}
sleep(Duration::from_millis(50));
}
// Stop validator, and check saved tower
let recent_slot = validator_client
.get_slot_with_commitment(CommitmentConfig::processed())
.unwrap();
let validator_info = cluster.exit_node(&validator_id);
let tower2 = Tower::restore(&ledger_path, &validator_id).unwrap();
trace!("tower2: {:?}", tower2);
assert_eq!(tower2.root(), last_replayed_root);
last_replayed_root = recent_slot;
// Rollback saved tower to `tower1` to simulate a validator starting from a newer snapshot
// without having to wait for that snapshot to be generated in this test
tower1.save(&validator_identity_keypair).unwrap();
cluster.restart_node(&validator_id, validator_info);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
// Wait for a new root, demonstrating the validator was able to make progress from the older `tower1`
loop {
#[allow(deprecated)]
// This test depends on knowing the immediate root, without any delay from the commitment
// service, so the deprecated CommitmentConfig::root() is retained
if let Ok(root) = validator_client.get_slot_with_commitment(CommitmentConfig::root()) {
trace!(
"current root: {}, last_replayed_root: {}",
root,
last_replayed_root
);
if root > last_replayed_root {
break;
}
}
sleep(Duration::from_millis(50));
}
// Check the new root is reflected in the saved tower state
let mut validator_info = cluster.exit_node(&validator_id);
let tower3 = Tower::restore(&ledger_path, &validator_id).unwrap();
trace!("tower3: {:?}", tower3);
assert!(tower3.root() > last_replayed_root);
// Remove the tower file entirely and allow the validator to start without a tower. It will
// rebuild tower from its vote account contents
remove_tower(&ledger_path, &validator_id);
validator_info.config.require_tower = false;
cluster.restart_node(&validator_id, validator_info);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
// Wait for a couple more slots to pass so another vote occurs
let current_slot = validator_client
.get_slot_with_commitment(CommitmentConfig::processed())
.unwrap();
loop {
if let Ok(slot) = validator_client.get_slot_with_commitment(CommitmentConfig::processed()) {
trace!("current_slot: {}, slot: {}", current_slot, slot);
if slot > current_slot + 1 {
break;
}
}
sleep(Duration::from_millis(50));
}
cluster.close_preserve_ledgers();
let tower4 = Tower::restore(&ledger_path, &validator_id).unwrap();
trace!("tower4: {:?}", tower4);
// should tower4 advance 1 slot compared to tower3????
assert_eq!(tower4.root(), tower3.root() + 1);
}
fn open_blockstore(ledger_path: &Path) -> Blockstore {
Blockstore::open_with_access_type(ledger_path, AccessType::TryPrimaryThenSecondary, None, true)
.unwrap_or_else(|e| {
panic!("Failed to open ledger at {:?}, err: {}", ledger_path, e);
})
}
fn purge_slots(blockstore: &Blockstore, start_slot: Slot, slot_count: Slot) {
blockstore.purge_from_next_slots(start_slot, start_slot + slot_count);
blockstore.purge_slots(start_slot, start_slot + slot_count, PurgeType::Exact);
}
fn restore_tower(ledger_path: &Path, node_pubkey: &Pubkey) -> Option<Tower> {
let tower = Tower::restore(ledger_path, node_pubkey);
if let Err(tower_err) = tower {
if tower_err.is_file_missing() {
return None;
} else {
panic!("tower restore failed...: {:?}", tower_err);
}
}
// actually saved tower must have at least one vote.
