solana/local-cluster/tests/local_cluster.rs

5509 lines
210 KiB
Rust

#![allow(clippy::arithmetic_side_effects)]
use {
assert_matches::assert_matches,
crossbeam_channel::{unbounded, Receiver},
gag::BufferRedirect,
log::*,
serial_test::serial,
solana_accounts_db::{
accounts_db::create_accounts_run_and_snapshot_dirs, hardened_unpack::open_genesis_config,
},
solana_client::thin_client::ThinClient,
solana_core::{
consensus::{
tower_storage::FileTowerStorage, Tower, SWITCH_FORK_THRESHOLD, VOTE_THRESHOLD_DEPTH,
},
optimistic_confirmation_verifier::OptimisticConfirmationVerifier,
replay_stage::DUPLICATE_THRESHOLD,
validator::ValidatorConfig,
},
solana_download_utils::download_snapshot_archive,
solana_entry::entry::create_ticks,
solana_gossip::{contact_info::LegacyContactInfo, gossip_service::discover_cluster},
solana_ledger::{
ancestor_iterator::AncestorIterator,
bank_forks_utils,
blockstore::{entries_to_test_shreds, Blockstore},
blockstore_meta::DuplicateSlotProof,
blockstore_processor::ProcessOptions,
leader_schedule::FixedSchedule,
shred::Shred,
use_snapshot_archives_at_startup::UseSnapshotArchivesAtStartup,
},
solana_local_cluster::{
cluster::{Cluster, ClusterValidatorInfo},
cluster_tests,
integration_tests::{
copy_blocks, create_custom_leader_schedule,
create_custom_leader_schedule_with_random_keys, farf_dir, generate_account_paths,
last_root_in_tower, last_vote_in_tower, ms_for_n_slots, open_blockstore,
purge_slots_with_count, remove_tower, remove_tower_if_exists, restore_tower,
run_cluster_partition, run_kill_partition_switch_threshold, save_tower,
setup_snapshot_validator_config, test_faulty_node,
wait_for_last_vote_in_tower_to_land_in_ledger, SnapshotValidatorConfig,
ValidatorTestConfig, DEFAULT_CLUSTER_LAMPORTS, DEFAULT_NODE_STAKE, RUST_LOG_FILTER,
},
local_cluster::{ClusterConfig, LocalCluster},
validator_configs::*,
},
solana_pubsub_client::pubsub_client::PubsubClient,
solana_rpc_client::rpc_client::RpcClient,
solana_rpc_client_api::{
config::{
RpcBlockSubscribeConfig, RpcBlockSubscribeFilter, RpcProgramAccountsConfig,
RpcSignatureSubscribeConfig,
},
response::RpcSignatureResult,
},
solana_runtime::{
commitment::VOTE_THRESHOLD_SIZE,
snapshot_archive_info::SnapshotArchiveInfoGetter,
snapshot_bank_utils,
snapshot_config::SnapshotConfig,
snapshot_package::SnapshotKind,
snapshot_utils::{self},
vote_parser,
},
solana_sdk::{
account::AccountSharedData,
client::{AsyncClient, SyncClient},
clock::{self, Slot, DEFAULT_TICKS_PER_SLOT, MAX_PROCESSING_AGE},
commitment_config::CommitmentConfig,
epoch_schedule::MINIMUM_SLOTS_PER_EPOCH,
genesis_config::ClusterType,
hard_forks::HardForks,
hash::Hash,
poh_config::PohConfig,
pubkey::Pubkey,
signature::{Keypair, Signer},
system_program, system_transaction,
vote::state::VoteStateUpdate,
},
solana_streamer::socket::SocketAddrSpace,
solana_turbine::broadcast_stage::{
broadcast_duplicates_run::{BroadcastDuplicatesConfig, ClusterPartition},
BroadcastStageType,
},
solana_vote_program::{vote_state::MAX_LOCKOUT_HISTORY, vote_transaction},
std::{
collections::{BTreeSet, HashMap, HashSet},
fs,
io::Read,
iter,
num::NonZeroUsize,
path::Path,
sync::{
atomic::{AtomicBool, AtomicUsize, Ordering},
Arc, Mutex,
},
thread::{sleep, Builder, JoinHandle},
time::{Duration, Instant},
},
};
#[test]
fn test_local_cluster_start_and_exit() {
solana_logger::setup();
let num_nodes = 1;
let cluster = LocalCluster::new_with_equal_stakes(
num_nodes,
DEFAULT_CLUSTER_LAMPORTS,
DEFAULT_NODE_STAKE,
SocketAddrSpace::Unspecified,
);
assert_eq!(cluster.validators.len(), num_nodes);
}
#[test]
fn test_local_cluster_start_and_exit_with_config() {
solana_logger::setup();
const NUM_NODES: usize = 1;
let mut config = ClusterConfig {
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
NUM_NODES,
),
node_stakes: vec![DEFAULT_NODE_STAKE; NUM_NODES],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
ticks_per_slot: 8,
slots_per_epoch: MINIMUM_SLOTS_PER_EPOCH,
stakers_slot_offset: MINIMUM_SLOTS_PER_EPOCH,
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
assert_eq!(cluster.validators.len(), NUM_NODES);
}
#[test]
#[serial]
fn test_spend_and_verify_all_nodes_1() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_spend_and_verify_all_nodes_1");
let num_nodes = 1;
let local = LocalCluster::new_with_equal_stakes(
num_nodes,
DEFAULT_CLUSTER_LAMPORTS,
DEFAULT_NODE_STAKE,
SocketAddrSpace::Unspecified,
);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
SocketAddrSpace::Unspecified,
&local.connection_cache,
);
}
#[test]
#[serial]
fn test_spend_and_verify_all_nodes_2() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_spend_and_verify_all_nodes_2");
let num_nodes = 2;
let local = LocalCluster::new_with_equal_stakes(
num_nodes,
DEFAULT_CLUSTER_LAMPORTS,
DEFAULT_NODE_STAKE,
SocketAddrSpace::Unspecified,
);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
SocketAddrSpace::Unspecified,
&local.connection_cache,
);
}
#[test]
#[serial]
fn test_spend_and_verify_all_nodes_3() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_spend_and_verify_all_nodes_3");
let num_nodes = 3;
let local = LocalCluster::new_with_equal_stakes(
num_nodes,
DEFAULT_CLUSTER_LAMPORTS,
DEFAULT_NODE_STAKE,
SocketAddrSpace::Unspecified,
);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
SocketAddrSpace::Unspecified,
&local.connection_cache,
);
}
#[test]
#[serial]
#[ignore]
fn test_local_cluster_signature_subscribe() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let num_nodes = 2;
let cluster = LocalCluster::new_with_equal_stakes(
num_nodes,
DEFAULT_CLUSTER_LAMPORTS,
DEFAULT_NODE_STAKE,
SocketAddrSpace::Unspecified,
);
let nodes = cluster.get_node_pubkeys();
// Get non leader
let non_bootstrap_id = nodes
.into_iter()
.find(|id| id != cluster.entry_point_info.pubkey())
.unwrap();
let non_bootstrap_info = cluster.get_contact_info(&non_bootstrap_id).unwrap();
let (rpc, tpu) = LegacyContactInfo::try_from(non_bootstrap_info)
.map(|node| {
cluster_tests::get_client_facing_addr(cluster.connection_cache.protocol(), node)
})
.unwrap();
let tx_client = ThinClient::new(rpc, tpu, cluster.connection_cache.clone());
let (blockhash, _) = tx_client
.get_latest_blockhash_with_commitment(CommitmentConfig::processed())
.unwrap();
let mut transaction = system_transaction::transfer(
&cluster.funding_keypair,
&solana_sdk::pubkey::new_rand(),
10,
blockhash,
);
let (mut sig_subscribe_client, receiver) = PubsubClient::signature_subscribe(
&format!(
"ws://{}",
&non_bootstrap_info.rpc_pubsub().unwrap().to_string()
),
&transaction.signatures[0],
Some(RpcSignatureSubscribeConfig {
commitment: Some(CommitmentConfig::processed()),
enable_received_notification: Some(true),
}),
)
.unwrap();
tx_client
.retry_transfer(&cluster.funding_keypair, &mut transaction, 5)
.unwrap();
let mut got_received_notification = false;
loop {
let responses: Vec<_> = receiver.try_iter().collect();
let mut should_break = false;
for response in responses {
match response.value {
RpcSignatureResult::ProcessedSignature(_) => {
should_break = true;
break;
}
RpcSignatureResult::ReceivedSignature(_) => {
got_received_notification = true;
}
}
}
if should_break {
break;
}
sleep(Duration::from_millis(100));
}
// If we don't drop the cluster, the blocking web socket service
// won't return, and the `sig_subscribe_client` won't shut down
drop(cluster);
sig_subscribe_client.shutdown().unwrap();
assert!(got_received_notification);
}
#[test]
#[allow(unused_attributes)]
#[ignore]
fn test_spend_and_verify_all_nodes_env_num_nodes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let num_nodes: usize = std::env::var("NUM_NODES")
.expect("please set environment variable NUM_NODES")
.parse()
.expect("could not parse NUM_NODES as a number");
let local = LocalCluster::new_with_equal_stakes(
num_nodes,
DEFAULT_CLUSTER_LAMPORTS,
DEFAULT_NODE_STAKE,
SocketAddrSpace::Unspecified,
);
cluster_tests::spend_and_verify_all_nodes(
&local.entry_point_info,
&local.funding_keypair,
num_nodes,
HashSet::new(),
SocketAddrSpace::Unspecified,
&local.connection_cache,
);
}
#[test]
#[serial]
fn test_two_unbalanced_stakes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_two_unbalanced_stakes");
let validator_config = ValidatorConfig::default_for_test();
let num_ticks_per_second = 100;
let num_ticks_per_slot = 10;
let num_slots_per_epoch = MINIMUM_SLOTS_PER_EPOCH;
let mut cluster = LocalCluster::new(
&mut ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE * 100, DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + DEFAULT_NODE_STAKE * 100,
validator_configs: make_identical_validator_configs(&validator_config, 2),
ticks_per_slot: num_ticks_per_slot,
slots_per_epoch: num_slots_per_epoch,
stakers_slot_offset: num_slots_per_epoch,
poh_config: PohConfig::new_sleep(Duration::from_millis(1000 / num_ticks_per_second)),
..ClusterConfig::default()
},
SocketAddrSpace::Unspecified,
);
cluster_tests::sleep_n_epochs(
10.0,
&cluster.genesis_config.poh_config,
num_ticks_per_slot,
num_slots_per_epoch,
);
cluster.close_preserve_ledgers();
let leader_pubkey = *cluster.entry_point_info.pubkey();
let leader_ledger = cluster.validators[&leader_pubkey].info.ledger_path.clone();
cluster_tests::verify_ledger_ticks(&leader_ledger, num_ticks_per_slot as usize);
}
#[test]
#[serial]
fn test_forwarding() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// Set up a cluster where one node is never the leader, so all txs sent to this node
// will be have to be forwarded in order to be confirmed
let mut config = ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE * 100, DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + DEFAULT_NODE_STAKE * 100,
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
2,
),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let cluster_nodes = discover_cluster(
&cluster.entry_point_info.gossip().unwrap(),
2,
SocketAddrSpace::Unspecified,
)
.unwrap();
assert!(cluster_nodes.len() >= 2);
let leader_pubkey = *cluster.entry_point_info.pubkey();
let validator_info = cluster_nodes
.iter()
.find(|c| c.pubkey() != &leader_pubkey)
.unwrap();
// Confirm that transactions were forwarded to and processed by the leader.
cluster_tests::send_many_transactions(
validator_info,
&cluster.funding_keypair,
&cluster.connection_cache,
10,
20,
);
}
#[test]
#[serial]
fn test_restart_node() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_restart_node");
let slots_per_epoch = MINIMUM_SLOTS_PER_EPOCH * 2;
let ticks_per_slot = 16;
let validator_config = ValidatorConfig::default_for_test();
let mut cluster = LocalCluster::new(
&mut ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: vec![safe_clone_config(&validator_config)],
ticks_per_slot,
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
..ClusterConfig::default()
},
SocketAddrSpace::Unspecified,
);
let nodes = cluster.get_node_pubkeys();
cluster_tests::sleep_n_epochs(
1.0,
&cluster.genesis_config.poh_config,
clock::DEFAULT_TICKS_PER_SLOT,
slots_per_epoch,
);
cluster.exit_restart_node(&nodes[0], validator_config, SocketAddrSpace::Unspecified);
cluster_tests::sleep_n_epochs(
0.5,
&cluster.genesis_config.poh_config,
clock::DEFAULT_TICKS_PER_SLOT,
slots_per_epoch,
);
cluster_tests::send_many_transactions(
&LegacyContactInfo::try_from(&cluster.entry_point_info).unwrap(),
&cluster.funding_keypair,
&cluster.connection_cache,
10,
1,
);
}
#[test]
#[serial]
fn test_mainnet_beta_cluster_type() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let mut config = ClusterConfig {
cluster_type: ClusterType::MainnetBeta,
node_stakes: vec![DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
1,
),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let cluster_nodes = discover_cluster(
&cluster.entry_point_info.gossip().unwrap(),
1,
SocketAddrSpace::Unspecified,
)
.unwrap();
assert_eq!(cluster_nodes.len(), 1);
let (rpc, tpu) = LegacyContactInfo::try_from(&cluster.entry_point_info)
.map(|node| {
cluster_tests::get_client_facing_addr(cluster.connection_cache.protocol(), node)
})
.unwrap();
let client = ThinClient::new(rpc, tpu, cluster.connection_cache.clone());
// Programs that are available at epoch 0
for program_id in [
&solana_config_program::id(),
&solana_sdk::system_program::id(),
&solana_sdk::stake::program::id(),
&solana_vote_program::id(),
&solana_sdk::bpf_loader_deprecated::id(),
&solana_sdk::bpf_loader::id(),
&solana_sdk::bpf_loader_upgradeable::id(),
]
.iter()
{
assert_matches!(
(
program_id,
client
.get_account_with_commitment(program_id, CommitmentConfig::processed())
.unwrap()
),
(_program_id, Some(_))
);
}
// Programs that are not available at epoch 0
for program_id in [].iter() {
assert_eq!(
(
program_id,
client
.get_account_with_commitment(program_id, CommitmentConfig::processed())
.unwrap()
),
(program_id, None)
);
}
}
#[test]
#[serial]
fn test_snapshot_download() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 1 node
let snapshot_interval_slots = 50;
let num_account_paths = 3;
let leader_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let validator_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let stake = DEFAULT_NODE_STAKE;
let mut config = ClusterConfig {
node_stakes: vec![stake],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: make_identical_validator_configs(
&leader_snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let full_snapshot_archives_dir = &leader_snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir;
trace!("Waiting for snapshot");
let full_snapshot_archive_info = cluster.wait_for_next_full_snapshot(
full_snapshot_archives_dir,
Some(Duration::from_secs(5 * 60)),
);
trace!("found: {}", full_snapshot_archive_info.path().display());
// Download the snapshot, then boot a validator from it.
