solana/ledger/src/blockstore_db.rs

760 lines
20 KiB
Rust

use crate::blockstore_meta;
use bincode::{deserialize, serialize};
use byteorder::{BigEndian, ByteOrder};
use fs_extra;
use log::*;
pub use rocksdb::Direction as IteratorDirection;
use rocksdb::{
self, ColumnFamily, ColumnFamilyDescriptor, DBIterator, DBRawIterator,
IteratorMode as RocksIteratorMode, Options, WriteBatch as RWriteBatch, DB,
};
use serde::de::DeserializeOwned;
use serde::Serialize;
use solana_client::rpc_response::{RpcRewards, RpcTransactionStatus};
use solana_sdk::{clock::Slot, signature::Signature};
use std::{collections::HashMap, fs, marker::PhantomData, path::Path, sync::Arc};
use thiserror::Error;
const MAX_WRITE_BUFFER_SIZE: u64 = 256 * 1024 * 1024; // 256MB
// Column family for metadata about a leader slot
const META_CF: &str = "meta";
// Column family for slots that have been marked as dead
const DEAD_SLOTS_CF: &str = "dead_slots";
// Column family for storing proof that there were multiple
// versions of a slot
const DUPLICATE_SLOTS_CF: &str = "duplicate_slots";
// Column family storing erasure metadata for a slot
const ERASURE_META_CF: &str = "erasure_meta";
// Column family for orphans data
const ORPHANS_CF: &str = "orphans";
// Column family for root data
const ROOT_CF: &str = "root";
/// Column family for indexes
const INDEX_CF: &str = "index";
/// Column family for Data Shreds
const DATA_SHRED_CF: &str = "data_shred";
/// Column family for Code Shreds
const CODE_SHRED_CF: &str = "code_shred";
/// Column family for Transaction Status
const TRANSACTION_STATUS_CF: &str = "transaction_status";
/// Column family for Rewards
const REWARDS_CF: &str = "rewards";
#[derive(Error, Debug)]
pub enum BlockstoreError {
ShredForIndexExists,
InvalidShredData(Box<bincode::ErrorKind>),
RocksDb(#[from] rocksdb::Error),
SlotNotRooted,
DeadSlot,
IO(#[from] std::io::Error),
Serialize(#[from] Box<bincode::ErrorKind>),
FsExtraError(#[from] fs_extra::error::Error),
SlotCleanedUp,
}
pub(crate) type Result<T> = std::result::Result<T, BlockstoreError>;
impl std::fmt::Display for BlockstoreError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "blockstore error")
}
}
pub enum IteratorMode<Index> {
Start,
End,
From(Index, IteratorDirection),
}
pub mod columns {
#[derive(Debug)]
/// The slot metadata column
pub struct SlotMeta;
#[derive(Debug)]
/// The orphans column
pub struct Orphans;
#[derive(Debug)]
/// The dead slots column
pub struct DeadSlots;
#[derive(Debug)]
/// The duplicate slots column
pub struct DuplicateSlots;
#[derive(Debug)]
/// The erasure meta column
pub struct ErasureMeta;
#[derive(Debug)]
/// The root column
pub struct Root;
#[derive(Debug)]
/// The index column
pub struct Index;
#[derive(Debug)]
/// The shred data column
pub struct ShredData;
#[derive(Debug)]
/// The shred erasure code column
pub struct ShredCode;
#[derive(Debug)]
/// The transaction status column
pub struct TransactionStatus;
#[derive(Debug)]
/// The rewards column
pub struct Rewards;
}
#[derive(Debug)]
struct Rocks(rocksdb::DB);
impl Rocks {
fn open(path: &Path) -> Result<Rocks> {
use columns::{
DeadSlots, DuplicateSlots, ErasureMeta, Index, Orphans, Rewards, Root, ShredCode,
ShredData, SlotMeta, TransactionStatus,
};
fs::create_dir_all(&path)?;
// Use default database options