Tower::restore(ledger_path, node_pubkey).ok()
}
fn last_vote_in_tower(ledger_path: &Path, node_pubkey: &Pubkey) -> Option<(Slot, Hash)> {
restore_tower(ledger_path, node_pubkey).map(|tower| tower.last_voted_slot_hash().unwrap())
}
fn root_in_tower(ledger_path: &Path, node_pubkey: &Pubkey) -> Option<Slot> {
restore_tower(ledger_path, node_pubkey).map(|tower| tower.root())
}
fn remove_tower(ledger_path: &Path, node_pubkey: &Pubkey) {
fs::remove_file(Tower::get_filename(ledger_path, node_pubkey)).unwrap();
}
// A bit convoluted test case; but this roughly follows this test theoretical scenario:
//
// Step 1: You have validator A + B with 31% and 36% of the stake:
//
// S0 -> S1 -> S2 -> S3 (A + B vote, optimistically confirmed)
//
// Step 2: Turn off A + B, and truncate the ledger after slot `S3` (simulate votes not
// landing in next slot).
// Start validator C with 33% of the stake with same ledger, but only up to slot S2.
// Have `C` generate some blocks like:
//
// S0 -> S1 -> S2 -> S4
//
// Step 3: Then restart `A` which had 31% of the stake. With the tower, from `A`'s
// perspective it sees:
//
// S0 -> S1 -> S2 -> S3 (voted)
// |
// -> S4 -> S5 (C's vote for S4)
//
// The fork choice rule weights look like:
//
// S0 -> S1 -> S2 (ABC) -> S3
// |
// -> S4 (C) -> S5
//
// Step 4:
// Without the persisted tower:
// `A` would choose to vote on the fork with `S4 -> S5`. This is true even if `A`
// generates a new fork starting at slot `S3` because `C` has more stake than `A`
// so `A` will eventually pick the fork `C` is on.
//
// Furthermore `B`'s vote on `S3` is not observable because there are no
// descendants of slot `S3`, so that fork will not be chosen over `C`'s fork
//
// With the persisted tower:
// `A` should not be able to generate a switching proof.
//
fn do_test_optimistic_confirmation_violation_with_or_without_tower(with_tower: bool) {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 4 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![31, 36, 33, 0];
// Each pubkeys are prefixed with A, B, C and D.
// D is needed to:
// 1) Propagate A's votes for S2 to validator C after A shuts down so that
// C can avoid NoPropagatedConfirmation errors and continue to generate blocks
// 2) Provide gossip discovery for `A` when it restarts because `A` will restart
// at a different gossip port than the entrypoint saved in C's gossip table
let validator_keys = vec![
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
"4mx9yoFBeYasDKBGDWCTWGJdWuJCKbgqmuP8bN9umybCh5Jzngw7KQxe99Rf5uzfyzgba1i65rJW4Wqk7Ab5S8ye",
"3zsEPEDsjfEay7te9XqNjRTCE7vwuT6u4DHzBJC19yp7GS8BuNRMRjnpVrKCBzb3d44kxc4KPGSHkCmk6tEfswCg",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let (validator_a_pubkey, validator_b_pubkey, validator_c_pubkey) =
(validators[0], validators[1], validators[2]);
let mut config = ClusterConfig {
cluster_lamports: 100_000,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
let base_slot = 26; // S2
let next_slot_on_a = 27; // S3
let truncated_slots = 100; // just enough to purge all following slots after the S2 and S3
let val_a_ledger_path = cluster.ledger_path(&validator_a_pubkey);
let val_b_ledger_path = cluster.ledger_path(&validator_b_pubkey);
let val_c_ledger_path = cluster.ledger_path(&validator_c_pubkey);
// Immediately kill validator C
let validator_c_info = cluster.exit_node(&validator_c_pubkey);
// Step 1:
// Let validator A, B, (D) run for a while.
let (mut validator_a_finished, mut validator_b_finished) = (false, false);
let now = Instant::now();
while !(validator_a_finished && validator_b_finished) {
let elapsed = now.elapsed();
if elapsed > Duration::from_secs(30) {
panic!(
"LocalCluster nodes failed to log enough tower votes in {} secs",
elapsed.as_secs()
);
}
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if !validator_a_finished && last_vote >= next_slot_on_a {
validator_a_finished = true;
}
}
if let Some((last_vote, _)) = last_vote_in_tower(&val_b_ledger_path, &validator_b_pubkey) {
if !validator_b_finished && last_vote >= next_slot_on_a {
validator_b_finished = true;
}
}
}
// kill them at once after the above loop; otherwise one might stall the other!