download_snapshot_archive(
&cluster.entry_point_info.rpc().unwrap(),
&validator_snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir,
&validator_snapshot_test_config
.validator_config
.snapshot_config
.incremental_snapshot_archives_dir,
(
full_snapshot_archive_info.slot(),
*full_snapshot_archive_info.hash(),
),
SnapshotKind::FullSnapshot,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_full_snapshot_archives_to_retain,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_incremental_snapshot_archives_to_retain,
false,
&mut None,
)
.unwrap();
cluster.add_validator(
&validator_snapshot_test_config.validator_config,
stake,
Arc::new(Keypair::new()),
None,
SocketAddrSpace::Unspecified,
);
}
#[test]
#[serial]
fn test_incremental_snapshot_download() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 1 node
let accounts_hash_interval = 3;
let incremental_snapshot_interval = accounts_hash_interval * 3;
let full_snapshot_interval = incremental_snapshot_interval * 3;
let num_account_paths = 3;
let leader_snapshot_test_config = SnapshotValidatorConfig::new(
full_snapshot_interval,
incremental_snapshot_interval,
accounts_hash_interval,
num_account_paths,
);
let validator_snapshot_test_config = SnapshotValidatorConfig::new(
full_snapshot_interval,
incremental_snapshot_interval,
accounts_hash_interval,
num_account_paths,
);
let stake = DEFAULT_NODE_STAKE;
let mut config = ClusterConfig {
node_stakes: vec![stake],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: make_identical_validator_configs(
&leader_snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let full_snapshot_archives_dir = &leader_snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir;
let incremental_snapshot_archives_dir = &leader_snapshot_test_config
.validator_config
.snapshot_config
.incremental_snapshot_archives_dir;
debug!("snapshot config:\n\tfull snapshot interval: {}\n\tincremental snapshot interval: {}\n\taccounts hash interval: {}",
full_snapshot_interval,
incremental_snapshot_interval,
accounts_hash_interval);
debug!(
"leader config:\n\tbank snapshots dir: {}\n\tfull snapshot archives dir: {}\n\tincremental snapshot archives dir: {}",
leader_snapshot_test_config
.bank_snapshots_dir
.path()
.display(),
leader_snapshot_test_config
.full_snapshot_archives_dir
.path()
.display(),
leader_snapshot_test_config
.incremental_snapshot_archives_dir
.path()
.display(),
);
debug!(
"validator config:\n\tbank snapshots dir: {}\n\tfull snapshot archives dir: {}\n\tincremental snapshot archives dir: {}",
validator_snapshot_test_config
.bank_snapshots_dir
.path()
.display(),
validator_snapshot_test_config
.full_snapshot_archives_dir
.path()
.display(),
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path()
.display(),
);
trace!("Waiting for snapshots");
let (incremental_snapshot_archive_info, full_snapshot_archive_info) = cluster
.wait_for_next_incremental_snapshot(
full_snapshot_archives_dir,
incremental_snapshot_archives_dir,
Some(Duration::from_secs(5 * 60)),
);
trace!(
"found: {} and {}",
full_snapshot_archive_info.path().display(),
incremental_snapshot_archive_info.path().display()
);
// Download the snapshots, then boot a validator from them.
download_snapshot_archive(
&cluster.entry_point_info.rpc().unwrap(),
&validator_snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir,
&validator_snapshot_test_config
.validator_config
.snapshot_config
.incremental_snapshot_archives_dir,
(
full_snapshot_archive_info.slot(),
*full_snapshot_archive_info.hash(),
),
SnapshotKind::FullSnapshot,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_full_snapshot_archives_to_retain,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_incremental_snapshot_archives_to_retain,
false,
&mut None,
)
.unwrap();
download_snapshot_archive(
&cluster.entry_point_info.rpc().unwrap(),
&validator_snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir,
&validator_snapshot_test_config
.validator_config
.snapshot_config
.incremental_snapshot_archives_dir,
(
incremental_snapshot_archive_info.slot(),
*incremental_snapshot_archive_info.hash(),
),
SnapshotKind::IncrementalSnapshot(incremental_snapshot_archive_info.base_slot()),
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_full_snapshot_archives_to_retain,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_incremental_snapshot_archives_to_retain,
false,
&mut None,
)
.unwrap();
cluster.add_validator(
&validator_snapshot_test_config.validator_config,
stake,
Arc::new(Keypair::new()),
None,
SocketAddrSpace::Unspecified,
);
}
/// Test the scenario where a node starts up from a snapshot and its blockstore has enough new
/// roots that cross the full snapshot interval. In this scenario, the node needs to take a full
/// snapshot while processing the blockstore so that once the background services start up, there
/// is the correct full snapshot available to take subsequent incremental snapshots.
///
/// For this test...
/// - Start a leader node and run it long enough to take a full and incremental snapshot
/// - Download those snapshots to a validator node
/// - Copy the validator snapshots to a back up directory
/// - Start up the validator node
/// - Wait for the validator node to see enough root slots to cross the full snapshot interval
/// - Delete the snapshots on the validator node and restore the ones from the backup
/// - Restart the validator node to trigger the scenario we're trying to test
/// - Wait for the validator node to generate a new incremental snapshot
/// - Copy the new incremental snapshot (and its associated full snapshot) to another new validator
/// - Start up this new validator to ensure the snapshots from ^^^ are good
#[test]
#[serial]
fn test_incremental_snapshot_download_with_crossing_full_snapshot_interval_at_startup() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// If these intervals change, also make sure to change the loop timers accordingly.
let accounts_hash_interval = 3;
let incremental_snapshot_interval = accounts_hash_interval * 3;
let full_snapshot_interval = incremental_snapshot_interval * 5;
let num_account_paths = 3;
let leader_snapshot_test_config = SnapshotValidatorConfig::new(
full_snapshot_interval,
incremental_snapshot_interval,
accounts_hash_interval,
num_account_paths,
);
let validator_snapshot_test_config = SnapshotValidatorConfig::new(
full_snapshot_interval,
incremental_snapshot_interval,
accounts_hash_interval,
num_account_paths,
);
let stake = DEFAULT_NODE_STAKE;
let mut config = ClusterConfig {
node_stakes: vec![stake],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: make_identical_validator_configs(
&leader_snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
info!("snapshot config:\n\tfull snapshot interval: {}\n\tincremental snapshot interval: {}\n\taccounts hash interval: {}",
full_snapshot_interval,
incremental_snapshot_interval,
accounts_hash_interval);
debug!(
"leader config:\n\tbank snapshots dir: {}\n\tfull snapshot archives dir: {}\n\tincremental snapshot archives dir: {}",
leader_snapshot_test_config
.bank_snapshots_dir
.path()
.display(),
leader_snapshot_test_config
.full_snapshot_archives_dir
.path()
.display(),
leader_snapshot_test_config
.incremental_snapshot_archives_dir
.path()
.display(),
);
debug!(
"validator config:\n\tbank snapshots dir: {}\n\tfull snapshot archives dir: {}\n\tincremental snapshot archives dir: {}",
validator_snapshot_test_config
.bank_snapshots_dir
.path()
.display(),
validator_snapshot_test_config
.full_snapshot_archives_dir
.path()
.display(),
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path()
.display(),
);
info!("Waiting for leader to create the next incremental snapshot...");
let (incremental_snapshot_archive, full_snapshot_archive) =
LocalCluster::wait_for_next_incremental_snapshot(
&cluster,
leader_snapshot_test_config
.full_snapshot_archives_dir
.path(),
leader_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
Some(Duration::from_secs(5 * 60)),
);
info!(
"Found snapshots:\n\tfull snapshot: {}\n\tincremental snapshot: {}",
full_snapshot_archive.path().display(),
incremental_snapshot_archive.path().display()
);
assert_eq!(
full_snapshot_archive.slot(),
incremental_snapshot_archive.base_slot()
);
info!("Waiting for leader to create snapshots... DONE");
// Download the snapshots, then boot a validator from them.
info!("Downloading full snapshot to validator...");
download_snapshot_archive(
&cluster.entry_point_info.rpc().unwrap(),
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
(full_snapshot_archive.slot(), *full_snapshot_archive.hash()),
SnapshotKind::FullSnapshot,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_full_snapshot_archives_to_retain,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_incremental_snapshot_archives_to_retain,
false,
&mut None,
)
.unwrap();
let downloaded_full_snapshot_archive = snapshot_utils::get_highest_full_snapshot_archive_info(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
)
.unwrap();
info!(
"Downloaded full snapshot, slot: {}",
downloaded_full_snapshot_archive.slot()
);
info!("Downloading incremental snapshot to validator...");
download_snapshot_archive(
&cluster.entry_point_info.rpc().unwrap(),
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
(
incremental_snapshot_archive.slot(),
*incremental_snapshot_archive.hash(),
),
SnapshotKind::IncrementalSnapshot(incremental_snapshot_archive.base_slot()),
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_full_snapshot_archives_to_retain,
validator_snapshot_test_config
.validator_config
.snapshot_config
.maximum_incremental_snapshot_archives_to_retain,
false,
&mut None,
)
.unwrap();
let downloaded_incremental_snapshot_archive =
snapshot_utils::get_highest_incremental_snapshot_archive_info(
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
full_snapshot_archive.slot(),
)
.unwrap();
info!(
"Downloaded incremental snapshot, slot: {}, base slot: {}",
downloaded_incremental_snapshot_archive.slot(),
downloaded_incremental_snapshot_archive.base_slot(),
);
assert_eq!(
downloaded_full_snapshot_archive.slot(),
downloaded_incremental_snapshot_archive.base_slot()
);
// closure to copy files in a directory to another directory
let copy_files = |from: &Path, to: &Path| {
trace!(
"copying files from dir {}, to dir {}",
from.display(),
to.display()
);
for entry in fs::read_dir(from).unwrap() {
let entry = entry.unwrap();
if entry.file_type().unwrap().is_dir() {
continue;
}
let from_file_path = entry.path();
let to_file_path = to.join(from_file_path.file_name().unwrap());
trace!(
"\t\tcopying file from {} to {}...",
from_file_path.display(),
to_file_path.display()
);
fs::copy(from_file_path, to_file_path).unwrap();
}
};
// closure to delete files in a directory
let delete_files = |dir: &Path| {
trace!("deleting files in dir {}", dir.display());
for entry in fs::read_dir(dir).unwrap() {
let entry = entry.unwrap();
if entry.file_type().unwrap().is_dir() {
continue;
}
let file_path = entry.path();
trace!("\t\tdeleting file {}...", file_path.display());
fs::remove_file(file_path).unwrap();
}
};
let copy_files_with_remote = |from: &Path, to: &Path| {
copy_files(from, to);
let remote_from = snapshot_utils::build_snapshot_archives_remote_dir(from);
let remote_to = snapshot_utils::build_snapshot_archives_remote_dir(to);
let _ = fs::create_dir_all(&remote_from);
let _ = fs::create_dir_all(&remote_to);
copy_files(&remote_from, &remote_to);
};
let delete_files_with_remote = |from: &Path| {
delete_files(from);
let remote_dir = snapshot_utils::build_snapshot_archives_remote_dir(from);
let _ = fs::create_dir_all(&remote_dir);
delete_files(&remote_dir);
};
// After downloading the snapshots, copy them over to a backup directory. Later we'll need to
// restart the node and guarantee that the only snapshots present are these initial ones. So,
// the easiest way to do that is create a backup now, delete the ones on the node before
// restart, then copy the backup ones over again.
let backup_validator_full_snapshot_archives_dir = tempfile::tempdir_in(farf_dir()).unwrap();
trace!(
"Backing up validator full snapshots to dir: {}...",
backup_validator_full_snapshot_archives_dir.path().display()
);
copy_files_with_remote(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
backup_validator_full_snapshot_archives_dir.path(),
);
let backup_validator_incremental_snapshot_archives_dir =
tempfile::tempdir_in(farf_dir()).unwrap();
trace!(
"Backing up validator incremental snapshots to dir: {}...",
backup_validator_incremental_snapshot_archives_dir
.path()
.display()
);
copy_files_with_remote(
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
backup_validator_incremental_snapshot_archives_dir.path(),
);
info!("Starting the validator...");
let validator_identity = Arc::new(Keypair::new());
cluster.add_validator(
&validator_snapshot_test_config.validator_config,
stake,
validator_identity.clone(),
None,
SocketAddrSpace::Unspecified,
);
info!("Starting the validator... DONE");
// To ensure that a snapshot will be taken during startup, the blockstore needs to have roots
// that cross a full snapshot interval.
let starting_slot = incremental_snapshot_archive.slot();
let next_full_snapshot_slot = starting_slot + full_snapshot_interval;
info!("Waiting for the validator to see enough slots to cross a full snapshot interval ({next_full_snapshot_slot})...");
let timer = Instant::now();
loop {
let validator_current_slot = cluster
.get_validator_client(&validator_identity.pubkey())
.unwrap()
.get_slot_with_commitment(CommitmentConfig::finalized())
.unwrap();
trace!("validator current slot: {validator_current_slot}");
if validator_current_slot > next_full_snapshot_slot {
break;
}
assert!(
timer.elapsed() < Duration::from_secs(30),
"It should not take longer than 30 seconds to cross the next full snapshot interval."
);
std::thread::yield_now();
}
info!(
"Waited {:?} for the validator to see enough slots to cross a full snapshot interval... DONE", timer.elapsed()
);
// Get the highest full snapshot archive info for the validator, now that it has crossed the
// next full snapshot interval. We are going to use this to look up the same snapshot on the
// leader, which we'll then use to compare to the full snapshot the validator will create
// during startup. This ensures the snapshot creation process during startup is correct.
//
// Putting this all in its own block so its clear we're only intended to keep the leader's info
let leader_full_snapshot_archive_for_comparison = {
let validator_full_snapshot = snapshot_utils::get_highest_full_snapshot_archive_info(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
)
.unwrap();
// Now get the same full snapshot on the LEADER that we just got from the validator
let mut leader_full_snapshots = snapshot_utils::get_full_snapshot_archives(
leader_snapshot_test_config
.full_snapshot_archives_dir
.path(),
);
leader_full_snapshots.retain(|full_snapshot| {
full_snapshot.slot() == validator_full_snapshot.slot()
&& full_snapshot.hash() == validator_full_snapshot.hash()
});
let leader_full_snapshot = leader_full_snapshots.first().unwrap();
// And for sanity, the full snapshot from the leader and the validator MUST be the same
assert_eq!(
(
validator_full_snapshot.slot(),
validator_full_snapshot.hash()
),
(leader_full_snapshot.slot(), leader_full_snapshot.hash())
);
leader_full_snapshot.clone()
};
info!("leader full snapshot archive for comparison: {leader_full_snapshot_archive_for_comparison:#?}");
// Stop the validator before we reset its snapshots
info!("Stopping the validator...");
let validator_info = cluster.exit_node(&validator_identity.pubkey());
info!("Stopping the validator... DONE");
info!("Delete all the snapshots on the validator and restore the originals from the backup...");
delete_files_with_remote(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
);
delete_files_with_remote(
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
);
copy_files_with_remote(
backup_validator_full_snapshot_archives_dir.path(),
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
);
copy_files_with_remote(
backup_validator_incremental_snapshot_archives_dir.path(),
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
);
info!(
"Delete all the snapshots on the validator and restore the originals from the backup... DONE"
);
// Get the highest full snapshot slot *before* restarting, as a comparison
let validator_full_snapshot_slot_at_startup =
snapshot_utils::get_highest_full_snapshot_archive_slot(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
)
.unwrap();
info!(
"Restarting the validator with full snapshot {validator_full_snapshot_slot_at_startup}..."