let db_options = get_db_options();
// Column family names
let meta_cf_descriptor = ColumnFamilyDescriptor::new(SlotMeta::NAME, get_cf_options());
let dead_slots_cf_descriptor =
ColumnFamilyDescriptor::new(DeadSlots::NAME, get_cf_options());
let duplicate_slots_cf_descriptor =
ColumnFamilyDescriptor::new(DuplicateSlots::NAME, get_cf_options());
let erasure_meta_cf_descriptor =
ColumnFamilyDescriptor::new(ErasureMeta::NAME, get_cf_options());
let orphans_cf_descriptor = ColumnFamilyDescriptor::new(Orphans::NAME, get_cf_options());
let root_cf_descriptor = ColumnFamilyDescriptor::new(Root::NAME, get_cf_options());
let index_cf_descriptor = ColumnFamilyDescriptor::new(Index::NAME, get_cf_options());
let shred_data_cf_descriptor =
ColumnFamilyDescriptor::new(ShredData::NAME, get_cf_options());
let shred_code_cf_descriptor =
ColumnFamilyDescriptor::new(ShredCode::NAME, get_cf_options());
let transaction_status_cf_descriptor =
ColumnFamilyDescriptor::new(TransactionStatus::NAME, get_cf_options());
let rewards_cf_descriptor = ColumnFamilyDescriptor::new(Rewards::NAME, get_cf_options());
let cfs = vec![
meta_cf_descriptor,
dead_slots_cf_descriptor,
duplicate_slots_cf_descriptor,
erasure_meta_cf_descriptor,
orphans_cf_descriptor,
root_cf_descriptor,
index_cf_descriptor,
shred_data_cf_descriptor,
shred_code_cf_descriptor,
transaction_status_cf_descriptor,
rewards_cf_descriptor,
];
// Open the database
let db = Rocks(DB::open_cf_descriptors(&db_options, path, cfs)?);
Ok(db)
}
fn columns(&self) -> Vec<&'static str> {
use columns::{
DeadSlots, DuplicateSlots, ErasureMeta, Index, Orphans, Rewards, Root, ShredCode,
ShredData, SlotMeta, TransactionStatus,
};
vec![
ErasureMeta::NAME,
DeadSlots::NAME,
DuplicateSlots::NAME,
Index::NAME,
Orphans::NAME,
Root::NAME,
SlotMeta::NAME,
ShredData::NAME,
ShredCode::NAME,
TransactionStatus::NAME,
Rewards::NAME,
]
}
fn destroy(path: &Path) -> Result<()> {
DB::destroy(&Options::default(), path)?;
Ok(())
}
fn cf_handle(&self, cf: &str) -> &ColumnFamily {
self.0
.cf_handle(cf)
.expect("should never get an unknown column")
}
fn get_cf(&self, cf: &ColumnFamily, key: &[u8]) -> Result<Option<Vec<u8>>> {
let opt = self.0.get_cf(cf, key)?.map(|db_vec| db_vec.to_vec());
Ok(opt)
}
fn put_cf(&self, cf: &ColumnFamily, key: &[u8], value: &[u8]) -> Result<()> {
self.0.put_cf(cf, key, value)?;
Ok(())
}
fn iterator_cf<C>(
&self,
cf: &ColumnFamily,
iterator_mode: IteratorMode<C::Index>,
) -> Result<DBIterator>
where
C: Column,
{
let start_key;
let iterator_mode = match iterator_mode {
IteratorMode::From(start_from, direction) => {
start_key = C::key(start_from);
RocksIteratorMode::From(&start_key, direction)
}
IteratorMode::Start => RocksIteratorMode::Start,
IteratorMode::End => RocksIteratorMode::End,
};
let iter = self.0.iterator_cf(cf, iterator_mode)?;
Ok(iter)
}
fn raw_iterator_cf(&self, cf: &ColumnFamily) -> Result<DBRawIterator> {
let raw_iter = self.0.raw_iterator_cf(cf)?;
Ok(raw_iter)
}
fn batch(&self) -> Result<RWriteBatch> {
Ok(RWriteBatch::default())
}
fn write(&self, batch: RWriteBatch) -> Result<()> {
self.0.write(batch)?;
Ok(())
}
}
pub trait Column {
type Index;
fn key_size() -> usize {
std::mem::size_of::<Self::Index>()
}
fn key(index: Self::Index) -> Vec<u8>;
fn index(key: &[u8]) -> Self::Index;
fn slot(index: Self::Index) -> Slot;