let validator_a_info = cluster.exit_node(&validator_a_pubkey);
let _validator_b_info = cluster.exit_node(&validator_b_pubkey);
// Step 2:
// Stop validator and truncate ledger
info!("truncate validator C's ledger");
{
// first copy from validator A's ledger
std::fs::remove_dir_all(&validator_c_info.info.ledger_path).unwrap();
let mut opt = fs_extra::dir::CopyOptions::new();
opt.copy_inside = true;
fs_extra::dir::copy(&val_a_ledger_path, &val_c_ledger_path, &opt).unwrap();
// Remove A's tower in the C's new copied ledger
remove_tower(&validator_c_info.info.ledger_path, &validator_a_pubkey);
let blockstore = open_blockstore(&validator_c_info.info.ledger_path);
purge_slots(&blockstore, base_slot + 1, truncated_slots);
}
info!("truncate validator A's ledger");
{
let blockstore = open_blockstore(&val_a_ledger_path);
purge_slots(&blockstore, next_slot_on_a + 1, truncated_slots);
if !with_tower {
info!("Removing tower!");
remove_tower(&val_a_ledger_path, &validator_a_pubkey);
// Remove next_slot_on_a from ledger to force validator A to select
// votes_on_c_fork. Otherwise the validator A will immediately vote
// for 27 on restart, because it hasn't gotten the heavier fork from
// validator C yet.
// Then it will be stuck on 27 unable to switch because C doesn't
// have enough stake to generate a switching proof
purge_slots(&blockstore, next_slot_on_a, truncated_slots);
} else {
info!("Not removing tower!");
}
}
// Step 3:
// Run validator C only to make it produce and vote on its own fork.
info!("Restart validator C again!!!");
let val_c_ledger_path = validator_c_info.info.ledger_path.clone();
cluster.restart_node(&validator_c_pubkey, validator_c_info);
let mut votes_on_c_fork = std::collections::BTreeSet::new(); // S4 and S5
for _ in 0..100 {
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&val_c_ledger_path, &validator_c_pubkey) {
if last_vote != base_slot {
votes_on_c_fork.insert(last_vote);
// Collect 4 votes
if votes_on_c_fork.len() >= 4 {
break;
}
}
}
}
assert!(!votes_on_c_fork.is_empty());
info!("collected validator C's votes: {:?}", votes_on_c_fork);
// Step 4:
// verify whether there was violation or not
info!("Restart validator A again!!!");
cluster.restart_node(&validator_a_pubkey, validator_a_info);
// monitor for actual votes from validator A
let mut bad_vote_detected = false;
let mut a_votes = vec![];
for _ in 0..100 {
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
a_votes.push(last_vote);
let blockstore = Blockstore::open_with_access_type(
&val_a_ledger_path,
AccessType::TryPrimaryThenSecondary,
None,
true,
)
.unwrap();
let mut ancestors = AncestorIterator::new(last_vote, &blockstore);
if ancestors.any(|a| votes_on_c_fork.contains(&a)) {
bad_vote_detected = true;
break;
}
}
}
info!("Observed A's votes on: {:?}", a_votes);
// an elaborate way of assert!(with_tower && !bad_vote_detected || ...)