);
cluster.restart_node(
&validator_identity.pubkey(),
validator_info,
SocketAddrSpace::Unspecified,
);
info!("Restarting the validator... DONE");
// Now, we want to ensure that the validator can make a new incremental snapshot based on the
// new full snapshot that was created during the restart.
info!("Waiting for the validator to make new snapshots...");
let validator_next_full_snapshot_slot =
validator_full_snapshot_slot_at_startup + full_snapshot_interval;
let validator_next_incremental_snapshot_slot =
validator_next_full_snapshot_slot + incremental_snapshot_interval;
info!("Waiting for validator next full snapshot slot: {validator_next_full_snapshot_slot}");
info!("Waiting for validator next incremental snapshot slot: {validator_next_incremental_snapshot_slot}");
let timer = Instant::now();
loop {
if let Some(full_snapshot_slot) = snapshot_utils::get_highest_full_snapshot_archive_slot(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
) {
if full_snapshot_slot >= validator_next_full_snapshot_slot {
if let Some(incremental_snapshot_slot) =
snapshot_utils::get_highest_incremental_snapshot_archive_slot(
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
full_snapshot_slot,
)
{
if incremental_snapshot_slot >= validator_next_incremental_snapshot_slot {
// specific incremental snapshot is not important, just that one was created
info!(
"Validator made new snapshots, full snapshot slot: {}, incremental snapshot slot: {}",
full_snapshot_slot,
incremental_snapshot_slot,
);
break;
}
}
}
}
assert!(
timer.elapsed() < Duration::from_secs(30),
"It should not take longer than 30 seconds to cross the next incremental snapshot interval."
);
std::thread::yield_now();
}
info!(
"Waited {:?} for the validator to make new snapshots... DONE",
timer.elapsed()
);
// Check to make sure that the full snapshot the validator created during startup is the same
// or one greater than the snapshot the leader created.
let validator_full_snapshot_archives = snapshot_utils::get_full_snapshot_archives(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
);
info!("validator full snapshot archives: {validator_full_snapshot_archives:#?}");
let validator_full_snapshot_archive_for_comparison = validator_full_snapshot_archives
.into_iter()
.find(|validator_full_snapshot_archive| {
validator_full_snapshot_archive.slot()
== leader_full_snapshot_archive_for_comparison.slot()
})
.expect("validator created an unexpected full snapshot");
info!("Validator full snapshot archive for comparison: {validator_full_snapshot_archive_for_comparison:#?}");
assert_eq!(
validator_full_snapshot_archive_for_comparison.hash(),
leader_full_snapshot_archive_for_comparison.hash(),
);
// And lastly, startup another node with the new snapshots to ensure they work
let final_validator_snapshot_test_config = SnapshotValidatorConfig::new(
full_snapshot_interval,
incremental_snapshot_interval,
accounts_hash_interval,
num_account_paths,
);
// Copy over the snapshots to the new node that it will boot from
copy_files(
validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
final_validator_snapshot_test_config
.full_snapshot_archives_dir
.path(),
);
copy_files(
validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
final_validator_snapshot_test_config
.incremental_snapshot_archives_dir
.path(),
);
info!("Starting final validator...");
let final_validator_identity = Arc::new(Keypair::new());
cluster.add_validator(
&final_validator_snapshot_test_config.validator_config,
stake,
final_validator_identity,
None,
SocketAddrSpace::Unspecified,
);
info!("Starting final validator... DONE");
}
#[allow(unused_attributes)]
#[test]
#[serial]
fn test_snapshot_restart_tower() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let snapshot_interval_slots = 10;
let num_account_paths = 2;
let leader_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let validator_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let mut config = ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE * 100, DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + DEFAULT_NODE_STAKE * 100,
validator_configs: vec![
safe_clone_config(&leader_snapshot_test_config.validator_config),
safe_clone_config(&validator_snapshot_test_config.validator_config),
],
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
// Let the nodes run for a while, then stop one of the validators
sleep(Duration::from_millis(5000));
let all_pubkeys = cluster.get_node_pubkeys();
let validator_id = all_pubkeys
.into_iter()
.find(|x| x != cluster.entry_point_info.pubkey())
.unwrap();
let validator_info = cluster.exit_node(&validator_id);
// Get slot after which this was generated
let full_snapshot_archives_dir = &leader_snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir;
let full_snapshot_archive_info = cluster.wait_for_next_full_snapshot(
full_snapshot_archives_dir,
Some(Duration::from_secs(5 * 60)),
);
// Copy archive to validator's snapshot output directory
let validator_archive_path = snapshot_utils::build_full_snapshot_archive_path(
validator_snapshot_test_config
.full_snapshot_archives_dir
.into_path(),
full_snapshot_archive_info.slot(),
full_snapshot_archive_info.hash(),
full_snapshot_archive_info.archive_format(),
);
fs::hard_link(full_snapshot_archive_info.path(), validator_archive_path).unwrap();
// Restart validator from snapshot, the validator's tower state in this snapshot
// will contain slots < the root bank of the snapshot. Validator should not panic.
cluster.restart_node(&validator_id, validator_info, SocketAddrSpace::Unspecified);
// Test cluster can still make progress and get confirmations in tower
// Use the restarted node as the discovery point so that we get updated
// validator's ContactInfo
let restarted_node_info = cluster.get_contact_info(&validator_id).unwrap();
cluster_tests::spend_and_verify_all_nodes(
restarted_node_info,
&cluster.funding_keypair,
1,
HashSet::new(),
SocketAddrSpace::Unspecified,
&cluster.connection_cache,
);
}
#[test]
#[serial]
fn test_snapshots_blockstore_floor() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 1 snapshotting leader
let snapshot_interval_slots = 100;
let num_account_paths = 4;
let leader_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let mut validator_snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let full_snapshot_archives_dir = &leader_snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir;
let mut config = ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: make_identical_validator_configs(
&leader_snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
trace!("Waiting for snapshot tar to be generated with slot",);
let archive_info = loop {
let archive =
snapshot_utils::get_highest_full_snapshot_archive_info(full_snapshot_archives_dir);
if archive.is_some() {
trace!("snapshot exists");
break archive.unwrap();
}
sleep(Duration::from_millis(5000));
};
// Copy archive to validator's snapshot output directory
let validator_archive_path = snapshot_utils::build_full_snapshot_archive_path(
validator_snapshot_test_config
.full_snapshot_archives_dir
.into_path(),
archive_info.slot(),
archive_info.hash(),
validator_snapshot_test_config
.validator_config
.snapshot_config
.archive_format,
);
fs::hard_link(archive_info.path(), validator_archive_path).unwrap();
let slot_floor = archive_info.slot();
// Start up a new node from a snapshot
let cluster_nodes = discover_cluster(
&cluster.entry_point_info.gossip().unwrap(),
1,
SocketAddrSpace::Unspecified,
)
.unwrap();
let mut known_validators = HashSet::new();
known_validators.insert(*cluster_nodes[0].pubkey());
validator_snapshot_test_config
.validator_config
.known_validators = Some(known_validators);
cluster.add_validator(
&validator_snapshot_test_config.validator_config,
DEFAULT_NODE_STAKE,
Arc::new(Keypair::new()),
None,
SocketAddrSpace::Unspecified,
);
let all_pubkeys = cluster.get_node_pubkeys();
let validator_id = all_pubkeys
.into_iter()
.find(|x| x != cluster.entry_point_info.pubkey())
.unwrap();
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
let mut current_slot = 0;
// Let this validator run a while with repair
let target_slot = slot_floor + 40;
while current_slot <= target_slot {
trace!("current_slot: {}", current_slot);
if let Ok(slot) = validator_client.get_slot_with_commitment(CommitmentConfig::processed()) {
current_slot = slot;
} else {
continue;
}
sleep(Duration::from_secs(1));
}
// Check the validator ledger doesn't contain any slots < slot_floor
cluster.close_preserve_ledgers();
let validator_ledger_path = &cluster.validators[&validator_id];
let blockstore = Blockstore::open(&validator_ledger_path.info.ledger_path).unwrap();
// Skip the zeroth slot in blockstore that the ledger is initialized with
let (first_slot, _) = blockstore.slot_meta_iterator(1).unwrap().next().unwrap();
assert_eq!(first_slot, slot_floor);
}
#[test]
#[serial]
fn test_snapshots_restart_validity() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let snapshot_interval_slots = 100;
let num_account_paths = 1;
let mut snapshot_test_config =
setup_snapshot_validator_config(snapshot_interval_slots, num_account_paths);
let full_snapshot_archives_dir = &snapshot_test_config
.validator_config
.snapshot_config
.full_snapshot_archives_dir;
// Set up the cluster with 1 snapshotting validator
let mut all_account_storage_dirs = vec![std::mem::take(
&mut snapshot_test_config.account_storage_dirs,
)];
let mut config = ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: make_identical_validator_configs(
&snapshot_test_config.validator_config,
1,
),
..ClusterConfig::default()
};
// Create and reboot the node from snapshot `num_runs` times
let num_runs = 3;
let mut expected_balances = HashMap::new();
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
for i in 1..num_runs {
info!("run {}", i);
// Push transactions to one of the nodes and confirm that transactions were
// forwarded to and processed.
trace!("Sending transactions");
let new_balances = cluster_tests::send_many_transactions(
&LegacyContactInfo::try_from(&cluster.entry_point_info).unwrap(),
&cluster.funding_keypair,
&cluster.connection_cache,
10,
10,
);
expected_balances.extend(new_balances);
cluster.wait_for_next_full_snapshot(
full_snapshot_archives_dir,
Some(Duration::from_secs(5 * 60)),
);
// Create new account paths since validator exit is not guaranteed to cleanup RPC threads,
// which may delete the old accounts on exit at any point
let (new_account_storage_dirs, new_account_storage_paths) =
generate_account_paths(num_account_paths);
all_account_storage_dirs.push(new_account_storage_dirs);
snapshot_test_config.validator_config.account_paths = new_account_storage_paths;
// Restart node
trace!("Restarting cluster from snapshot");
let nodes = cluster.get_node_pubkeys();
cluster.exit_restart_node(
&nodes[0],
safe_clone_config(&snapshot_test_config.validator_config),
SocketAddrSpace::Unspecified,
);
// Verify account balances on validator
trace!("Verifying balances");
cluster_tests::verify_balances(
expected_balances.clone(),
&cluster.entry_point_info,
cluster.connection_cache.clone(),
);
// Check that we can still push transactions
trace!("Spending and verifying");
cluster_tests::spend_and_verify_all_nodes(
&cluster.entry_point_info,
&cluster.funding_keypair,
1,
HashSet::new(),
SocketAddrSpace::Unspecified,
&cluster.connection_cache,
);
}
}
#[test]
#[serial]
#[allow(unused_attributes)]
#[ignore]
fn test_fail_entry_verification_leader() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let leader_stake = (DUPLICATE_THRESHOLD * 100.0) as u64 + 1;
let validator_stake1 = (100 - leader_stake) / 2;
let validator_stake2 = 100 - leader_stake - validator_stake1;
let (cluster, _) = test_faulty_node(
BroadcastStageType::FailEntryVerification,
vec![leader_stake, validator_stake1, validator_stake2],
None,
None,
);
cluster.check_for_new_roots(
16,
"test_fail_entry_verification_leader",
SocketAddrSpace::Unspecified,
);
}
#[test]
#[serial]
#[ignore]
#[allow(unused_attributes)]
fn test_fake_shreds_broadcast_leader() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let node_stakes = vec![300, 100];
let (cluster, _) = test_faulty_node(
BroadcastStageType::BroadcastFakeShreds,
node_stakes,
None,
None,
);
cluster.check_for_new_roots(
16,
"test_fake_shreds_broadcast_leader",
SocketAddrSpace::Unspecified,
);
}
#[test]
fn test_wait_for_max_stake() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_config = ValidatorConfig::default_for_test();
let slots_per_epoch = MINIMUM_SLOTS_PER_EPOCH;
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
node_stakes: vec![DEFAULT_NODE_STAKE; 4],
validator_configs: make_identical_validator_configs(&validator_config, 4),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let client = RpcClient::new_socket(cluster.entry_point_info.rpc().unwrap());
assert!(client
.wait_for_max_stake(CommitmentConfig::default(), 33.0f32)
.is_ok());
assert!(client.get_slot().unwrap() > 10);
}
#[test]
// Test that when a leader is leader for banks B_i..B_{i+n}, and B_i is not
// votable, then B_{i+1} still chains to B_i
fn test_no_voting() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_config = ValidatorConfig {
voting_disabled: true,
..ValidatorConfig::default_for_test()
};
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
node_stakes: vec![DEFAULT_NODE_STAKE],
validator_configs: vec![validator_config],
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let client = cluster
.get_validator_client(cluster.entry_point_info.pubkey())
.unwrap();
loop {
let last_slot = client
.get_slot_with_commitment(CommitmentConfig::processed())
.expect("Couldn't get slot");
if last_slot > 4 * VOTE_THRESHOLD_DEPTH as u64 {
break;
}
sleep(Duration::from_secs(1));
}
cluster.close_preserve_ledgers();
let leader_pubkey = *cluster.entry_point_info.pubkey();
let ledger_path = cluster.validators[&leader_pubkey].info.ledger_path.clone();
let ledger = Blockstore::open(&ledger_path).unwrap();
for i in 0..2 * VOTE_THRESHOLD_DEPTH {
let meta = ledger.meta(i as u64).unwrap().unwrap();
let parent = meta.parent_slot;
let expected_parent = i.saturating_sub(1);
assert_eq!(parent, Some(expected_parent as u64));
}
}
#[test]
#[serial]
fn test_optimistic_confirmation_violation_detection() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![50 * DEFAULT_NODE_STAKE, 51 * DEFAULT_NODE_STAKE];
let validator_keys: Vec<_> = [
"4qhhXNTbKD1a5vxDDLZcHKj7ELNeiivtUBxn3wUK1F5VRsQVP89VUhfXqSfgiFB14GfuBgtrQ96n9NvWQADVkcCg",
"3kHBzVwie5vTEaY6nFCPeFT8qDpoXzn7dCEioGRNBTnUDpvwnG85w8Wq63gVWpVTP8k2a8cgcWRjSXyUkEygpXWS",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect();
// Do not restart the validator which is the cluster entrypoint because its gossip port
// might be changed after restart resulting in the two nodes not being able to
// to form a cluster. The heavier validator is the second node.