fn as_index(slot: Slot) -> Self::Index;
}
pub trait ColumnName {
const NAME: &'static str;
}
pub trait TypedColumn: Column {
type Type: Serialize + DeserializeOwned;
}
impl TypedColumn for columns::TransactionStatus {
type Type = RpcTransactionStatus;
}
pub trait SlotColumn<Index = u64> {}
impl<T: SlotColumn> Column for T {
type Index = u64;
fn key(slot: u64) -> Vec<u8> {
let mut key = vec![0; 8];
BigEndian::write_u64(&mut key[..], slot);
key
}
fn index(key: &[u8]) -> u64 {
BigEndian::read_u64(&key[..8])
}
fn slot(index: u64) -> Slot {
index
}
fn as_index(slot: Slot) -> u64 {
slot
}
}
impl Column for columns::TransactionStatus {
type Index = (Slot, Signature);
fn key((slot, index): (Slot, Signature)) -> Vec<u8> {
let mut key = vec![0; 8 + 64];
BigEndian::write_u64(&mut key[..8], slot);
key[8..72].clone_from_slice(&index.as_ref()[0..64]);
key
}
fn index(key: &[u8]) -> (Slot, Signature) {
let slot = BigEndian::read_u64(&key[..8]);
let index = Signature::new(&key[8..72]);
(slot, index)
}
fn slot(index: Self::Index) -> Slot {
index.0
}
fn as_index(slot: Slot) -> Self::Index {
(slot, Signature::default())
}
}
impl ColumnName for columns::TransactionStatus {
const NAME: &'static str = TRANSACTION_STATUS_CF;
}
impl SlotColumn for columns::Rewards {}
impl ColumnName for columns::Rewards {
const NAME: &'static str = REWARDS_CF;
}
impl TypedColumn for columns::Rewards {
type Type = RpcRewards;
}
impl Column for columns::ShredCode {
type Index = (u64, u64);
fn key(index: (u64, u64)) -> Vec<u8> {
columns::ShredData::key(index)
}
fn index(key: &[u8]) -> (u64, u64) {
columns::ShredData::index(key)
}
fn slot(index: Self::Index) -> Slot {
index.0
}
fn as_index(slot: Slot) -> Self::Index {
(slot, 0)
}
}
impl ColumnName for columns::ShredCode {
const NAME: &'static str = CODE_SHRED_CF;
}
impl Column for columns::ShredData {
type Index = (u64, u64);
fn key((slot, index): (u64, u64)) -> Vec<u8> {
let mut key = vec![0; 16];
BigEndian::write_u64(&mut key[..8], slot);
BigEndian::write_u64(&mut key[8..16], index);
key
}
fn index(key: &[u8]) -> (u64, u64) {
let slot = BigEndian::read_u64(&key[..8]);
let index = BigEndian::read_u64(&key[8..16]);
(slot, index)
}
fn slot(index: Self::Index) -> Slot {
index.0
}
fn as_index(slot: Slot) -> Self::Index {
(slot, 0)
}
}
impl ColumnName for columns::ShredData {
const NAME: &'static str = DATA_SHRED_CF;
}
impl SlotColumn for columns::Index {}
impl ColumnName for columns::Index {
const NAME: &'static str = INDEX_CF;
}
impl TypedColumn for columns::Index {
type Type = blockstore_meta::Index;
}
impl SlotColumn for columns::DeadSlots {}
impl ColumnName for columns::DeadSlots {
const NAME: &'static str = DEAD_SLOTS_CF;
}
impl TypedColumn for columns::DeadSlots {
type Type = bool;
}
impl SlotColumn for columns::DuplicateSlots {}
impl ColumnName for columns::DuplicateSlots {
const NAME: &'static str = DUPLICATE_SLOTS_CF;
}
impl TypedColumn for columns::DuplicateSlots {
type Type = blockstore_meta::DuplicateSlotProof;
}
impl SlotColumn for columns::Orphans {}
impl ColumnName for columns::Orphans {
const NAME: &'static str = ORPHANS_CF;
}
impl TypedColumn for columns::Orphans {
type Type = bool;
}
impl SlotColumn for columns::Root {}
impl ColumnName for columns::Root {
const NAME: &'static str = ROOT_CF;
}
impl TypedColumn for columns::Root {