let expects_optimistic_confirmation_violation = !with_tower;
if bad_vote_detected != expects_optimistic_confirmation_violation {
if bad_vote_detected {
panic!("No violation expected because of persisted tower!");
} else {
panic!("Violation expected because of removed persisted tower!");
}
} else if bad_vote_detected {
info!("THIS TEST expected violations. And indeed, there was some, because of removed persisted tower.");
} else {
info!("THIS TEST expected no violation. And indeed, there was none, thanks to persisted tower.");
}
}
enum ClusterMode {
MasterOnly,
MasterSlave,
}
fn do_test_future_tower(cluster_mode: ClusterMode) {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 4 nodes
let slots_per_epoch = 2048;
let node_stakes = match cluster_mode {
ClusterMode::MasterOnly => vec![100],
ClusterMode::MasterSlave => vec![100, 0],
};
let validator_keys = vec![
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let validator_a_pubkey = match cluster_mode {
ClusterMode::MasterOnly => validators[0],
ClusterMode::MasterSlave => validators[1],
};
let mut config = ClusterConfig {
cluster_lamports: 100_000,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config);
let val_a_ledger_path = cluster.ledger_path(&validator_a_pubkey);
loop {
sleep(Duration::from_millis(100));
if let Some(root) = root_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if root >= 15 {
break;
}
}
}
let purged_slot_before_restart = 10;
let validator_a_info = cluster.exit_node(&validator_a_pubkey);
{
// create a warped future tower without mangling the tower itself
info!(
"Revert blockstore before slot {} and effectively create a future tower",
purged_slot_before_restart,
);
let blockstore = open_blockstore(&val_a_ledger_path);
purge_slots(&blockstore, purged_slot_before_restart, 100);
}
cluster.restart_node(&validator_a_pubkey, validator_a_info);
let mut newly_rooted = false;
let some_root_after_restart = purged_slot_before_restart + 25; // 25 is arbitrary; just wait a bit
for _ in 0..600 {
sleep(Duration::from_millis(100));
if let Some(root) = root_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if root >= some_root_after_restart {
newly_rooted = true;
break;
}
}
}
let _validator_a_info = cluster.exit_node(&validator_a_pubkey);
if newly_rooted {
// there should be no forks; i.e. monotonically increasing ancestor chain
let (last_vote, _) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey).unwrap();
let blockstore = open_blockstore(&val_a_ledger_path);
let actual_block_ancestors = AncestorIterator::new_inclusive(last_vote, &blockstore)
.take_while(|a| *a >= some_root_after_restart)
.collect::<Vec<_>>();
let expected_countinuous_no_fork_votes = (some_root_after_restart..=last_vote)
.rev()
.collect::<Vec<_>>();
assert_eq!(actual_block_ancestors, expected_countinuous_no_fork_votes);
assert!(actual_block_ancestors.len() > MAX_LOCKOUT_HISTORY);
info!("validator managed to handle future tower!");
} else {
panic!("no root detected");
}
}
#[test]
#[serial]
fn test_future_tower_master_only() {
do_test_future_tower(ClusterMode::MasterOnly);
}
#[test]
#[serial]
fn test_future_tower_master_slave() {
do_test_future_tower(ClusterMode::MasterSlave);
}
#[test]
fn test_hard_fork_invalidates_tower() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![60, 40];
let validator_keys = vec![
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let validator_a_pubkey = validators[0];
let validator_b_pubkey = validators[1];
let mut config = ClusterConfig {
cluster_lamports: 100_000,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let cluster = std::sync::Arc::new(std::sync::Mutex::new(LocalCluster::new(&mut config)));
let val_a_ledger_path = cluster.lock().unwrap().ledger_path(&validator_a_pubkey);
let min_root = 15;
loop {
sleep(Duration::from_millis(100));
if let Some(root) = root_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if root >= min_root {
break;
}
}
}
let mut validator_a_info = cluster.lock().unwrap().exit_node(&validator_a_pubkey);
let mut validator_b_info = cluster.lock().unwrap().exit_node(&validator_b_pubkey);
// setup hard fork at slot < a previously rooted slot!