let node_to_restart = validator_keys[1].0.pubkey();
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + node_stakes.iter().sum::<u64>(),
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
// Let the nodes run for a while. Wait for validators to vote on slot `S`
// so that the vote on `S-1` is definitely in gossip and optimistic confirmation is
// detected on slot `S-1` for sure, then stop the heavier of the two
// validators
let client = cluster.get_validator_client(&node_to_restart).unwrap();
let mut prev_voted_slot = 0;
loop {
let last_voted_slot = client
.get_slot_with_commitment(CommitmentConfig::processed())
.unwrap();
if last_voted_slot > 50 {
if prev_voted_slot == 0 {
prev_voted_slot = last_voted_slot;
} else {
break;
}
}
sleep(Duration::from_millis(100));
}
let exited_validator_info = cluster.exit_node(&node_to_restart);
// Mark fork as dead on the heavier validator, this should make the fork effectively
// dead, even though it was optimistically confirmed. The smaller validator should
// create and jump over to a new fork
// Also, remove saved tower to intentionally make the restarted validator to violate the
// optimistic confirmation
{
let blockstore = open_blockstore(&exited_validator_info.info.ledger_path);
info!(
"Setting slot: {} on main fork as dead, should cause fork",
prev_voted_slot
);
// Necessary otherwise tower will inform this validator that it's latest
// vote is on slot `prev_voted_slot`. This will then prevent this validator
// from resetting to the parent of `prev_voted_slot` to create an alternative fork because
// 1) Validator can't vote on earlier ancestor of last vote due to switch threshold (can't vote
// on ancestors of last vote)
// 2) Won't reset to this earlier ancestor because reset can only happen on same voted fork if
// it's for the last vote slot or later
remove_tower(&exited_validator_info.info.ledger_path, &node_to_restart);
blockstore.set_dead_slot(prev_voted_slot).unwrap();
}
{
// Buffer stderr to detect optimistic slot violation log
let buf = std::env::var("OPTIMISTIC_CONF_TEST_DUMP_LOG")
.err()
.map(|_| BufferRedirect::stderr().unwrap());
cluster.restart_node(
&node_to_restart,
exited_validator_info,
SocketAddrSpace::Unspecified,
);
// Wait for a root > prev_voted_slot to be set. Because the root is on a
// different fork than `prev_voted_slot`, then optimistic confirmation is
// violated
let client = cluster.get_validator_client(&node_to_restart).unwrap();
loop {
let last_root = client
.get_slot_with_commitment(CommitmentConfig::finalized())
.unwrap();
if last_root > prev_voted_slot {
break;
}
sleep(Duration::from_millis(100));
}
// Check to see that validator detected optimistic confirmation for
// `prev_voted_slot` failed
let expected_log =
OptimisticConfirmationVerifier::format_optimistic_confirmed_slot_violation_log(
prev_voted_slot,
);
// Violation detection thread can be behind so poll logs up to 10 seconds
if let Some(mut buf) = buf {
let start = Instant::now();
let mut success = false;
let mut output = String::new();
while start.elapsed().as_secs() < 10 {
buf.read_to_string(&mut output).unwrap();
if output.contains(&expected_log) {
success = true;
break;
}
sleep(Duration::from_millis(10));
}
print!("{output}");
assert!(success);
} else {
panic!("dumped log and disabled testing");
}
}
// Make sure validator still makes progress
cluster_tests::check_for_new_roots(
16,
&[cluster.get_contact_info(&node_to_restart).unwrap().clone()],
&cluster.connection_cache,
"test_optimistic_confirmation_violation",
);
}
#[test]
#[serial]
fn test_validator_saves_tower() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_config = ValidatorConfig {
require_tower: true,
..ValidatorConfig::default_for_test()
};
let validator_identity_keypair = Arc::new(Keypair::new());
let validator_id = validator_identity_keypair.pubkey();
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
node_stakes: vec![DEFAULT_NODE_STAKE],
validator_configs: vec![validator_config],
validator_keys: Some(vec![(validator_identity_keypair.clone(), true)]),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
let ledger_path = cluster
.validators
.get(&validator_id)
.unwrap()
.info
.ledger_path
.clone();
let file_tower_storage = FileTowerStorage::new(ledger_path.clone());
// Wait for some votes to be generated
loop {
if let Ok(slot) = validator_client.get_slot_with_commitment(CommitmentConfig::processed()) {
trace!("current slot: {}", slot);
if slot > 2 {
break;
}
}
sleep(Duration::from_millis(10));
}
// Stop validator and check saved tower
let validator_info = cluster.exit_node(&validator_id);
let tower1 = Tower::restore(&file_tower_storage, &validator_id).unwrap();
trace!("tower1: {:?}", tower1);
assert_eq!(tower1.root(), 0);
assert!(tower1.last_voted_slot().is_some());
// Restart the validator and wait for a new root
cluster.restart_node(&validator_id, validator_info, SocketAddrSpace::Unspecified);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
// Wait for the first new root
let last_replayed_root = loop {
#[allow(deprecated)]
// This test depends on knowing the immediate root, without any delay from the commitment
// service, so the deprecated CommitmentConfig::root() is retained
if let Ok(root) = validator_client.get_slot_with_commitment(CommitmentConfig::root()) {
trace!("current root: {}", root);
if root > 0 {
break root;
}
}
sleep(Duration::from_millis(50));
};
// Stop validator, and check saved tower
let validator_info = cluster.exit_node(&validator_id);
let tower2 = Tower::restore(&file_tower_storage, &validator_id).unwrap();
trace!("tower2: {:?}", tower2);
assert_eq!(tower2.root(), last_replayed_root);
// Rollback saved tower to `tower1` to simulate a validator starting from a newer snapshot
// without having to wait for that snapshot to be generated in this test
tower1
.save(&file_tower_storage, &validator_identity_keypair)
.unwrap();
cluster.restart_node(&validator_id, validator_info, SocketAddrSpace::Unspecified);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
// Wait for a new root, demonstrating the validator was able to make progress from the older `tower1`
let new_root = loop {
#[allow(deprecated)]
// This test depends on knowing the immediate root, without any delay from the commitment
// service, so the deprecated CommitmentConfig::root() is retained
if let Ok(root) = validator_client.get_slot_with_commitment(CommitmentConfig::root()) {
trace!(
"current root: {}, last_replayed_root: {}",
root,
last_replayed_root
);
if root > last_replayed_root {
break root;
}
}
sleep(Duration::from_millis(50));
};
// Check the new root is reflected in the saved tower state
let mut validator_info = cluster.exit_node(&validator_id);
let tower3 = Tower::restore(&file_tower_storage, &validator_id).unwrap();
trace!("tower3: {:?}", tower3);
let tower3_root = tower3.root();
assert!(tower3_root >= new_root);
// Remove the tower file entirely and allow the validator to start without a tower. It will
// rebuild tower from its vote account contents
remove_tower(&ledger_path, &validator_id);
validator_info.config.require_tower = false;
cluster.restart_node(&validator_id, validator_info, SocketAddrSpace::Unspecified);
let validator_client = cluster.get_validator_client(&validator_id).unwrap();
// Wait for another new root
let new_root = loop {
#[allow(deprecated)]
// This test depends on knowing the immediate root, without any delay from the commitment
// service, so the deprecated CommitmentConfig::root() is retained
if let Ok(root) = validator_client.get_slot_with_commitment(CommitmentConfig::root()) {
trace!("current root: {}, last tower root: {}", root, tower3_root);
if root > tower3_root {
break root;
}
}
sleep(Duration::from_millis(50));
};
cluster.close_preserve_ledgers();
let tower4 = Tower::restore(&file_tower_storage, &validator_id).unwrap();
trace!("tower4: {:?}", tower4);
assert!(tower4.root() >= new_root);
}
fn root_in_tower(tower_path: &Path, node_pubkey: &Pubkey) -> Option<Slot> {
restore_tower(tower_path, node_pubkey).map(|tower| tower.root())
}
enum ClusterMode {
MasterOnly,
MasterSlave,
}
fn do_test_future_tower(cluster_mode: ClusterMode) {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 4 nodes
let slots_per_epoch = 2048;
let node_stakes = match cluster_mode {
ClusterMode::MasterOnly => vec![DEFAULT_NODE_STAKE],
ClusterMode::MasterSlave => vec![DEFAULT_NODE_STAKE * 100, DEFAULT_NODE_STAKE],
};
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let validator_a_pubkey = match cluster_mode {
ClusterMode::MasterOnly => validators[0],
ClusterMode::MasterSlave => validators[1],
};
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + DEFAULT_NODE_STAKE * 100,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let val_a_ledger_path = cluster.ledger_path(&validator_a_pubkey);
loop {
sleep(Duration::from_millis(100));
if let Some(root) = root_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if root >= 15 {
break;
}
}
}
let purged_slot_before_restart = 10;
let validator_a_info = cluster.exit_node(&validator_a_pubkey);
{
// create a warped future tower without mangling the tower itself
info!(
"Revert blockstore before slot {} and effectively create a future tower",
purged_slot_before_restart,
);
let blockstore = open_blockstore(&val_a_ledger_path);
purge_slots_with_count(&blockstore, purged_slot_before_restart, 100);
}
cluster.restart_node(
&validator_a_pubkey,
validator_a_info,
SocketAddrSpace::Unspecified,
);
let mut newly_rooted = false;
let some_root_after_restart = purged_slot_before_restart + 25; // 25 is arbitrary; just wait a bit
for _ in 0..600 {
sleep(Duration::from_millis(100));
if let Some(root) = root_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if root >= some_root_after_restart {
newly_rooted = true;
break;
}
}
}
let _validator_a_info = cluster.exit_node(&validator_a_pubkey);
if newly_rooted {
// there should be no forks; i.e. monotonically increasing ancestor chain
let (last_vote, _) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey).unwrap();
let blockstore = open_blockstore(&val_a_ledger_path);
let actual_block_ancestors = AncestorIterator::new_inclusive(last_vote, &blockstore)
.take_while(|a| *a >= some_root_after_restart)
.collect::<Vec<_>>();
let expected_countinuous_no_fork_votes = (some_root_after_restart..=last_vote)
.rev()
.collect::<Vec<_>>();
assert_eq!(actual_block_ancestors, expected_countinuous_no_fork_votes);
assert!(actual_block_ancestors.len() > MAX_LOCKOUT_HISTORY);
info!("validator managed to handle future tower!");
} else {
panic!("no root detected");
}
}
#[test]
#[serial]
fn test_future_tower_master_only() {
do_test_future_tower(ClusterMode::MasterOnly);
}
#[test]
#[serial]
fn test_future_tower_master_slave() {
do_test_future_tower(ClusterMode::MasterSlave);
}
fn restart_whole_cluster_after_hard_fork(
cluster: &Arc<Mutex<LocalCluster>>,
validator_a_pubkey: Pubkey,
validator_b_pubkey: Pubkey,
mut validator_a_info: ClusterValidatorInfo,
validator_b_info: ClusterValidatorInfo,
) {
// restart validator A first
let cluster_for_a = cluster.clone();
let val_a_ledger_path = validator_a_info.info.ledger_path.clone();
// Spawn a thread because wait_for_supermajority blocks in Validator::new()!
let thread = std::thread::spawn(move || {
let restart_context = cluster_for_a
.lock()
.unwrap()
.create_restart_context(&validator_a_pubkey, &mut validator_a_info);
let restarted_validator_info = LocalCluster::restart_node_with_context(
validator_a_info,
restart_context,
SocketAddrSpace::Unspecified,
);
cluster_for_a
.lock()
.unwrap()
.add_node(&validator_a_pubkey, restarted_validator_info);
});
// test validator A actually to wait for supermajority
let mut last_vote = None;
for _ in 0..10 {
sleep(Duration::from_millis(1000));
let (new_last_vote, _) =
last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey).unwrap();
if let Some(last_vote) = last_vote {
assert_eq!(last_vote, new_last_vote);
} else {
last_vote = Some(new_last_vote);
}
}
// restart validator B normally
cluster.lock().unwrap().restart_node(
&validator_b_pubkey,
validator_b_info,
SocketAddrSpace::Unspecified,
);
// validator A should now start so join its thread here
thread.join().unwrap();
}
#[test]
fn test_hard_fork_invalidates_tower() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![60 * DEFAULT_NODE_STAKE, 40 * DEFAULT_NODE_STAKE];
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let validator_a_pubkey = validators[0];
let validator_b_pubkey = validators[1];
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + node_stakes.iter().sum::<u64>(),
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let cluster = std::sync::Arc::new(std::sync::Mutex::new(LocalCluster::new(
&mut config,
SocketAddrSpace::Unspecified,
)));
let val_a_ledger_path = cluster.lock().unwrap().ledger_path(&validator_a_pubkey);
let min_root = 15;
loop {
sleep(Duration::from_millis(100));
if let Some(root) = root_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if root >= min_root {
break;
}
}
}
let mut validator_a_info = cluster.lock().unwrap().exit_node(&validator_a_pubkey);
let mut validator_b_info = cluster.lock().unwrap().exit_node(&validator_b_pubkey);
// setup hard fork at slot < a previously rooted slot!