type Type = bool;
}
impl SlotColumn for columns::SlotMeta {}
impl ColumnName for columns::SlotMeta {
const NAME: &'static str = META_CF;
}
impl TypedColumn for columns::SlotMeta {
type Type = blockstore_meta::SlotMeta;
}
impl Column for columns::ErasureMeta {
type Index = (u64, u64);
fn index(key: &[u8]) -> (u64, u64) {
let slot = BigEndian::read_u64(&key[..8]);
let set_index = BigEndian::read_u64(&key[8..]);
(slot, set_index)
}
fn key((slot, set_index): (u64, u64)) -> Vec<u8> {
let mut key = vec![0; 16];
BigEndian::write_u64(&mut key[..8], slot);
BigEndian::write_u64(&mut key[8..], set_index);
key
}
fn slot(index: Self::Index) -> Slot {
index.0
}
fn as_index(slot: Slot) -> Self::Index {
(slot, 0)
}
}
impl ColumnName for columns::ErasureMeta {
const NAME: &'static str = ERASURE_META_CF;
}
impl TypedColumn for columns::ErasureMeta {
type Type = blockstore_meta::ErasureMeta;
}
#[derive(Debug, Clone)]
pub struct Database {
backend: Arc<Rocks>,
path: Arc<Path>,
}
#[derive(Debug, Clone)]
pub struct LedgerColumn<C>
where
C: Column,
{
backend: Arc<Rocks>,
column: PhantomData<C>,
}
pub struct WriteBatch<'a> {
write_batch: RWriteBatch,
map: HashMap<&'static str, &'a ColumnFamily>,
}
impl Database {
pub fn open(path: &Path) -> Result<Self> {
let backend = Arc::new(Rocks::open(path)?);
Ok(Database {
backend,
path: Arc::from(path),
})
}
pub fn destroy(path: &Path) -> Result<()> {
Rocks::destroy(path)?;
Ok(())
}
pub fn get<C>(&self, key: C::Index) -> Result<Option<C::Type>>
where
C: TypedColumn + ColumnName,
{
if let Some(serialized_value) = self.backend.get_cf(self.cf_handle::<C>(), &C::key(key))? {
let value = deserialize(&serialized_value)?;
Ok(Some(value))
} else {
Ok(None)
}
}
pub fn iter<'a, C>(
&'a self,
iterator_mode: IteratorMode<C::Index>,
) -> Result<impl Iterator<Item = (C::Index, Box<[u8]>)> + 'a>
where
C: Column + ColumnName,
{
let cf = self.cf_handle::<C>();
let iter = self.backend.iterator_cf::<C>(cf, iterator_mode)?;
Ok(iter.map(|(key, value)| (C::index(&key), value)))
}
#[inline]
pub fn cf_handle<C: ColumnName>(&self) -> &ColumnFamily
where
C: Column + ColumnName,
{
self.backend.cf_handle(C::NAME)
}
pub fn column<C>(&self) -> LedgerColumn<C>
where
C: Column + ColumnName,
{
LedgerColumn {
backend: Arc::clone(&self.backend),
column: PhantomData,
}
}
#[inline]
pub fn raw_iterator_cf(&self, cf: &ColumnFamily) -> Result<DBRawIterator> {
self.backend.raw_iterator_cf(cf)
}
pub fn batch(&self) -> Result<WriteBatch> {
let write_batch = self.backend.batch()?;
let map = self
.backend
.columns()
.into_iter()
.map(|desc| (desc, self.backend.cf_handle(desc)))
.collect();
Ok(WriteBatch { write_batch, map })
}
pub fn write(&self, batch: WriteBatch) -> Result<()> {
self.backend.write(batch.write_batch)
}
pub fn storage_size(&self) -> Result<u64> {
Ok(fs_extra::dir::get_size(&self.path)?)
}
// Adds a range to delete to the given write batch and returns whether or not the column has reached
// its end
pub fn delete_range_cf<C>(&self, batch: &mut WriteBatch, from: Slot, to: Slot) -> Result<bool>
where
C: Column + ColumnName,
{
let cf = self.cf_handle::<C>();
let from_index = C::as_index(from);
let to_index = C::as_index(to);
let result = batch.delete_range_cf::<C>(cf, from_index, to_index);
let max_slot = self
.iter::<C>(IteratorMode::End)?