let hard_fork_slot = min_root - 5;
let hard_fork_slots = Some(vec![hard_fork_slot]);
let mut hard_forks = solana_sdk::hard_forks::HardForks::default();
hard_forks.register(hard_fork_slot);
let expected_shred_version = solana_sdk::shred_version::compute_shred_version(
&cluster.lock().unwrap().genesis_config.hash(),
Some(&hard_forks),
);
validator_a_info.config.new_hard_forks = hard_fork_slots.clone();
validator_a_info.config.wait_for_supermajority = Some(hard_fork_slot);
validator_a_info.config.expected_shred_version = Some(expected_shred_version);
validator_b_info.config.new_hard_forks = hard_fork_slots;
validator_b_info.config.wait_for_supermajority = Some(hard_fork_slot);
validator_b_info.config.expected_shred_version = Some(expected_shred_version);
// restart validator A first
let cluster_for_a = cluster.clone();
// Spawn a thread because wait_for_supermajority blocks in Validator::new()!
let thread = std::thread::spawn(move || {
let restart_context = cluster_for_a
.lock()
.unwrap()
.create_restart_context(&validator_a_pubkey, &mut validator_a_info);
let restarted_validator_info =
LocalCluster::restart_node_with_context(validator_a_info, restart_context);
cluster_for_a
.lock()
.unwrap()
.add_node(&validator_a_pubkey, restarted_validator_info);
});
// test validator A actually to wait for supermajority
let mut last_vote = None;
for _ in 0..10 {
sleep(Duration::from_millis(1000));
let (new_last_vote, _) =
last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey).unwrap();
if let Some(last_vote) = last_vote {
assert_eq!(last_vote, new_last_vote);
} else {
last_vote = Some(new_last_vote);
}
}
// restart validator B normally
cluster
.lock()
.unwrap()
.restart_node(&validator_b_pubkey, validator_b_info);
// validator A should now start so join its thread here
thread.join().unwrap();
// new slots should be rooted after hard-fork cluster relaunch
cluster
.lock()
.unwrap()
.check_for_new_roots(16, "hard fork");
}
#[test]
#[serial]
fn test_no_optimistic_confirmation_violation_with_tower() {
do_test_optimistic_confirmation_violation_with_or_without_tower(true);
}
#[test]
#[serial]
fn test_optimistic_confirmation_violation_without_tower() {
do_test_optimistic_confirmation_violation_with_or_without_tower(false);
}
#[test]
#[serial]
fn test_run_test_load_program_accounts_root() {
run_test_load_program_accounts(CommitmentConfig::finalized());
}
#[test]
#[serial]
fn test_run_test_load_program_accounts_partition_root() {
run_test_load_program_accounts_partition(CommitmentConfig::finalized());
}
fn run_test_load_program_accounts_partition(scan_commitment: CommitmentConfig) {
let num_slots_per_validator = 8;
let partitions: [Vec<usize>; 2] = [vec![1], vec![1]];
let (leader_schedule, validator_keys) =
create_custom_leader_schedule(&[num_slots_per_validator, num_slots_per_validator]);
let (update_client_sender, update_client_receiver) = unbounded();
let (scan_client_sender, scan_client_receiver) = unbounded();
let exit = Arc::new(AtomicBool::new(false));
let (t_update, t_scan, additional_accounts) = setup_transfer_scan_threads(
1000,
exit.clone(),
scan_commitment,
update_client_receiver,
scan_client_receiver,
);
let on_partition_start = |cluster: &mut LocalCluster, _: &mut ()| {
let update_client = cluster
.get_validator_client(&cluster.entry_point_info.id)
.unwrap();
update_client_sender.send(update_client).unwrap();
let scan_client = cluster
.get_validator_client(&cluster.entry_point_info.id)
.unwrap();
scan_client_sender.send(scan_client).unwrap();
};
let on_partition_before_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(20, "run_test_load_program_accounts_partition");