// hard fork earlier than root is very unrealistic in the wild, but it's handy for
// persistent tower's lockout behavior...
let hard_fork_slot = min_root - 5;
let hard_fork_slots = Some(vec![hard_fork_slot]);
let mut hard_forks = solana_sdk::hard_forks::HardForks::default();
hard_forks.register(hard_fork_slot);
let expected_shred_version = solana_sdk::shred_version::compute_shred_version(
&cluster.lock().unwrap().genesis_config.hash(),
Some(&hard_forks),
);
validator_a_info.config.new_hard_forks = hard_fork_slots.clone();
validator_a_info.config.wait_for_supermajority = Some(hard_fork_slot);
validator_a_info.config.expected_shred_version = Some(expected_shred_version);
validator_b_info.config.new_hard_forks = hard_fork_slots;
validator_b_info.config.wait_for_supermajority = Some(hard_fork_slot);
validator_b_info.config.expected_shred_version = Some(expected_shred_version);
// Clear ledger of all slots post hard fork
{
let blockstore_a = open_blockstore(&validator_a_info.info.ledger_path);
let blockstore_b = open_blockstore(&validator_b_info.info.ledger_path);
purge_slots_with_count(&blockstore_a, hard_fork_slot + 1, 100);
purge_slots_with_count(&blockstore_b, hard_fork_slot + 1, 100);
}
restart_whole_cluster_after_hard_fork(
&cluster,
validator_a_pubkey,
validator_b_pubkey,
validator_a_info,
validator_b_info,
);
// new slots should be rooted after hard-fork cluster relaunch
cluster
.lock()
.unwrap()
.check_for_new_roots(16, "hard fork", SocketAddrSpace::Unspecified);
}
#[test]
#[serial]
fn test_run_test_load_program_accounts_root() {
run_test_load_program_accounts(CommitmentConfig::finalized());
}
fn create_simple_snapshot_config(ledger_path: &Path) -> SnapshotConfig {
SnapshotConfig {
full_snapshot_archives_dir: ledger_path.to_path_buf(),
bank_snapshots_dir: ledger_path.join("snapshot"),
..SnapshotConfig::default()
}
}
fn create_snapshot_to_hard_fork(
blockstore: &Blockstore,
snapshot_slot: Slot,
hard_forks: Vec<Slot>,
) {
let process_options = ProcessOptions {
halt_at_slot: Some(snapshot_slot),
new_hard_forks: Some(hard_forks),
run_verification: false,
..ProcessOptions::default()
};
let ledger_path = blockstore.ledger_path();
let genesis_config = open_genesis_config(ledger_path, u64::max_value());
let snapshot_config = create_simple_snapshot_config(ledger_path);
let (bank_forks, ..) = bank_forks_utils::load(
&genesis_config,
blockstore,
vec![
create_accounts_run_and_snapshot_dirs(ledger_path.join("accounts"))
.unwrap()
.0,
],
None,
Some(&snapshot_config),
process_options,
None,
None,
None,
None,
Arc::default(),
)
.unwrap();
let bank = bank_forks.read().unwrap().get(snapshot_slot).unwrap();
let full_snapshot_archive_info = snapshot_bank_utils::bank_to_full_snapshot_archive(
ledger_path,
&bank,
Some(snapshot_config.snapshot_version),
ledger_path,
ledger_path,
snapshot_config.archive_format,
NonZeroUsize::new(1).unwrap(),
NonZeroUsize::new(1).unwrap(),
)
.unwrap();
info!(
"Successfully created snapshot for slot {}, hash {}: {}",
bank.slot(),
bank.hash(),
full_snapshot_archive_info.path().display(),
);
}
#[test]
#[serial]
fn test_hard_fork_with_gap_in_roots() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![60, 40];
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let validator_a_pubkey = validators[0];
let validator_b_pubkey = validators[1];
let validator_config = ValidatorConfig {
snapshot_config: LocalCluster::create_dummy_load_only_snapshot_config(),
..ValidatorConfig::default()
};
let mut config = ClusterConfig {
cluster_lamports: 100_000,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(&validator_config, node_stakes.len()),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let cluster = std::sync::Arc::new(std::sync::Mutex::new(LocalCluster::new(
&mut config,
SocketAddrSpace::Unspecified,
)));
let val_a_ledger_path = cluster.lock().unwrap().ledger_path(&validator_a_pubkey);
let val_b_ledger_path = cluster.lock().unwrap().ledger_path(&validator_b_pubkey);
let min_last_vote = 45;
let min_root = 10;
loop {
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
if last_vote >= min_last_vote
&& root_in_tower(&val_a_ledger_path, &validator_a_pubkey) > Some(min_root)
{
break;
}
}
}
// stop all nodes of the cluster
let mut validator_a_info = cluster.lock().unwrap().exit_node(&validator_a_pubkey);
let mut validator_b_info = cluster.lock().unwrap().exit_node(&validator_b_pubkey);
// hard fork slot is effectively a (possibly skipping) new root.
// assert that the precondition of validator a to test gap between
// blockstore and hard fork...
let hard_fork_slot = min_last_vote - 5;
assert!(hard_fork_slot > root_in_tower(&val_a_ledger_path, &validator_a_pubkey).unwrap());
let hard_fork_slots = Some(vec![hard_fork_slot]);
let mut hard_forks = HardForks::default();
hard_forks.register(hard_fork_slot);
let expected_shred_version = solana_sdk::shred_version::compute_shred_version(
&cluster.lock().unwrap().genesis_config.hash(),
Some(&hard_forks),
);
// create hard-forked snapshot only for validator a, emulating the manual cluster restart
// procedure with `solana-ledger-tool create-snapshot`
let genesis_slot = 0;
{
let blockstore_a = Blockstore::open(&val_a_ledger_path).unwrap();
create_snapshot_to_hard_fork(&blockstore_a, hard_fork_slot, vec![hard_fork_slot]);
// Intentionally make solana-validator unbootable by replaying blocks from the genesis to
// ensure the hard-forked snapshot is used always. Otherwise, we couldn't create a gap
// in the ledger roots column family reliably.
// There was a bug which caused the hard-forked snapshot at an unrooted slot to forget
// to root some slots (thus, creating a gap in roots, which shouldn't happen).
purge_slots_with_count(&blockstore_a, genesis_slot, 1);
let next_slot = genesis_slot + 1;
let mut meta = blockstore_a.meta(next_slot).unwrap().unwrap();
meta.unset_parent();
blockstore_a.put_meta(next_slot, &meta).unwrap();
}
// strictly speaking, new_hard_forks isn't needed for validator a.
// but when snapshot loading isn't working, you might see:
// shred version mismatch: expected NNNN found: MMMM
//validator_a_info.config.new_hard_forks = hard_fork_slots.clone();
// effectively pass the --hard-fork parameter to validator b
validator_b_info.config.new_hard_forks = hard_fork_slots;
validator_a_info.config.wait_for_supermajority = Some(hard_fork_slot);
validator_a_info.config.expected_shred_version = Some(expected_shred_version);
validator_b_info.config.wait_for_supermajority = Some(hard_fork_slot);
validator_b_info.config.expected_shred_version = Some(expected_shred_version);
restart_whole_cluster_after_hard_fork(
&cluster,
validator_a_pubkey,
validator_b_pubkey,
validator_a_info,
validator_b_info,
);
// new slots should be rooted after hard-fork cluster relaunch
cluster
.lock()
.unwrap()
.check_for_new_roots(16, "hard fork", SocketAddrSpace::Unspecified);
// drop everything to open blockstores below
drop(cluster);
let (common_last_vote, common_root) = {
let (last_vote_a, _) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey).unwrap();
let (last_vote_b, _) = last_vote_in_tower(&val_b_ledger_path, &validator_b_pubkey).unwrap();
let root_a = root_in_tower(&val_a_ledger_path, &validator_a_pubkey).unwrap();
let root_b = root_in_tower(&val_b_ledger_path, &validator_b_pubkey).unwrap();
(last_vote_a.min(last_vote_b), root_a.min(root_b))
};
let blockstore_a = Blockstore::open(&val_a_ledger_path).unwrap();
let blockstore_b = Blockstore::open(&val_b_ledger_path).unwrap();
// collect all slot/root parents
let mut slots_a = AncestorIterator::new(common_last_vote, &blockstore_a).collect::<Vec<_>>();
let mut roots_a = blockstore_a
.reversed_rooted_slot_iterator(common_root)
.unwrap()
.collect::<Vec<_>>();
// artifically restore the forcibly purged genesis only for the validator A just for the sake of
// the final assertions.
slots_a.push(genesis_slot);
roots_a.push(genesis_slot);
let slots_b = AncestorIterator::new(common_last_vote, &blockstore_b).collect::<Vec<_>>();
let roots_b = blockstore_b
.reversed_rooted_slot_iterator(common_root)
.unwrap()
.collect::<Vec<_>>();
// compare them all!
assert_eq!((&slots_a, &roots_a), (&slots_b, &roots_b));
assert_eq!(&slots_a[slots_a.len() - roots_a.len()..].to_vec(), &roots_a);
assert_eq!(&slots_b[slots_b.len() - roots_b.len()..].to_vec(), &roots_b);
}
#[test]
#[serial]
fn test_restart_tower_rollback() {
// Test node crashing and failing to save its tower before restart
// Cluster continues to make progress, this node is able to rejoin with
// outdated tower post restart.
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![DEFAULT_NODE_STAKE * 100, DEFAULT_NODE_STAKE];
let validator_strings = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
];
let validator_keys = validator_strings
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let b_pubkey = validator_keys[1].0.pubkey();
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + DEFAULT_NODE_STAKE * 100,
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let val_b_ledger_path = cluster.ledger_path(&b_pubkey);
let mut earlier_tower: Tower;
loop {
sleep(Duration::from_millis(1000));
// Grab the current saved tower
earlier_tower = restore_tower(&val_b_ledger_path, &b_pubkey).unwrap();
if earlier_tower.last_voted_slot().unwrap_or(0) > 1 {
break;
}
}
let mut exited_validator_info: ClusterValidatorInfo;
let last_voted_slot: Slot;
loop {
sleep(Duration::from_millis(1000));
// Wait for second, lesser staked validator to make a root past the earlier_tower's
// latest vote slot, then exit that validator
let tower = restore_tower(&val_b_ledger_path, &b_pubkey).unwrap();
if tower.root()
> earlier_tower
.last_voted_slot()
.expect("Earlier tower must have at least one vote")
{
exited_validator_info = cluster.exit_node(&b_pubkey);
last_voted_slot = tower.last_voted_slot().unwrap();
break;
}
}
// Now rewrite the tower with the *earlier_tower*. We disable voting until we reach
// a slot we did not previously vote for in order to avoid duplicate vote slashing
// issues.
save_tower(
&val_b_ledger_path,
&earlier_tower,
&exited_validator_info.info.keypair,
);
exited_validator_info.config.wait_to_vote_slot = Some(last_voted_slot + 10);
cluster.restart_node(
&b_pubkey,
exited_validator_info,
SocketAddrSpace::Unspecified,
);
// Check this node is making new roots
cluster.check_for_new_roots(
20,
"test_restart_tower_rollback",
SocketAddrSpace::Unspecified,
);
}
#[test]
#[serial]
fn test_run_test_load_program_accounts_partition_root() {
run_test_load_program_accounts_partition(CommitmentConfig::finalized());
}
fn run_test_load_program_accounts_partition(scan_commitment: CommitmentConfig) {
let num_slots_per_validator = 8;
let partitions: [usize; 2] = [1, 1];
let (leader_schedule, validator_keys) = create_custom_leader_schedule_with_random_keys(&[
num_slots_per_validator,
num_slots_per_validator,
]);
let (update_client_sender, update_client_receiver) = unbounded();
let (scan_client_sender, scan_client_receiver) = unbounded();
let exit = Arc::new(AtomicBool::new(false));
let (t_update, t_scan, additional_accounts) = setup_transfer_scan_threads(
1000,
exit.clone(),
scan_commitment,
update_client_receiver,
scan_client_receiver,
);
let on_partition_start = |cluster: &mut LocalCluster, _: &mut ()| {
let update_client = cluster
.get_validator_client(cluster.entry_point_info.pubkey())
.unwrap();
update_client_sender.send(update_client).unwrap();
let scan_client = cluster
.get_validator_client(cluster.entry_point_info.pubkey())
.unwrap();
scan_client_sender.send(scan_client).unwrap();
};
let on_partition_before_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(
20,
"run_test_load_program_accounts_partition",
SocketAddrSpace::Unspecified,
);
exit.store(true, Ordering::Relaxed);
t_update.join().unwrap();
t_scan.join().unwrap();
};
run_cluster_partition(
&partitions,
Some((leader_schedule, validator_keys)),
(),
on_partition_start,
on_partition_before_resolved,
on_partition_resolved,
None,
additional_accounts,
);
}
#[test]
#[serial]
fn test_rpc_block_subscribe() {
let total_stake = 100 * DEFAULT_NODE_STAKE;
let leader_stake = total_stake;
let node_stakes = vec![leader_stake];
let mut validator_config = ValidatorConfig::default_for_test();
validator_config.enable_default_rpc_block_subscribe();
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let mut config = ClusterConfig {
cluster_lamports: total_stake,
node_stakes,
validator_configs: vec![validator_config],
validator_keys: Some(validator_keys),
skip_warmup_slots: true,
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let (mut block_subscribe_client, receiver) = PubsubClient::block_subscribe(
&format!(
"ws://{}",
&cluster.entry_point_info.rpc_pubsub().unwrap().to_string()
),
RpcBlockSubscribeFilter::All,
Some(RpcBlockSubscribeConfig {
commitment: Some(CommitmentConfig::confirmed()),
encoding: None,
transaction_details: None,
show_rewards: None,
max_supported_transaction_version: None,
}),
)
.unwrap();
let mut received_block = false;
let max_wait = 10_000;
let start = Instant::now();
while !received_block {
assert!(
start.elapsed() <= Duration::from_millis(max_wait),
"Went too long {max_wait} ms without receiving a confirmed block",
);
let responses: Vec<_> = receiver.try_iter().collect();
// Wait for a response
if !responses.is_empty() {
for response in responses {
assert!(response.value.err.is_none());
assert!(response.value.block.is_some());
if response.value.slot > 1 {
received_block = true;
}
}
}
sleep(Duration::from_millis(100));
}
// If we don't drop the cluster, the blocking web socket service
// won't return, and the `block_subscribe_client` won't shut down
drop(cluster);
block_subscribe_client.shutdown().unwrap();
}
#[test]
#[serial]
#[allow(unused_attributes)]
fn test_oc_bad_signatures() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let total_stake = 100 * DEFAULT_NODE_STAKE;
let leader_stake = (total_stake as f64 * VOTE_THRESHOLD_SIZE) as u64;
let our_node_stake = total_stake - leader_stake;
let node_stakes = vec![leader_stake, our_node_stake];
let mut validator_config = ValidatorConfig {
require_tower: true,
..ValidatorConfig::default_for_test()
};
validator_config.enable_default_rpc_block_subscribe();
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let our_id = validator_keys.last().unwrap().0.pubkey();
let mut config = ClusterConfig {
cluster_lamports: total_stake,
node_stakes,
validator_configs: make_identical_validator_configs(&validator_config, 2),
validator_keys: Some(validator_keys),
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
// 2) Kill our node and start up a thread to simulate votes to control our voting behavior
let our_info = cluster.exit_node(&our_id);
let node_keypair = our_info.info.keypair;
let vote_keypair = our_info.info.voting_keypair;
info!(
"our node id: {}, vote id: {}",
node_keypair.pubkey(),
vote_keypair.pubkey()
);
// 3) Start up a spy to listen for and push votes to leader TPU
let (rpc, tpu) = LegacyContactInfo::try_from(&cluster.entry_point_info)
.map(|node| {
cluster_tests::get_client_facing_addr(cluster.connection_cache.protocol(), node)
})
.unwrap();
let client = ThinClient::new(rpc, tpu, cluster.connection_cache.clone());
let cluster_funding_keypair = cluster.funding_keypair.insecure_clone();
let voter_thread_sleep_ms: usize = 100;
let num_votes_simulated = Arc::new(AtomicUsize::new(0));
let gossip_voter = cluster_tests::start_gossip_voter(
&cluster.entry_point_info.gossip().unwrap(),
&node_keypair,
|(_label, leader_vote_tx)| {
let vote = vote_parser::parse_vote_transaction(&leader_vote_tx)
.map(|(_, vote, ..)| vote)
.unwrap();
// Filter out empty votes
if !vote.is_empty() {
Some((vote, leader_vote_tx))
} else {
None
}
},
{
let node_keypair = node_keypair.insecure_clone();
let vote_keypair = vote_keypair.insecure_clone();
let num_votes_simulated = num_votes_simulated.clone();
move |vote_slot, leader_vote_tx, parsed_vote, _cluster_info| {
info!("received vote for {}", vote_slot);
let vote_hash = parsed_vote.hash();
info!(
"Simulating vote from our node on slot {}, hash {}",
vote_slot, vote_hash
);
// Add all recent vote slots on this fork to allow cluster to pass
// vote threshold checks in replay. Note this will instantly force a
// root by this validator.
