solana/ledger/tests/shred.rs

262 lines
9.4 KiB
Rust

#![allow(clippy::arithmetic_side_effects)]
use {
solana_entry::entry::Entry,
solana_ledger::shred::{
max_entries_per_n_shred, verify_test_data_shred, ProcessShredsStats, ReedSolomonCache,
Shred, Shredder, DATA_SHREDS_PER_FEC_BLOCK, LEGACY_SHRED_DATA_CAPACITY,
},
solana_sdk::{
clock::Slot,
hash::Hash,
signature::{Keypair, Signer},
system_transaction,
},
std::{
collections::{BTreeMap, HashSet},
convert::TryInto,
sync::Arc,
},
};
type IndexShredsMap = BTreeMap<u32, Vec<Shred>>;
#[test]
fn test_multi_fec_block_coding() {
let keypair = Arc::new(Keypair::new());
let slot = 0x1234_5678_9abc_def0;
let shredder = Shredder::new(slot, slot - 5, 0, 0).unwrap();
let num_fec_sets = 100;
let num_data_shreds = DATA_SHREDS_PER_FEC_BLOCK * num_fec_sets;
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let tx0 = system_transaction::transfer(&keypair0, &keypair1.pubkey(), 1, Hash::default());
let entry = Entry::new(&Hash::default(), 1, vec![tx0]);
let num_entries = max_entries_per_n_shred(
&entry,
num_data_shreds as u64,
Some(LEGACY_SHRED_DATA_CAPACITY),
);
let entries: Vec<_> = (0..num_entries)
.map(|_| {
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let tx0 =
system_transaction::transfer(&keypair0, &keypair1.pubkey(), 1, Hash::default());
Entry::new(&Hash::default(), 1, vec![tx0])
})
.collect();
let reed_solomon_cache = ReedSolomonCache::default();
let serialized_entries = bincode::serialize(&entries).unwrap();
let (data_shreds, coding_shreds) = shredder.entries_to_shreds(
&keypair,
&entries,
true, // is_last_in_slot
0, // next_shred_index
0, // next_code_index
false, // merkle_variant
&reed_solomon_cache,
&mut ProcessShredsStats::default(),
);
let next_index = data_shreds.last().unwrap().index() + 1;
assert_eq!(next_index as usize, num_data_shreds);
assert_eq!(data_shreds.len(), num_data_shreds);
assert_eq!(coding_shreds.len(), num_data_shreds);
for c in &coding_shreds {
assert!(!c.is_data());
}
let mut all_shreds = vec![];
for i in 0..num_fec_sets {
let shred_start_index = DATA_SHREDS_PER_FEC_BLOCK * i;
let end_index = shred_start_index + DATA_SHREDS_PER_FEC_BLOCK - 1;
let fec_set_shreds = data_shreds[shred_start_index..=end_index]
.iter()
.cloned()
.chain(coding_shreds[shred_start_index..=end_index].iter().cloned())
.collect::<Vec<_>>();
let mut shred_info: Vec<Shred> = fec_set_shreds
.iter()
.enumerate()
.filter_map(|(i, b)| if i % 2 != 0 { Some(b.clone()) } else { None })
.collect();
let recovered_data =
Shredder::try_recovery(shred_info.clone(), &reed_solomon_cache).unwrap();
for (i, recovered_shred) in recovered_data.into_iter().enumerate() {
let index = shred_start_index + (i * 2);
verify_test_data_shred(
&recovered_shred,
index.try_into().unwrap(),
slot,
slot - 5,
&keypair.pubkey(),
true,
index == end_index,
index == end_index,
);
shred_info.insert(i * 2, recovered_shred);
}
all_shreds.extend(shred_info.into_iter().take(DATA_SHREDS_PER_FEC_BLOCK));
}
let result = Shredder::deshred(&all_shreds[..]).unwrap();
assert_eq!(serialized_entries[..], result[..serialized_entries.len()]);
}
#[test]
fn test_multi_fec_block_different_size_coding() {
let slot = 0x1234_5678_9abc_def0;
let parent_slot = slot - 5;
let keypair = Arc::new(Keypair::new());
let (fec_data, fec_coding, num_shreds_per_iter) =
setup_different_sized_fec_blocks(slot, parent_slot, keypair.clone());
let total_num_data_shreds: usize = fec_data.values().map(|x| x.len()).sum();
let reed_solomon_cache = ReedSolomonCache::default();
// Test recovery
for (fec_data_shreds, fec_coding_shreds) in fec_data.values().zip(fec_coding.values()) {
let first_data_index = fec_data_shreds.first().unwrap().index() as usize;
let all_shreds: Vec<Shred> = fec_data_shreds
.iter()
.step_by(2)
.chain(fec_coding_shreds.iter().step_by(2))
.cloned()
.collect();
let recovered_data = Shredder::try_recovery(all_shreds, &reed_solomon_cache).unwrap();