exit.store(true, Ordering::Relaxed);
t_update.join().unwrap();
t_scan.join().unwrap();
};
run_cluster_partition(
&partitions,
Some((leader_schedule, validator_keys)),
(),
on_partition_start,
on_partition_before_resolved,
on_partition_resolved,
None,
None,
additional_accounts,
);
}
fn setup_transfer_scan_threads(
num_starting_accounts: usize,
exit: Arc<AtomicBool>,
scan_commitment: CommitmentConfig,
update_client_receiver: Receiver<ThinClient>,
scan_client_receiver: Receiver<ThinClient>,
) -> (
JoinHandle<()>,
JoinHandle<()>,
Vec<(Pubkey, AccountSharedData)>,
) {
let exit_ = exit.clone();
let starting_keypairs: Arc<Vec<Keypair>> = Arc::new(
iter::repeat_with(Keypair::new)
.take(num_starting_accounts)
.collect(),
);
let target_keypairs: Arc<Vec<Keypair>> = Arc::new(
iter::repeat_with(Keypair::new)
.take(num_starting_accounts)
.collect(),
);
let starting_accounts: Vec<(Pubkey, AccountSharedData)> = starting_keypairs
.iter()
.map(|k| {
(
k.pubkey(),
AccountSharedData::new(1, 0, &system_program::id()),
)
})
.collect();
let starting_keypairs_ = starting_keypairs.clone();
let target_keypairs_ = target_keypairs.clone();
let t_update = Builder::new()
.name("update".to_string())
.spawn(move || {
let client = update_client_receiver.recv().unwrap();
loop {
if exit_.load(Ordering::Relaxed) {
return;
}
let (blockhash, _fee_calculator, _last_valid_slot) = client
.get_recent_blockhash_with_commitment(CommitmentConfig::processed())
.unwrap();
for i in 0..starting_keypairs_.len() {
client
.async_transfer(
1,
&starting_keypairs_[i],
&target_keypairs_[i].pubkey(),
blockhash,
)
.unwrap();
}
for i in 0..starting_keypairs_.len() {
client
.async_transfer(
1,
&target_keypairs_[i],
&starting_keypairs_[i].pubkey(),
blockhash,
)
.unwrap();
}
}
})
.unwrap();
// Scan, the total funds should add up to the original
let mut scan_commitment_config = RpcProgramAccountsConfig::default();
scan_commitment_config.account_config.commitment = Some(scan_commitment);
let tracked_pubkeys: HashSet<Pubkey> = starting_keypairs
.iter()
.chain(target_keypairs.iter())
.map(|k| k.pubkey())
.collect();
let expected_total_balance = num_starting_accounts as u64;
let t_scan = Builder::new()
.name("scan".to_string())
.spawn(move || {
let client = scan_client_receiver.recv().unwrap();
loop {
if exit.load(Ordering::Relaxed) {
return;
}
if let Some(total_scan_balance) = client
.get_program_accounts_with_config(
&system_program::id(),
scan_commitment_config.clone(),
)
.ok()
.map(|result| {
result
.into_iter()
.map(|(key, account)| {
if tracked_pubkeys.contains(&key) {
account.lamports
} else {
0
}
})
.sum::<u64>()
})
{
assert_eq!(total_scan_balance, expected_total_balance);
}
}
})
.unwrap();
(t_update, t_scan, starting_accounts)
}
fn run_test_load_program_accounts(scan_commitment: CommitmentConfig) {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![51, 50];
let validator_keys: Vec<_> = vec![
"4qhhXNTbKD1a5vxDDLZcHKj7ELNeiivtUBxn3wUK1F5VRsQVP89VUhfXqSfgiFB14GfuBgtrQ96n9NvWQADVkcCg",
"3kHBzVwie5vTEaY6nFCPeFT8qDpoXzn7dCEioGRNBTnUDpvwnG85w8Wq63gVWpVTP8k2a8cgcWRjSXyUkEygpXWS",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect();
let num_starting_accounts = 1000;
let exit = Arc::new(AtomicBool::new(false));
let (update_client_sender, update_client_receiver) = unbounded();
let (scan_client_sender, scan_client_receiver) = unbounded();
// Setup the update/scan threads
let (t_update, t_scan, starting_accounts) = setup_transfer_scan_threads(
num_starting_accounts,
exit.clone(),
scan_commitment,
update_client_receiver,
scan_client_receiver,
);
