solana/src/thin_client.rs

451 lines
15 KiB
Rust

//! The `thin_client` module is a client-side object that interfaces with
//! a server-side TPU. Client code should use this object instead of writing
//! messages to the network directly. The binary encoding of its messages are
//! unstable and may change in future releases.
use bincode::{deserialize, serialize};
use event::Event;
use futures::future::{ok, FutureResult};
use hash::Hash;
use request::{Request, Response};
use signature::{KeyPair, PublicKey, Signature};
use std::collections::HashMap;
use std::io;
use std::net::{SocketAddr, UdpSocket};
use transaction::Transaction;
pub struct ThinClient {
requests_addr: SocketAddr,
requests_socket: UdpSocket,
events_addr: SocketAddr,
events_socket: UdpSocket,
last_id: Option<Hash>,
transaction_count: u64,
balances: HashMap<PublicKey, Option<i64>>,
}
impl ThinClient {
/// Create a new ThinClient that will interface with Rpu
/// over `requests_socket` and `events_socket`. To receive responses, the caller must bind `socket`
/// to a public address before invoking ThinClient methods.
pub fn new(
requests_addr: SocketAddr,
requests_socket: UdpSocket,
events_addr: SocketAddr,
events_socket: UdpSocket,
) -> Self {
let client = ThinClient {
requests_addr,
requests_socket,
events_addr,
events_socket,
last_id: None,
transaction_count: 0,
balances: HashMap::new(),
};
client
}
pub fn recv_response(&self) -> io::Result<Response> {
let mut buf = vec![0u8; 1024];
trace!("start recv_from");
self.requests_socket.recv_from(&mut buf)?;
trace!("end recv_from");
let resp = deserialize(&buf).expect("deserialize balance in thin_client");
Ok(resp)
}
pub fn process_response(&mut self, resp: Response) {
match resp {
Response::Balance { key, val } => {
trace!("Response balance {:?} {:?}", key, val);
self.balances.insert(key, val);
}
Response::LastId { id } => {
info!("Response last_id {:?}", id);
self.last_id = Some(id);
}
Response::TransactionCount { transaction_count } => {
info!("Response transaction count {:?}", transaction_count);
self.transaction_count = transaction_count;
}
}
}
/// Send a signed Transaction to the server for processing. This method
/// does not wait for a response.
pub fn transfer_signed(&self, tr: Transaction) -> io::Result<usize> {
let event = Event::Transaction(tr);
let data = serialize(&event).expect("serialize Transaction in pub fn transfer_signed");
self.events_socket.send_to(&data, &self.events_addr)
}
/// Creates, signs, and processes a Transaction. Useful for writing unit-tests.
pub fn transfer(
&self,
n: i64,
keypair: &KeyPair,
to: PublicKey,
last_id: &Hash,
) -> io::Result<Signature> {
let tr = Transaction::new(keypair, to, n, *last_id);
let sig = tr.sig;
self.transfer_signed(tr).map(|_| sig)
}
/// Request the balance of the user holding `pubkey`. This method blocks
/// until the server sends a response. If the response packet is dropped
/// by the network, this method will hang indefinitely.
pub fn get_balance(&mut self, pubkey: &PublicKey) -> io::Result<i64> {
trace!("get_balance");
let req = Request::GetBalance { key: *pubkey };
let data = serialize(&req).expect("serialize GetBalance in pub fn get_balance");
self.requests_socket
.send_to(&data, &self.requests_addr)
.expect("buffer error in pub fn get_balance");
let mut done = false;
while !done {
let resp = self.recv_response()?;
trace!("recv_response {:?}", resp);
if let &Response::Balance { ref key, .. } = &resp {
done = key == pubkey;
}
self.process_response(resp);
}
self.balances[pubkey].ok_or(io::Error::new(io::ErrorKind::Other, "nokey"))
}
/// Request the transaction count. If the response packet is dropped by the network,
/// this method will hang.
pub fn transaction_count(&mut self) -> u64 {
info!("transaction_count");
let req = Request::GetTransactionCount;
let data =
serialize(&req).expect("serialize GetTransactionCount in pub fn transaction_count");
self.requests_socket
.send_to(&data, &self.requests_addr)
.expect("buffer error in pub fn transaction_count");
let mut done = false;
while !done {
let resp = self.recv_response().expect("transaction count dropped");
info!("recv_response {:?}", resp);
if let &Response::TransactionCount { .. } = &resp {
done = true;
}
self.process_response(resp);
}
self.transaction_count
}
/// Request the last Entry ID from the server. This method blocks
/// until the server sends a response.