// Necessary in order to ensure the last shred in the slot
// is part of the recovered set, and that the below `index`
// calculation in the loop is correct
assert!(fec_data_shreds.len() % 2 == 0);
for (i, recovered_shred) in recovered_data.into_iter().enumerate() {
let index = first_data_index + (i * 2) + 1;
verify_test_data_shred(
&recovered_shred,
index.try_into().unwrap(),
slot,
parent_slot,
&keypair.pubkey(),
true,
index == total_num_data_shreds - 1,
index % num_shreds_per_iter == num_shreds_per_iter - 1,
);
}
}
}
fn sort_data_coding_into_fec_sets(
data_shreds: Vec<Shred>,
coding_shreds: Vec<Shred>,
fec_data: &mut IndexShredsMap,
fec_coding: &mut IndexShredsMap,
data_slot_and_index: &mut HashSet<(Slot, u32)>,
coding_slot_and_index: &mut HashSet<(Slot, u32)>,
) {
for shred in data_shreds {
assert!(shred.is_data());
let key = (shred.slot(), shred.index());
// Make sure there are no duplicates for same key
assert!(!data_slot_and_index.contains(&key));
data_slot_and_index.insert(key);
let fec_entry = fec_data.entry(shred.fec_set_index()).or_default();
fec_entry.push(shred);
}
for shred in coding_shreds {
assert!(!shred.is_data());
let key = (shred.slot(), shred.index());
// Make sure there are no duplicates for same key
assert!(!coding_slot_and_index.contains(&key));
coding_slot_and_index.insert(key);
let fec_entry = fec_coding.entry(shred.fec_set_index()).or_default();
fec_entry.push(shred);
}
}
#[allow(clippy::assertions_on_constants)]
fn setup_different_sized_fec_blocks(
slot: Slot,
parent_slot: Slot,
keypair: Arc<Keypair>,
) -> (IndexShredsMap, IndexShredsMap, usize) {
let shredder = Shredder::new(slot, parent_slot, 0, 0).unwrap();
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let tx0 = system_transaction::transfer(&keypair0, &keypair1.pubkey(), 1, Hash::default());
let entry = Entry::new(&Hash::default(), 1, vec![tx0]);
// Make enough entries for `DATA_SHREDS_PER_FEC_BLOCK + 2` shreds so one
// fec set will have `DATA_SHREDS_PER_FEC_BLOCK` shreds and the next
// will have 2 shreds.
assert!(DATA_SHREDS_PER_FEC_BLOCK > 2);
let num_shreds_per_iter = DATA_SHREDS_PER_FEC_BLOCK + 2;
let num_entries = max_entries_per_n_shred(
&entry,
num_shreds_per_iter as u64,
Some(LEGACY_SHRED_DATA_CAPACITY),
);
let entries: Vec<_> = (0..num_entries)
.map(|_| {
let keypair0 = Keypair::new();
let keypair1 = Keypair::new();
let tx0 =
system_transaction::transfer(&keypair0, &keypair1.pubkey(), 1, Hash::default());
Entry::new(&Hash::default(), 1, vec![tx0])
})
.collect();
// Run the shredder twice, generate data and coding shreds
let mut next_shred_index = 0;
let mut next_code_index = 0;
let mut fec_data = BTreeMap::new();
let mut fec_coding = BTreeMap::new();
let mut data_slot_and_index = HashSet::new();
let mut coding_slot_and_index = HashSet::new();
let total_num_data_shreds: usize = 2 * num_shreds_per_iter;
let reed_solomon_cache = ReedSolomonCache::default();
for i in 0..2 {
let is_last = i == 1;
let (data_shreds, coding_shreds) = shredder.entries_to_shreds(
&keypair,
&entries,
is_last,
next_shred_index,
next_code_index,
false, // merkle_variant
&reed_solomon_cache,
&mut ProcessShredsStats::default(),
);
for shred in &data_shreds {
if (shred.index() as usize) == total_num_data_shreds - 1 {
assert!(shred.data_complete());
assert!(shred.last_in_slot());
} else if (shred.index() as usize) % num_shreds_per_iter == num_shreds_per_iter - 1 {
assert!(shred.data_complete());
} else {
assert!(!shred.data_complete());
assert!(!shred.last_in_slot());
}
}
assert_eq!(data_shreds.len(), num_shreds_per_iter);
next_shred_index = data_shreds.last().unwrap().index() + 1;
next_code_index = coding_shreds.last().unwrap().index() + 1;
sort_data_coding_into_fec_sets(
data_shreds,
coding_shreds,
&mut fec_data,
&mut fec_coding,
&mut data_slot_and_index,
&mut coding_slot_and_index,
);
}
assert_eq!(fec_data.len(), fec_coding.len());
(fec_data, fec_coding, num_shreds_per_iter)
}