let mut config = ClusterConfig {
cluster_lamports: 100_000,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
additional_accounts: starting_accounts,
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config);
// Give the threads a client to use for querying the cluster
let all_pubkeys = cluster.get_node_pubkeys();
let other_validator_id = all_pubkeys
.into_iter()
.find(|x| *x != cluster.entry_point_info.id)
.unwrap();
let client = cluster
.get_validator_client(&cluster.entry_point_info.id)
.unwrap();
update_client_sender.send(client).unwrap();
let scan_client = cluster.get_validator_client(&other_validator_id).unwrap();
scan_client_sender.send(scan_client).unwrap();
// Wait for some roots to pass
cluster.check_for_new_roots(40, "run_test_load_program_accounts");
// Exit and ensure no violations of consistency were found
exit.store(true, Ordering::Relaxed);
t_update.join().unwrap();
t_scan.join().unwrap();
}
fn wait_for_next_snapshot(
cluster: &LocalCluster,
snapshot_package_output_path: &Path,
) -> (PathBuf, (Slot, Hash)) {
// Get slot after which this was generated
let client = cluster
.get_validator_client(&cluster.entry_point_info.id)
.unwrap();
let last_slot = client
.get_slot_with_commitment(CommitmentConfig::processed())
.expect("Couldn't get slot");
// Wait for a snapshot for a bank >= last_slot to be made so we know that the snapshot
// must include the transactions just pushed
trace!(
"Waiting for snapshot archive to be generated with slot > {}",
last_slot
);
loop {
if let Some((filename, (slot, hash, _))) =
snapshot_utils::get_highest_snapshot_archive_path(snapshot_package_output_path)
{
trace!("snapshot for slot {} exists", slot);
if slot >= last_slot {
return (filename, (slot, hash));
}
trace!("snapshot slot {} < last_slot {}", slot, last_slot);
}
sleep(Duration::from_millis(5000));
}
}
fn farf_dir() -> PathBuf {
std::env::var("FARF_DIR")
.unwrap_or_else(|_| "farf".to_string())
.into()
}
fn generate_account_paths(num_account_paths: usize) -> (Vec<TempDir>, Vec<PathBuf>) {
let account_storage_dirs: Vec<TempDir> = (0..num_account_paths)
.map(|_| tempfile::tempdir_in(farf_dir()).unwrap())
.collect();
let account_storage_paths: Vec<_> = account_storage_dirs
.iter()
.map(|a| a.path().to_path_buf())
.collect();
(account_storage_dirs, account_storage_paths)
}
struct SnapshotValidatorConfig {
_snapshot_dir: TempDir,
snapshot_output_path: TempDir,
account_storage_dirs: Vec<TempDir>,
validator_config: ValidatorConfig,
}
fn setup_snapshot_validator_config(
snapshot_interval_slots: u64,
num_account_paths: usize,
) -> SnapshotValidatorConfig {
// Create the snapshot config
let snapshot_dir = tempfile::tempdir_in(farf_dir()).unwrap();
let snapshot_output_path = tempfile::tempdir_in(farf_dir()).unwrap();
let snapshot_config = SnapshotConfig {
snapshot_interval_slots,
snapshot_package_output_path: PathBuf::from(snapshot_output_path.path()),
snapshot_path: PathBuf::from(snapshot_dir.path()),
archive_format: ArchiveFormat::TarBzip2,
snapshot_version: snapshot_utils::SnapshotVersion::default(),
maximum_snapshots_to_retain: snapshot_utils::DEFAULT_MAX_SNAPSHOTS_TO_RETAIN,
};
// Create the account paths
let (account_storage_dirs, account_storage_paths) = generate_account_paths(num_account_paths);
// Create the validator config
let validator_config = ValidatorConfig {
snapshot_config: Some(snapshot_config),
account_paths: account_storage_paths,
accounts_hash_interval_slots: snapshot_interval_slots,
..ValidatorConfig::default()
};
SnapshotValidatorConfig {
_snapshot_dir: snapshot_dir,
snapshot_output_path,
account_storage_dirs,
validator_config,
}
}