pub fn get_last_id(&mut self) -> FutureResult<Hash, ()> {
info!("get_last_id");
let req = Request::GetLastId;
let data = serialize(&req).expect("serialize GetLastId in pub fn get_last_id");
self.requests_socket
.send_to(&data, &self.requests_addr)
.expect("buffer error in pub fn get_last_id");
let mut done = false;
while !done {
let resp = self.recv_response().expect("get_last_id response");
if let &Response::LastId { .. } = &resp {
done = true;
}
self.process_response(resp);
}
ok(self.last_id.expect("some last_id"))
}
}
#[cfg(test)]
pub fn poll_get_balance(client: &mut ThinClient, pubkey: &PublicKey) -> io::Result<i64> {
use std::time::Instant;
let mut balance;
let now = Instant::now();
loop {
balance = client.get_balance(pubkey);
if balance.is_ok() || now.elapsed().as_secs() > 1 {
break;
}
}
balance
}
#[cfg(test)]
mod tests {
use super::*;
use bank::Bank;
use crdt::{Crdt, ReplicatedData};
use futures::Future;
use logger;
use mint::Mint;
use plan::Plan;
use server::Server;
use signature::{KeyPair, KeyPairUtil};
use std::io::sink;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, RwLock};
use std::thread::JoinHandle;
use std::thread::sleep;
use std::time::Duration;
use streamer::default_window;
use tvu::tests::TestNode;
#[test]
fn test_thin_client() {
logger::setup();
let leader = TestNode::new();
let alice = Mint::new(10_000);
let bank = Bank::new(&alice);
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
let server = Server::new_leader(
bank,
alice.last_id(),
Some(Duration::from_millis(30)),
leader.data.clone(),
leader.sockets.requests,
leader.sockets.event,
leader.sockets.broadcast,
leader.sockets.respond,
leader.sockets.gossip,
exit.clone(),
sink(),
);
sleep(Duration::from_millis(900));
let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let mut client = ThinClient::new(
leader.data.requests_addr,
requests_socket,
leader.data.events_addr,
events_socket,
);
let last_id = client.get_last_id().wait().unwrap();
let _sig = client
.transfer(500, &alice.keypair(), bob_pubkey, &last_id)
.unwrap();
let balance = poll_get_balance(&mut client, &bob_pubkey);
assert_eq!(balance.unwrap(), 500);
exit.store(true, Ordering::Relaxed);
for t in server.thread_hdls {
t.join().unwrap();
}
}
#[test]
fn test_bad_sig() {
logger::setup();
let leader = TestNode::new();
let alice = Mint::new(10_000);
let bank = Bank::new(&alice);
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
let server = Server::new_leader(
bank,
alice.last_id(),
Some(Duration::from_millis(30)),
leader.data.clone(),
leader.sockets.requests,
leader.sockets.event,
leader.sockets.broadcast,
leader.sockets.respond,
leader.sockets.gossip,
exit.clone(),
sink(),
);
sleep(Duration::from_millis(300));
let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
requests_socket
.set_read_timeout(Some(Duration::new(5, 0)))
.unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let mut client = ThinClient::new(
leader.data.requests_addr,
requests_socket,
leader.data.events_addr,
events_socket,
);
let last_id = client.get_last_id().wait().unwrap();
let tr = Transaction::new(&alice.keypair(), bob_pubkey, 500, last_id);
let _sig = client.transfer_signed(tr).unwrap();
let last_id = client.get_last_id().wait().unwrap();
let mut tr2 = Transaction::new(&alice.keypair(), bob_pubkey, 501, last_id);
tr2.contract.tokens = 502;
tr2.contract.plan = Plan::new_payment(502, bob_pubkey);
let _sig = client.transfer_signed(tr2).unwrap();
let balance = poll_get_balance(&mut client, &bob_pubkey);
assert_eq!(balance.unwrap(), 500);
exit.store(true, Ordering::Relaxed);
for t in server.thread_hdls {
t.join().unwrap();
}
}
fn replicant(
leader: &ReplicatedData,
exit: Arc<AtomicBool>,
alice: &Mint,
threads: &mut Vec<JoinHandle<()>>,