let vote_slots: Vec<Slot> = vec![vote_slot];
let bad_authorized_signer_keypair = Keypair::new();
let mut vote_tx = vote_transaction::new_vote_transaction(
vote_slots,
vote_hash,
leader_vote_tx.message.recent_blockhash,
&node_keypair,
&vote_keypair,
// Make a bad signer
&bad_authorized_signer_keypair,
None,
);
client
.retry_transfer(&cluster_funding_keypair, &mut vote_tx, 5)
.unwrap();
num_votes_simulated.fetch_add(1, Ordering::Relaxed);
}
},
voter_thread_sleep_ms as u64,
);
let (mut block_subscribe_client, receiver) = PubsubClient::block_subscribe(
&format!(
"ws://{}",
&cluster.entry_point_info.rpc_pubsub().unwrap().to_string()
),
RpcBlockSubscribeFilter::All,
Some(RpcBlockSubscribeConfig {
commitment: Some(CommitmentConfig::confirmed()),
encoding: None,
transaction_details: None,
show_rewards: None,
max_supported_transaction_version: None,
}),
)
.unwrap();
const MAX_VOTES_TO_SIMULATE: usize = 10;
// Make sure test doesn't take too long
assert!(voter_thread_sleep_ms * MAX_VOTES_TO_SIMULATE <= 1000);
loop {
let responses: Vec<_> = receiver.try_iter().collect();
// Nothing should get optimistically confirmed or rooted
assert!(responses.is_empty());
// Wait for the voter thread to attempt sufficient number of votes to give
// a chance for the violation to occur
if num_votes_simulated.load(Ordering::Relaxed) > MAX_VOTES_TO_SIMULATE {
break;
}
sleep(Duration::from_millis(100));
}
// Clean up voter thread
gossip_voter.close();
// If we don't drop the cluster, the blocking web socket service
// won't return, and the `block_subscribe_client` won't shut down
drop(cluster);
block_subscribe_client.shutdown().unwrap();
}
#[test]
#[serial]
#[ignore]
fn test_votes_land_in_fork_during_long_partition() {
let total_stake = 3 * DEFAULT_NODE_STAKE;
// Make `lighter_stake` insufficient for switching threshold
let lighter_stake = (SWITCH_FORK_THRESHOLD * total_stake as f64) as u64;
let heavier_stake = lighter_stake + 1;
let failures_stake = total_stake - lighter_stake - heavier_stake;
// Give lighter stake 30 consecutive slots before
// the heavier stake gets a single slot
let partitions: &[(usize, usize)] =
&[(heavier_stake as usize, 1), (lighter_stake as usize, 30)];
#[derive(Default)]
struct PartitionContext {
heaviest_validator_key: Pubkey,
lighter_validator_key: Pubkey,
heavier_fork_slot: Slot,
}
let on_partition_start = |_cluster: &mut LocalCluster,
validator_keys: &[Pubkey],
_dead_validator_infos: Vec<ClusterValidatorInfo>,
context: &mut PartitionContext| {
// validator_keys[0] is the validator that will be killed, i.e. the validator with
// stake == `failures_stake`
context.heaviest_validator_key = validator_keys[1];
context.lighter_validator_key = validator_keys[2];
};
let on_before_partition_resolved =
|cluster: &mut LocalCluster, context: &mut PartitionContext| {
let lighter_validator_ledger_path = cluster.ledger_path(&context.lighter_validator_key);
let heavier_validator_ledger_path =
cluster.ledger_path(&context.heaviest_validator_key);
// Wait for each node to have created and voted on its own partition
loop {
let (heavier_validator_latest_vote_slot, _) = last_vote_in_tower(
&heavier_validator_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
info!(
"Checking heavier validator's last vote {} is on a separate fork",
heavier_validator_latest_vote_slot
);
let lighter_validator_blockstore = open_blockstore(&lighter_validator_ledger_path);
if lighter_validator_blockstore
.meta(heavier_validator_latest_vote_slot)
.unwrap()
.is_none()
{
context.heavier_fork_slot = heavier_validator_latest_vote_slot;
return;
}
sleep(Duration::from_millis(100));
}
};
let on_partition_resolved = |cluster: &mut LocalCluster, context: &mut PartitionContext| {
let lighter_validator_ledger_path = cluster.ledger_path(&context.lighter_validator_key);
let start = Instant::now();
let max_wait = ms_for_n_slots(MAX_PROCESSING_AGE as u64, DEFAULT_TICKS_PER_SLOT);
// Wait for the lighter node to switch over and root the `context.heavier_fork_slot`
loop {
assert!(
// Should finish faster than if the cluster were relying on replay vote
// refreshing to refresh the vote on blockhash expiration for the vote
// transaction.
start.elapsed() <= Duration::from_millis(max_wait),
"Went too long {max_wait} ms without a root",
);
let lighter_validator_blockstore = open_blockstore(&lighter_validator_ledger_path);
if lighter_validator_blockstore.is_root(context.heavier_fork_slot) {
info!(
"Partition resolved, new root made in {}ms",
start.elapsed().as_millis()
);
return;
}
sleep(Duration::from_millis(100));
}
};
run_kill_partition_switch_threshold(
&[(failures_stake as usize, 0)],
partitions,
None,
PartitionContext::default(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
fn setup_transfer_scan_threads(
num_starting_accounts: usize,
exit: Arc<AtomicBool>,
scan_commitment: CommitmentConfig,
update_client_receiver: Receiver<ThinClient>,
scan_client_receiver: Receiver<ThinClient>,
) -> (
JoinHandle<()>,
JoinHandle<()>,
Vec<(Pubkey, AccountSharedData)>,
) {
let exit_ = exit.clone();
let starting_keypairs: Arc<Vec<Keypair>> = Arc::new(
iter::repeat_with(Keypair::new)
.take(num_starting_accounts)
.collect(),
);
let target_keypairs: Arc<Vec<Keypair>> = Arc::new(
iter::repeat_with(Keypair::new)
.take(num_starting_accounts)
.collect(),
);
let starting_accounts: Vec<(Pubkey, AccountSharedData)> = starting_keypairs
.iter()
.map(|k| {
(
k.pubkey(),
AccountSharedData::new(1, 0, &system_program::id()),
)
})
.collect();
let starting_keypairs_ = starting_keypairs.clone();
let target_keypairs_ = target_keypairs.clone();
let t_update = Builder::new()
.name("update".to_string())
.spawn(move || {
let client = update_client_receiver.recv().unwrap();
loop {
if exit_.load(Ordering::Relaxed) {
return;
}
let (blockhash, _) = client
.get_latest_blockhash_with_commitment(CommitmentConfig::processed())
.unwrap();
for i in 0..starting_keypairs_.len() {
client
.async_transfer(
1,
&starting_keypairs_[i],
&target_keypairs_[i].pubkey(),
blockhash,
)
.unwrap();
}
for i in 0..starting_keypairs_.len() {
client
.async_transfer(
1,
&target_keypairs_[i],
&starting_keypairs_[i].pubkey(),
blockhash,
)
.unwrap();
}
}
})
.unwrap();
// Scan, the total funds should add up to the original
let mut scan_commitment_config = RpcProgramAccountsConfig::default();
scan_commitment_config.account_config.commitment = Some(scan_commitment);
let tracked_pubkeys: HashSet<Pubkey> = starting_keypairs
.iter()
.chain(target_keypairs.iter())
.map(|k| k.pubkey())
.collect();
let expected_total_balance = num_starting_accounts as u64;
let t_scan = Builder::new()
.name("scan".to_string())
.spawn(move || {
let client = scan_client_receiver.recv().unwrap();
loop {
if exit.load(Ordering::Relaxed) {
return;
}
if let Some(total_scan_balance) = client
.get_program_accounts_with_config(
&system_program::id(),
scan_commitment_config.clone(),
)
.ok()
.map(|result| {
result
.into_iter()
.map(|(key, account)| {
if tracked_pubkeys.contains(&key) {
account.lamports
} else {
0
}
})
.sum::<u64>()
})
{
assert_eq!(total_scan_balance, expected_total_balance);
}
}
})
.unwrap();
(t_update, t_scan, starting_accounts)
}
fn run_test_load_program_accounts(scan_commitment: CommitmentConfig) {
solana_logger::setup_with_default(RUST_LOG_FILTER);
// First set up the cluster with 2 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![51 * DEFAULT_NODE_STAKE, 50 * DEFAULT_NODE_STAKE];
let validator_keys: Vec<_> = [
"4qhhXNTbKD1a5vxDDLZcHKj7ELNeiivtUBxn3wUK1F5VRsQVP89VUhfXqSfgiFB14GfuBgtrQ96n9NvWQADVkcCg",
"3kHBzVwie5vTEaY6nFCPeFT8qDpoXzn7dCEioGRNBTnUDpvwnG85w8Wq63gVWpVTP8k2a8cgcWRjSXyUkEygpXWS",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect();
let num_starting_accounts = 1000;
let exit = Arc::new(AtomicBool::new(false));
let (update_client_sender, update_client_receiver) = unbounded();
let (scan_client_sender, scan_client_receiver) = unbounded();
// Setup the update/scan threads
let (t_update, t_scan, starting_accounts) = setup_transfer_scan_threads(
num_starting_accounts,
exit.clone(),
scan_commitment,
update_client_receiver,
scan_client_receiver,
);
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + node_stakes.iter().sum::<u64>(),
node_stakes: node_stakes.clone(),
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
node_stakes.len(),
),
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
additional_accounts: starting_accounts,
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
// Give the threads a client to use for querying the cluster
let all_pubkeys = cluster.get_node_pubkeys();
let other_validator_id = all_pubkeys
.into_iter()
.find(|x| x != cluster.entry_point_info.pubkey())
.unwrap();
let client = cluster
.get_validator_client(cluster.entry_point_info.pubkey())
.unwrap();
update_client_sender.send(client).unwrap();
let scan_client = cluster.get_validator_client(&other_validator_id).unwrap();
scan_client_sender.send(scan_client).unwrap();
// Wait for some roots to pass
cluster.check_for_new_roots(
40,
"run_test_load_program_accounts",
SocketAddrSpace::Unspecified,
);
// Exit and ensure no violations of consistency were found
exit.store(true, Ordering::Relaxed);
t_update.join().unwrap();
t_scan.join().unwrap();
}
#[test]
#[serial]
fn test_no_optimistic_confirmation_violation_with_tower() {
do_test_optimistic_confirmation_violation_with_or_without_tower(true);
}
#[test]
#[serial]
fn test_optimistic_confirmation_violation_without_tower() {
do_test_optimistic_confirmation_violation_with_or_without_tower(false);
}
// A bit convoluted test case; but this roughly follows this test theoretical scenario:
// Validator A, B, C have 31, 36, 33 % of stake respectively. Leader schedule is split, first half
// of the test B is always leader, second half C is. Additionally we have a non voting validator D with 0
// stake to propagate gossip info.
//
// Step 1: Kill C, only A, B and D should be running
//
// S0 -> S1 -> S2 -> S3 (A & B vote, optimistically confirmed)
//
// Step 2:
// Kill A and B once we verify that they have voted on S3 or beyond. Copy B's ledger to C but only
// up to slot S2
// Have `C` generate some blocks like:
//
// S0 -> S1 -> S2 -> S4
//
// Step 3: Then restart `A` which had 31% of the stake, and remove S3 from its ledger, so
// that it only sees `C`'s fork at S2. From `A`'s perspective it sees:
//
// S0 -> S1 -> S2
// |
// -> S4 -> S5 (C's vote for S4)
//
// The fork choice rule weights look like:
//
// S0 -> S1 -> S2 (ABC)
// |
// -> S4 (C) -> S5
//
// Step 5:
// Without the persisted tower:
// `A` would choose to vote on the fork with `S4 -> S5`.
//
// With the persisted tower:
// `A` should not be able to generate a switching proof.
//
fn do_test_optimistic_confirmation_violation_with_or_without_tower(with_tower: bool) {
solana_logger::setup_with("debug");
// First set up the cluster with 4 nodes
let slots_per_epoch = 2048;
let node_stakes = vec![
31 * DEFAULT_NODE_STAKE,
36 * DEFAULT_NODE_STAKE,
33 * DEFAULT_NODE_STAKE,
0,
];
let base_slot: Slot = 26; // S2
let next_slot_on_a: Slot = 27; // S3
let truncated_slots: Slot = 100; // just enough to purge all following slots after the S2 and S3
// Each pubkeys are prefixed with A, B, C and D.
// D is needed to:
// 1) Propagate A's votes for S2 to validator C after A shuts down so that
// C can avoid NoPropagatedConfirmation errors and continue to generate blocks
// 2) Provide gossip discovery for `A` when it restarts because `A` will restart
// at a different gossip port than the entrypoint saved in C's gossip table
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
"4mx9yoFBeYasDKBGDWCTWGJdWuJCKbgqmuP8bN9umybCh5Jzngw7KQxe99Rf5uzfyzgba1i65rJW4Wqk7Ab5S8ye",
"3zsEPEDsjfEay7te9XqNjRTCE7vwuT6u4DHzBJC19yp7GS8BuNRMRjnpVrKCBzb3d44kxc4KPGSHkCmk6tEfswCg",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let (validator_a_pubkey, validator_b_pubkey, validator_c_pubkey) =
(validators[0], validators[1], validators[2]);
// Disable voting on all validators other than validator B to ensure neither of the below two
// scenarios occur:
// 1. If the cluster immediately forks on restart while we're killing validators A and C,
// with Validator B on one side, and `A` and `C` on a heavier fork, it's possible that the lockouts
// on `A` and `C`'s latest votes do not extend past validator B's latest vote. Then validator B
// will be stuck unable to vote, but also unable generate a switching proof to the heavier fork.