.next()
.map(|(i, _)| C::slot(i))
.unwrap_or(0);
let end = max_slot <= to;
result.map(|_| end)
}
}
impl<C> LedgerColumn<C>
where
C: Column + ColumnName,
{
pub fn get_bytes(&self, key: C::Index) -> Result<Option<Vec<u8>>> {
self.backend.get_cf(self.handle(), &C::key(key))
}
pub fn iter<'a>(
&'a self,
iterator_mode: IteratorMode<C::Index>,
) -> Result<impl Iterator<Item = (C::Index, Box<[u8]>)> + 'a> {
let cf = self.handle();
let iter = self.backend.iterator_cf::<C>(cf, iterator_mode)?;
Ok(iter.map(|(key, value)| (C::index(&key), value)))
}
pub fn delete_slot(
&self,
batch: &mut WriteBatch,
from: Option<Slot>,
to: Option<Slot>,
) -> Result<bool>
where
C::Index: PartialOrd + Copy + ColumnName,
{
let mut end = true;
let iter_config = match from {
Some(s) => IteratorMode::From(C::as_index(s), IteratorDirection::Forward),
None => IteratorMode::Start,
};
let iter = self.iter(iter_config)?;
for (index, _) in iter {
if let Some(to) = to {
if C::slot(index) > to {
end = false;
break;
}
};
if let Err(e) = batch.delete::<C>(index) {
error!(
"Error: {:?} while adding delete from_slot {:?} to batch {:?}",
e,
from,
C::NAME
)
}
}
Ok(end)
}
pub fn compact_range(&self, from: Slot, to: Slot) -> Result<bool>
where
C::Index: PartialOrd + Copy,
{
let cf = self.handle();
let from = Some(C::key(C::as_index(from)));
let to = Some(C::key(C::as_index(to)));
self.backend.0.compact_range_cf(cf, from, to);
Ok(true)
}
#[inline]
pub fn handle(&self) -> &ColumnFamily {
self.backend.cf_handle(C::NAME)
}
#[cfg(test)]
pub fn is_empty(&self) -> Result<bool> {
let mut iter = self.backend.raw_iterator_cf(self.handle())?;
iter.seek_to_first();
Ok(!iter.valid())
}
pub fn put_bytes(&self, key: C::Index, value: &[u8]) -> Result<()> {
self.backend.put_cf(self.handle(), &C::key(key), value)
}
}
impl<C> LedgerColumn<C>
where
C: TypedColumn + ColumnName,
{
pub fn get(&self, key: C::Index) -> Result<Option<C::Type>> {
if let Some(serialized_value) = self.backend.get_cf(self.handle(), &C::key(key))? {
let value = deserialize(&serialized_value)?;
Ok(Some(value))
} else {
Ok(None)
}
}
pub fn put(&self, key: C::Index, value: &C::Type) -> Result<()> {
let serialized_value = serialize(value)?;
self.backend
.put_cf(self.handle(), &C::key(key), &serialized_value)
}
}
impl<'a> WriteBatch<'a> {
pub fn put_bytes<C: Column + ColumnName>(&mut self, key: C::Index, bytes: &[u8]) -> Result<()> {
self.write_batch
.put_cf(self.get_cf::<C>(), &C::key(key), bytes)?;
Ok(())
}
pub fn delete<C: Column + ColumnName>(&mut self, key: C::Index) -> Result<()> {
self.write_batch
.delete_cf(self.get_cf::<C>(), &C::key(key))?;
Ok(())
}
pub fn put<C: TypedColumn + ColumnName>(
&mut self,
key: C::Index,
value: &C::Type,
) -> Result<()> {
let serialized_value = serialize(&value)?;
self.write_batch
.put_cf(self.get_cf::<C>(), &C::key(key), &serialized_value)?;
Ok(())
}
#[inline]
fn get_cf<C: Column + ColumnName>(&self) -> &'a ColumnFamily {
self.map[C::NAME]
}
pub fn delete_range_cf<C: Column>(
&mut self,
cf: &ColumnFamily,
from: C::Index,
to: C::Index,
) -> Result<()> {
self.write_batch
.delete_range_cf(cf, C::key(from), C::key(to))?;
Ok(())
}
}
fn get_cf_options() -> Options {
let mut options = Options::default();
// 256 * 8 = 2GB. 6 of these columns should take at most 12GB of RAM
options.set_max_write_buffer_number(8);
options.set_write_buffer_size(MAX_WRITE_BUFFER_SIZE as usize);
let file_num_compaction_trigger = 4;
// Recommend that this be around the size of level 0. Level 0 estimated size in stable state is
// write_buffer_size * min_write_buffer_number_to_merge * level0_file_num_compaction_trigger
// Source: https://docs.rs/rocksdb/0.6.0/rocksdb/struct.Options.html#method.set_level_zero_file_num_compaction_trigger
let total_size_base = MAX_WRITE_BUFFER_SIZE * file_num_compaction_trigger;
let file_size_base = total_size_base / 10;
options.set_level_zero_file_num_compaction_trigger(file_num_compaction_trigger as i32);
options.set_max_bytes_for_level_base(total_size_base);
options.set_target_file_size_base(file_size_base);
options
}
fn get_db_options() -> Options {
let mut options = Options::default();
options.create_if_missing(true);
options.create_missing_column_families(true);
// A good value for this is the number of cores on the machine
options.increase_parallelism(num_cpus::get() as i32);
options
}