) {
let replicant = TestNode::new();
let replicant_bank = Bank::new(&alice);
let mut ts = Server::new_validator(
replicant_bank,
replicant.data.clone(),
replicant.sockets.requests,
replicant.sockets.respond,
replicant.sockets.replicate,
replicant.sockets.gossip,
leader.clone(),
exit.clone(),
);
threads.append(&mut ts.thread_hdls);
}
fn converge(
leader: &ReplicatedData,
exit: Arc<AtomicBool>,
num_nodes: usize,
threads: &mut Vec<JoinHandle<()>>,
) -> Vec<SocketAddr> {
//lets spy on the network
let mut spy = TestNode::new();
let daddr = "0.0.0.0:0".parse().unwrap();
let me = spy.data.id.clone();
spy.data.replicate_addr = daddr;
spy.data.requests_addr = daddr;
let mut spy_crdt = Crdt::new(spy.data);
spy_crdt.insert(&leader);
spy_crdt.set_leader(leader.id);
let spy_ref = Arc::new(RwLock::new(spy_crdt));
let spy_window = default_window();
let t_spy_listen = Crdt::listen(spy_ref.clone(), spy_window, spy.sockets.gossip, exit.clone());
let t_spy_gossip = Crdt::gossip(spy_ref.clone(), exit.clone());
//wait for the network to converge
let mut converged = false;
for _ in 0..30 {
let num = spy_ref.read().unwrap().convergence();
if num == num_nodes as u64 {
converged = true;
break;
}
sleep(Duration::new(1, 0));
}
assert!(converged);
threads.push(t_spy_listen);
threads.push(t_spy_gossip);
let v: Vec<SocketAddr> = spy_ref
.read()
.unwrap()
.table
.values()
.into_iter()
.filter(|x| x.id != me)
.map(|x| x.requests_addr)
.collect();
v.clone()
}
#[test]
#[ignore]
fn test_multi_node() {
logger::setup();
const N: usize = 5;
trace!("test_multi_accountant_stub");
let leader = TestNode::new();
let alice = Mint::new(10_000);
let bob_pubkey = KeyPair::new().pubkey();
let exit = Arc::new(AtomicBool::new(false));
let leader_bank = Bank::new(&alice);
let events_addr = leader.data.events_addr;
let server = Server::new_leader(
leader_bank,
alice.last_id(),
None,
leader.data.clone(),
leader.sockets.requests,
leader.sockets.event,
leader.sockets.broadcast,
leader.sockets.respond,
leader.sockets.gossip,
exit.clone(),
sink(),
);
let mut threads = server.thread_hdls;
for _ in 0..N {
replicant(&leader.data, exit.clone(), &alice, &mut threads);
}
let addrs = converge(&leader.data, exit.clone(), N + 2, &mut threads);
//contains the leader addr as well
assert_eq!(addrs.len(), N + 1);
//verify leader can do transfer
let leader_balance = {
let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
requests_socket
.set_read_timeout(Some(Duration::new(1, 0)))
.unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let mut client = ThinClient::new(
leader.data.requests_addr,
requests_socket,
leader.data.events_addr,
events_socket,
);
trace!("getting leader last_id");
let last_id = client.get_last_id().wait().unwrap();
info!("executing leader transer");
let _sig = client
.transfer(500, &alice.keypair(), bob_pubkey, &last_id)
.unwrap();
trace!("getting leader balance");
client.get_balance(&bob_pubkey).unwrap()
};
assert_eq!(leader_balance, 500);
//verify replicant has the same balance
let mut success = 0usize;
for serve_addr in addrs.iter() {
let requests_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
requests_socket
.set_read_timeout(Some(Duration::new(1, 0)))
.unwrap();
let events_socket = UdpSocket::bind("0.0.0.0:0").unwrap();
let mut client =
ThinClient::new(*serve_addr, requests_socket, events_addr, events_socket);
for i in 0..10 {
trace!("getting replicant balance {} {}/10", *serve_addr, i);
if let Ok(bal) = client.get_balance(&bob_pubkey) {
trace!("replicant balance {}", bal);
if bal == leader_balance {
success += 1;
break;
}
}
sleep(Duration::new(1, 0));
}
}
assert_eq!(success, addrs.len());
exit.store(true, Ordering::Relaxed);
for t in threads {
t.join().unwrap();
}
}
}