//
// 2. Validator A doesn't vote past `next_slot_on_a` before we can kill it. This is essential
// because if validator A votes past `next_slot_on_a`, and then we copy over validator B's ledger
// below only for slots <= `next_slot_on_a`, validator A will not know how it's last vote chains
// to the other forks, and may violate switching proofs on restart.
let mut default_config = ValidatorConfig::default_for_test();
// Split leader schedule 50-50 between validators B and C, don't give validator A any slots because
// it's going to be deleting its ledger, so may create versions of slots it's already created, but
// on a different fork.
let validator_to_slots = vec![
// Ensure validator b is leader for slots <= `next_slot_on_a`
(validator_b_pubkey, next_slot_on_a as usize + 1),
(validator_c_pubkey, next_slot_on_a as usize + 1),
];
let leader_schedule = create_custom_leader_schedule(validator_to_slots.into_iter());
for slot in 0..=next_slot_on_a {
assert_eq!(leader_schedule[slot], validator_b_pubkey);
}
default_config.fixed_leader_schedule = Some(FixedSchedule {
leader_schedule: Arc::new(leader_schedule),
});
let mut validator_configs =
make_identical_validator_configs(&default_config, node_stakes.len());
// Disable voting on validators C, and D
validator_configs[2].voting_disabled = true;
validator_configs[3].voting_disabled = true;
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + node_stakes.iter().sum::<u64>(),
node_stakes,
validator_configs,
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let val_a_ledger_path = cluster.ledger_path(&validator_a_pubkey);
let val_b_ledger_path = cluster.ledger_path(&validator_b_pubkey);
let val_c_ledger_path = cluster.ledger_path(&validator_c_pubkey);
info!(
"val_a {} ledger path {:?}",
validator_a_pubkey, val_a_ledger_path
);
info!(
"val_b {} ledger path {:?}",
validator_b_pubkey, val_b_ledger_path
);
info!(
"val_c {} ledger path {:?}",
validator_c_pubkey, val_c_ledger_path
);
// Immediately kill validator C. No need to kill validator A because
// 1) It has no slots in the leader schedule, so no way to make forks
// 2) We need it to vote
info!("Exiting validator C");
let mut validator_c_info = cluster.exit_node(&validator_c_pubkey);
// Step 1:
// Let validator A, B, (D) run. Wait for both `A` and `B` to have voted on `next_slot_on_a` or
// one of its descendants
info!(
"Waiting on both validators A and B to vote on fork at slot {}",
next_slot_on_a
);
let now = Instant::now();
let mut last_b_vote = 0;
let mut last_a_vote = 0;
loop {
let elapsed = now.elapsed();
assert!(
elapsed <= Duration::from_secs(30),
"One of the validators failed to vote on a slot >= {} in {} secs,
last validator A vote: {},
last validator B vote: {}",
next_slot_on_a,
elapsed.as_secs(),
last_a_vote,
last_b_vote,
);
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&val_b_ledger_path, &validator_b_pubkey) {
last_b_vote = last_vote;
if last_vote < next_slot_on_a {
continue;
}
}
if let Some((last_vote, _)) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
last_a_vote = last_vote;
if last_vote >= next_slot_on_a {
break;
}
}
}
// kill A and B
let _validator_b_info = cluster.exit_node(&validator_b_pubkey);
let validator_a_info = cluster.exit_node(&validator_a_pubkey);
// Step 2:
// Truncate ledger, copy over B's ledger to C
info!("Create validator C's ledger");
{
// first copy from validator B's ledger
std::fs::remove_dir_all(&validator_c_info.info.ledger_path).unwrap();
let mut opt = fs_extra::dir::CopyOptions::new();
opt.copy_inside = true;
fs_extra::dir::copy(&val_b_ledger_path, &val_c_ledger_path, &opt).unwrap();
// Remove B's tower in C's new copied ledger
remove_tower(&val_c_ledger_path, &validator_b_pubkey);
let blockstore = open_blockstore(&val_c_ledger_path);
purge_slots_with_count(&blockstore, base_slot + 1, truncated_slots);
}
info!("Create validator A's ledger");
{
// Find latest vote in B, and wait for it to reach blockstore
let b_last_vote =
wait_for_last_vote_in_tower_to_land_in_ledger(&val_b_ledger_path, &validator_b_pubkey)
.unwrap();
// Now we copy these blocks to A
let b_blockstore = open_blockstore(&val_b_ledger_path);
let a_blockstore = open_blockstore(&val_a_ledger_path);
copy_blocks(b_last_vote, &b_blockstore, &a_blockstore);
// Purge uneccessary slots
purge_slots_with_count(&a_blockstore, next_slot_on_a + 1, truncated_slots);
}
// This should be guaranteed because we waited for validator `A` to vote on a slot > `next_slot_on_a`
// before killing it earlier.
info!("Checking A's tower for a vote on slot descended from slot `next_slot_on_a`");
let last_vote_slot = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey)
.unwrap()
.0;
assert!(last_vote_slot >= next_slot_on_a);
info!("Success, A voted on slot {}", last_vote_slot);
{
let blockstore = open_blockstore(&val_a_ledger_path);
if !with_tower {
info!("Removing tower!");
remove_tower(&val_a_ledger_path, &validator_a_pubkey);
// Remove next_slot_on_a from ledger to force validator A to select
// votes_on_c_fork. Otherwise, in the test case without a tower,
// the validator A will immediately vote for 27 on restart, because it
// hasn't gotten the heavier fork from validator C yet.
// Then it will be stuck on 27 unable to switch because C doesn't
// have enough stake to generate a switching proof
purge_slots_with_count(&blockstore, next_slot_on_a, truncated_slots);
} else {
info!("Not removing tower!");
}
}
// Step 3:
// Run validator C only to make it produce and vote on its own fork.
info!("Restart validator C again!!!");
validator_c_info.config.voting_disabled = false;
cluster.restart_node(
&validator_c_pubkey,
validator_c_info,
SocketAddrSpace::Unspecified,
);
let mut votes_on_c_fork = std::collections::BTreeSet::new(); // S4 and S5
for _ in 0..100 {
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&val_c_ledger_path, &validator_c_pubkey) {
if last_vote != base_slot {
votes_on_c_fork.insert(last_vote);
// Collect 4 votes
if votes_on_c_fork.len() >= 4 {
break;
}
}
}
}
assert!(!votes_on_c_fork.is_empty());
info!("collected validator C's votes: {:?}", votes_on_c_fork);
// Step 4:
// verify whether there was violation or not
info!("Restart validator A again!!!");
cluster.restart_node(
&validator_a_pubkey,
validator_a_info,
SocketAddrSpace::Unspecified,
);
// monitor for actual votes from validator A
let mut bad_vote_detected = false;
let mut a_votes = vec![];
for _ in 0..100 {
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&val_a_ledger_path, &validator_a_pubkey) {
a_votes.push(last_vote);
let blockstore = open_blockstore(&val_a_ledger_path);
let mut ancestors = AncestorIterator::new(last_vote, &blockstore);
if ancestors.any(|a| votes_on_c_fork.contains(&a)) {
bad_vote_detected = true;
break;
}
}
}
info!("Observed A's votes on: {:?}", a_votes);
// an elaborate way of assert!(with_tower && !bad_vote_detected || ...)
let expects_optimistic_confirmation_violation = !with_tower;
if bad_vote_detected != expects_optimistic_confirmation_violation {
if bad_vote_detected {
panic!("No violation expected because of persisted tower!");
} else {
panic!("Violation expected because of removed persisted tower!");
}
} else if bad_vote_detected {
info!("THIS TEST expected violations. And indeed, there was some, because of removed persisted tower.");
} else {
info!("THIS TEST expected no violation. And indeed, there was none, thanks to persisted tower.");
}
}
#[test]
#[serial]
#[ignore]
// Steps in this test:
// We want to create a situation like:
/*
1 (2%, killed and restarted) --- 200 (37%, lighter fork)
/
0
\-------- 4 (38%, heavier fork)
*/
// where the 2% that voted on slot 1 don't see their votes land in a block
// due to blockhash expiration, and thus without resigning their votes with
// a newer blockhash, will deem slot 4 the heavier fork and try to switch to
// slot 4, which doesn't pass the switch threshold. This stalls the network.
// We do this by:
// 1) Creating a partition so all three nodes don't see each other
// 2) Kill the validator with 2%
// 3) Wait for longer than blockhash expiration
// 4) Copy in the lighter fork's blocks up, *only* up to the first slot in the lighter fork
// (not all the blocks on the lighter fork!), call this slot `L`
// 5) Restart the validator with 2% so that he votes on `L`, but the vote doesn't land
// due to blockhash expiration
// 6) Resolve the partition so that the 2% repairs the other fork, and tries to switch,
// stalling the network.
fn test_fork_choice_refresh_old_votes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 100 * DEFAULT_NODE_STAKE;
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
// 1% less than the failure stake, where the 2% is allocated to a validator that
// has no leader slots and thus won't be able to vote on its own fork.
let failures_stake = max_failures_stake;
let total_alive_stake = total_stake - failures_stake;
let alive_stake_1 = total_alive_stake / 2 - 1;
let alive_stake_2 = total_alive_stake - alive_stake_1 - 1;
// Heavier fork still doesn't have enough stake to switch. Both branches need
// the vote to land from the validator with `alive_stake_3` to allow the other
// fork to switch.
let alive_stake_3 = 2 * DEFAULT_NODE_STAKE;
assert!(alive_stake_1 < alive_stake_2);
assert!(alive_stake_1 + alive_stake_3 > alive_stake_2);
let partitions: &[(usize, usize)] = &[
(alive_stake_1 as usize, 8),
(alive_stake_2 as usize, 8),
(alive_stake_3 as usize, 0),
];
#[derive(Default)]
struct PartitionContext {
alive_stake3_info: Option<ClusterValidatorInfo>,
smallest_validator_key: Pubkey,
lighter_fork_validator_key: Pubkey,
heaviest_validator_key: Pubkey,
}
let on_partition_start = |cluster: &mut LocalCluster,
validator_keys: &[Pubkey],
_: Vec<ClusterValidatorInfo>,
context: &mut PartitionContext| {
// Kill validator with alive_stake_3, second in `partitions` slice
let smallest_validator_key = &validator_keys[3];
let info = cluster.exit_node(smallest_validator_key);
context.alive_stake3_info = Some(info);
context.smallest_validator_key = *smallest_validator_key;
// validator_keys[0] is the validator that will be killed, i.e. the validator with
// stake == `failures_stake`
context.lighter_fork_validator_key = validator_keys[1];
// Third in `partitions` slice
context.heaviest_validator_key = validator_keys[2];
};
let ticks_per_slot = 8;
let on_before_partition_resolved =
|cluster: &mut LocalCluster, context: &mut PartitionContext| {
// Equal to ms_per_slot * MAX_PROCESSING_AGE, rounded up
let sleep_time_ms = ms_for_n_slots(MAX_PROCESSING_AGE as u64, ticks_per_slot);
info!("Wait for blockhashes to expire, {} ms", sleep_time_ms);
// Wait for blockhashes to expire
sleep(Duration::from_millis(sleep_time_ms));
let smallest_ledger_path = context
.alive_stake3_info
.as_ref()
.unwrap()
.info
.ledger_path
.clone();
let lighter_fork_ledger_path = cluster.ledger_path(&context.lighter_fork_validator_key);
let heaviest_ledger_path = cluster.ledger_path(&context.heaviest_validator_key);
// Get latest votes. We make sure to wait until the vote has landed in
// blockstore. This is important because if we were the leader for the block there
// is a possibility of voting before broadcast has inserted in blockstore.
let lighter_fork_latest_vote = wait_for_last_vote_in_tower_to_land_in_ledger(
&lighter_fork_ledger_path,
&context.lighter_fork_validator_key,
)
.unwrap();
let heaviest_fork_latest_vote = wait_for_last_vote_in_tower_to_land_in_ledger(
&heaviest_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
// Open ledgers
let smallest_blockstore = open_blockstore(&smallest_ledger_path);
let lighter_fork_blockstore = open_blockstore(&lighter_fork_ledger_path);
let heaviest_blockstore = open_blockstore(&heaviest_ledger_path);
info!("Opened blockstores");
// Find the first slot on the smaller fork
let lighter_ancestors: BTreeSet<Slot> = std::iter::once(lighter_fork_latest_vote)
.chain(AncestorIterator::new(
lighter_fork_latest_vote,
&lighter_fork_blockstore,
))
.collect();
let heavier_ancestors: BTreeSet<Slot> = std::iter::once(heaviest_fork_latest_vote)
.chain(AncestorIterator::new(
heaviest_fork_latest_vote,
&heaviest_blockstore,
))
.collect();
let first_slot_in_lighter_partition = *lighter_ancestors
.iter()
.zip(heavier_ancestors.iter())
.find(|(x, y)| x != y)
.unwrap()
.0;
// Must have been updated in the above loop
assert!(first_slot_in_lighter_partition != 0);
info!(
"First slot in lighter partition is {}",
first_slot_in_lighter_partition
);
// Copy all the blocks from the smaller partition up to `first_slot_in_lighter_partition`
// into the smallest validator's blockstore
copy_blocks(
first_slot_in_lighter_partition,
&lighter_fork_blockstore,
&smallest_blockstore,
);
// Restart the smallest validator that we killed earlier in `on_partition_start()`
drop(smallest_blockstore);
cluster.restart_node(
&context.smallest_validator_key,
context.alive_stake3_info.take().unwrap(),
SocketAddrSpace::Unspecified,
);
loop {
// Wait for node to vote on the first slot on the less heavy fork, so it'll need
// a switch proof to flip to the other fork.
// However, this vote won't land because it's using an expired blockhash. The
// fork structure will look something like this after the vote:
/*
1 (2%, killed and restarted) --- 200 (37%, lighter fork)
/
0
\-------- 4 (38%, heavier fork)
*/
if let Some((last_vote_slot, _last_vote_hash)) =
last_vote_in_tower(&smallest_ledger_path, &context.smallest_validator_key)
{
// Check that the heaviest validator on the other fork doesn't have this slot,
// this must mean we voted on a unique slot on this fork
if last_vote_slot == first_slot_in_lighter_partition {
info!(
"Saw vote on first slot in lighter partition {}",
first_slot_in_lighter_partition
);
break;
} else {
info!(
"Haven't seen vote on first slot in lighter partition, latest vote is: {}",
last_vote_slot
);
}
}
sleep(Duration::from_millis(20));
}
// Now resolve partition, allow validator to see the fork with the heavier validator,
// but the fork it's currently on is the heaviest, if only its own vote landed!
};
// Check that new roots were set after the partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut PartitionContext| {
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_kill_partition_switch_threshold(
&[(failures_stake as usize - 1, 16)],
partitions,
Some(ticks_per_slot),
PartitionContext::default(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_kill_heaviest_partition() {
// This test:
// 1) Spins up four partitions, the heaviest being the first with more stake
// 2) Schedules the other validators for sufficient slots in the schedule
// so that they will still be locked out of voting for the major partition
// when the partition resolves
// 3) Kills the most staked partition. Validators are locked out, but should all
// eventually choose the major partition
// 4) Check for recovery
let num_slots_per_validator = 8;
let partitions: [usize; 4] = [
11 * DEFAULT_NODE_STAKE as usize,
10 * DEFAULT_NODE_STAKE as usize,
10 * DEFAULT_NODE_STAKE as usize,
10 * DEFAULT_NODE_STAKE as usize,
];
let (leader_schedule, validator_keys) = create_custom_leader_schedule_with_random_keys(&[
num_slots_per_validator * (partitions.len() - 1),
num_slots_per_validator,
num_slots_per_validator,
num_slots_per_validator,
]);
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let validator_to_kill = validator_keys[0].pubkey();
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
info!("Killing validator with id: {}", validator_to_kill);
cluster.exit_node(&validator_to_kill);
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_cluster_partition(
&partitions,
Some((leader_schedule, validator_keys)),
(),
empty,
empty,
on_partition_resolved,
None,
vec![],
)
}
#[test]
#[serial]
fn test_kill_partition_switch_threshold_no_progress() {
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 10_000 * DEFAULT_NODE_STAKE;
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
let failures_stake = max_failures_stake;
let total_alive_stake = total_stake - failures_stake;
let alive_stake_1 = total_alive_stake / 2;
let alive_stake_2 = total_alive_stake - alive_stake_1;
// Check that no new roots were set 400 slots after partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_start =
|_: &mut LocalCluster, _: &[Pubkey], _: Vec<ClusterValidatorInfo>, _: &mut ()| {};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_no_new_roots(400, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
// This kills `max_failures_stake`, so no progress should be made
run_kill_partition_switch_threshold(
&[(failures_stake as usize, 16)],
&[(alive_stake_1 as usize, 8), (alive_stake_2 as usize, 8)],
None,
(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_kill_partition_switch_threshold_progress() {
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 10_000 * DEFAULT_NODE_STAKE;
// Kill `< max_failures_stake` of the validators
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
let failures_stake = max_failures_stake - 1;
let total_alive_stake = total_stake - failures_stake;
// Partition the remaining alive validators, should still make progress
// once the partition resolves
let alive_stake_1 = total_alive_stake / 2;
let alive_stake_2 = total_alive_stake - alive_stake_1;
let bigger = std::cmp::max(alive_stake_1, alive_stake_2);
let smaller = std::cmp::min(alive_stake_1, alive_stake_2);
// At least one of the forks must have > SWITCH_FORK_THRESHOLD in order
// to guarantee switching proofs can be created. Make sure the other fork
// is <= SWITCH_FORK_THRESHOLD to make sure progress can be made. Caches
// bugs such as liveness issues bank-weighted fork choice, which may stall
// because the fork with less stake could have more weight, but other fork would:
// 1) Not be able to generate a switching proof
// 2) Other more staked fork stops voting, so doesn't catch up in bank weight.
assert!(
bigger as f64 / total_stake as f64 > SWITCH_FORK_THRESHOLD
&& smaller as f64 / total_stake as f64 <= SWITCH_FORK_THRESHOLD
);
let on_partition_start =
|_: &mut LocalCluster, _: &[Pubkey], _: Vec<ClusterValidatorInfo>, _: &mut ()| {};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_kill_partition_switch_threshold(
&[(failures_stake as usize, 16)],
&[(alive_stake_1 as usize, 8), (alive_stake_2 as usize, 8)],
None,
(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
#[allow(unused_attributes)]
fn test_duplicate_shreds_broadcast_leader() {
// Create 4 nodes:
// 1) Bad leader sending different versions of shreds to both of the other nodes
// 2) 1 node who's voting behavior in gossip
// 3) 1 validator gets the same version as the leader, will see duplicate confirmation
// 4) 1 validator will not get the same version as the leader. For each of these
// duplicate slots `S` either:
// a) The leader's version of `S` gets > DUPLICATE_THRESHOLD of votes in gossip and so this
// node will repair that correct version
// b) A descendant `D` of some version of `S` gets > DUPLICATE_THRESHOLD votes in gossip,
// but no version of `S` does. Then the node will not know to repair the right version
// by just looking at gossip, but will instead have to use EpochSlots repair after
// detecting that a descendant does not chain to its version of `S`, and marks that descendant
// dead.
// Scenarios a) or b) are triggered by our node in 2) who's voting behavior we control.
// Critical that bad_leader_stake + good_node_stake < DUPLICATE_THRESHOLD and that
// bad_leader_stake + good_node_stake + our_node_stake > DUPLICATE_THRESHOLD so that
// our vote is the determining factor
let bad_leader_stake = 10_000_000 * DEFAULT_NODE_STAKE;
// Ensure that the good_node_stake is always on the critical path, and the partition node
// should never be on the critical path. This way, none of the bad shreds sent to the partition
// node corrupt the good node.
let good_node_stake = 500 * DEFAULT_NODE_STAKE;
let our_node_stake = 10_000_000 * DEFAULT_NODE_STAKE;
let partition_node_stake = DEFAULT_NODE_STAKE;
let node_stakes = vec![
bad_leader_stake,
partition_node_stake,
good_node_stake,
// Needs to be last in the vector, so that we can
// find the id of this node. See call to `test_faulty_node`
// below for more details.
our_node_stake,
];
assert_eq!(*node_stakes.last().unwrap(), our_node_stake);
let total_stake: u64 = node_stakes.iter().sum();
assert!(
((bad_leader_stake + good_node_stake) as f64 / total_stake as f64) < DUPLICATE_THRESHOLD
);
assert!(
(bad_leader_stake + good_node_stake + our_node_stake) as f64 / total_stake as f64
> DUPLICATE_THRESHOLD
);
// Important that the partition node stake is the smallest so that it gets selected
// for the partition.
assert!(partition_node_stake < our_node_stake && partition_node_stake < good_node_stake);
// 1) Set up the cluster
let (mut cluster, validator_keys) = test_faulty_node(
BroadcastStageType::BroadcastDuplicates(BroadcastDuplicatesConfig {
partition: ClusterPartition::Stake(partition_node_stake),
duplicate_slot_sender: None,
}),
node_stakes,
None,
None,
);
// This is why it's important our node was last in `node_stakes`
let our_id = validator_keys.last().unwrap().pubkey();
// 2) Kill our node and start up a thread to simulate votes to control our voting behavior
let our_info = cluster.exit_node(&our_id);
let node_keypair = our_info.info.keypair;
let vote_keypair = our_info.info.voting_keypair;
let bad_leader_id = *cluster.entry_point_info.pubkey();
let bad_leader_ledger_path = cluster.validators[&bad_leader_id].info.ledger_path.clone();
info!("our node id: {}", node_keypair.pubkey());
// 3) Start up a gossip instance to listen for and push votes
let voter_thread_sleep_ms = 100;
let gossip_voter = cluster_tests::start_gossip_voter(
&cluster.entry_point_info.gossip().unwrap(),
&node_keypair,
move |(label, leader_vote_tx)| {
// Filter out votes not from the bad leader
if label.pubkey() == bad_leader_id {
let vote = vote_parser::parse_vote_transaction(&leader_vote_tx)
.map(|(_, vote, ..)| vote)
.unwrap();
// Filter out empty votes
if !vote.is_empty() {
Some((vote, leader_vote_tx))
} else {
None
}
} else {
None
}
},
{
let node_keypair = node_keypair.insecure_clone();
let vote_keypair = vote_keypair.insecure_clone();
let mut max_vote_slot = 0;
let mut gossip_vote_index = 0;
move |latest_vote_slot, leader_vote_tx, parsed_vote, cluster_info| {
info!("received vote for {}", latest_vote_slot);
// Add to EpochSlots. Mark all slots frozen between slot..=max_vote_slot.
if latest_vote_slot > max_vote_slot {
let new_epoch_slots: Vec<Slot> =
(max_vote_slot + 1..latest_vote_slot + 1).collect();
info!(
"Simulating epoch slots from our node: {:?}",
new_epoch_slots
);
cluster_info.push_epoch_slots(&new_epoch_slots);
max_vote_slot = latest_vote_slot;
}
// Only vote on even slots. Note this may violate lockouts if the
// validator started voting on a different fork before we could exit
// it above.
let vote_hash = parsed_vote.hash();
if latest_vote_slot % 2 == 0 {
info!(
"Simulating vote from our node on slot {}, hash {}",
latest_vote_slot, vote_hash
);
// Add all recent vote slots on this fork to allow cluster to pass
// vote threshold checks in replay. Note this will instantly force a
// root by this validator, but we're not concerned with lockout violations
// by this validator so it's fine.
let leader_blockstore = open_blockstore(&bad_leader_ledger_path);
let mut vote_slots: Vec<(Slot, u32)> =
AncestorIterator::new_inclusive(latest_vote_slot, &leader_blockstore)
.take(MAX_LOCKOUT_HISTORY)
.zip(1..)
.collect();
vote_slots.reverse();
let mut vote = VoteStateUpdate::from(vote_slots);
let root =
AncestorIterator::new_inclusive(latest_vote_slot, &leader_blockstore)
.nth(MAX_LOCKOUT_HISTORY);
vote.root = root;
vote.hash = vote_hash;
let vote_tx = vote_transaction::new_compact_vote_state_update_transaction(
vote,
leader_vote_tx.message.recent_blockhash,
&node_keypair,
&vote_keypair,
&vote_keypair,
None,
);
gossip_vote_index += 1;
gossip_vote_index %= MAX_LOCKOUT_HISTORY;
cluster_info.push_vote_at_index(vote_tx, gossip_vote_index as u8)
}
}
},
voter_thread_sleep_ms as u64,
);
// 4) Check that the cluster is making progress
cluster.check_for_new_roots(
16,
"test_duplicate_shreds_broadcast_leader",
SocketAddrSpace::Unspecified,
);
// Clean up threads
gossip_voter.close();
}
#[test]
#[serial]
#[ignore]
fn test_switch_threshold_uses_gossip_votes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let total_stake = 100 * DEFAULT_NODE_STAKE;
// Minimum stake needed to generate a switching proof
let minimum_switch_stake = (SWITCH_FORK_THRESHOLD * total_stake as f64) as u64;
// Make the heavier stake insufficient for switching so tha the lighter validator
// cannot switch without seeing a vote from the dead/failure_stake validator.
let heavier_stake = minimum_switch_stake;
let lighter_stake = heavier_stake - 1;
let failures_stake = total_stake - heavier_stake - lighter_stake;
let partitions: &[(usize, usize)] = &[(heavier_stake as usize, 8), (lighter_stake as usize, 8)];
#[derive(Default)]
struct PartitionContext {
heaviest_validator_key: Pubkey,
lighter_validator_key: Pubkey,
dead_validator_info: Option<ClusterValidatorInfo>,
}
let on_partition_start = |_cluster: &mut LocalCluster,
validator_keys: &[Pubkey],
mut dead_validator_infos: Vec<ClusterValidatorInfo>,
context: &mut PartitionContext| {
assert_eq!(dead_validator_infos.len(), 1);
context.dead_validator_info = Some(dead_validator_infos.pop().unwrap());
// validator_keys[0] is the validator that will be killed, i.e. the validator with
// stake == `failures_stake`
context.heaviest_validator_key = validator_keys[1];
context.lighter_validator_key = validator_keys[2];
};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut PartitionContext| {};
// Check that new roots were set after the partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_resolved = |cluster: &mut LocalCluster, context: &mut PartitionContext| {
let lighter_validator_ledger_path = cluster.ledger_path(&context.lighter_validator_key);
let heavier_validator_ledger_path = cluster.ledger_path(&context.heaviest_validator_key);
let (lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
info!(
"Lighter validator's latest vote is for slot {}",
lighter_validator_latest_vote
);
// Lighter partition should stop voting after detecting the heavier partition and try
// to switch. Loop until we see a greater vote by the heavier validator than the last
// vote made by the lighter validator on the lighter fork.
let mut heavier_validator_latest_vote;
let mut heavier_validator_latest_vote_hash;
let heavier_blockstore = open_blockstore(&heavier_validator_ledger_path);
loop {
let (sanity_check_lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
// Lighter validator should stop voting, because `on_partition_resolved` is only
// called after a propagation time where blocks from the other fork should have
// finished propagating
assert_eq!(
sanity_check_lighter_validator_latest_vote,
lighter_validator_latest_vote
);
let (new_heavier_validator_latest_vote, new_heavier_validator_latest_vote_hash) =
last_vote_in_tower(
&heavier_validator_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
heavier_validator_latest_vote = new_heavier_validator_latest_vote;
heavier_validator_latest_vote_hash = new_heavier_validator_latest_vote_hash;
// Latest vote for each validator should be on different forks
assert_ne!(lighter_validator_latest_vote, heavier_validator_latest_vote);
if heavier_validator_latest_vote > lighter_validator_latest_vote {
let heavier_ancestors: HashSet<Slot> =
AncestorIterator::new(heavier_validator_latest_vote, &heavier_blockstore)
.collect();
assert!(!heavier_ancestors.contains(&lighter_validator_latest_vote));
break;
}
}
info!("Checking to make sure lighter validator doesn't switch");
let mut latest_slot = lighter_validator_latest_vote;
// Number of chances the validator had to switch votes but didn't
let mut total_voting_opportunities = 0;
while total_voting_opportunities <= 5 {
let (new_latest_slot, latest_slot_ancestors) =
find_latest_replayed_slot_from_ledger(&lighter_validator_ledger_path, latest_slot);
latest_slot = new_latest_slot;
// Ensure `latest_slot` is on the other fork
if latest_slot_ancestors.contains(&heavier_validator_latest_vote) {
let tower = restore_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
// Check that there was an opportunity to vote
if !tower.is_locked_out(latest_slot, &latest_slot_ancestors) {
// Ensure the lighter blockstore has not voted again
let new_lighter_validator_latest_vote = tower.last_voted_slot().unwrap();
assert_eq!(
new_lighter_validator_latest_vote,
lighter_validator_latest_vote
);
info!(
"Incrementing voting opportunities: {}",
total_voting_opportunities
);
total_voting_opportunities += 1;
} else {
info!(
"Tower still locked out, can't vote for slot: {}",
latest_slot
);
}
} else if latest_slot > heavier_validator_latest_vote {
warn!(
"validator is still generating blocks on its own fork, last processed slot: {}",
latest_slot
);
}
sleep(Duration::from_millis(50));
}
// Make a vote from the killed validator for slot `heavier_validator_latest_vote` in gossip
info!(
"Simulate vote for slot: {} from dead validator",
heavier_validator_latest_vote
);
let vote_keypair = &context
.dead_validator_info
.as_ref()
.unwrap()
.info
.voting_keypair
.clone();
let node_keypair = &context
.dead_validator_info
.as_ref()
.unwrap()
.info
.keypair
.clone();
cluster_tests::submit_vote_to_cluster_gossip(
node_keypair,
vote_keypair,
heavier_validator_latest_vote,
heavier_validator_latest_vote_hash,
// Make the vote transaction with a random blockhash. Thus, the vote only lives in gossip but
// never makes it into a block
Hash::new_unique(),
cluster
.get_contact_info(&context.heaviest_validator_key)
.unwrap()
.gossip()
.unwrap(),
&SocketAddrSpace::Unspecified,
)
.unwrap();
loop {
// Wait for the lighter validator to switch to the heavier fork
let (new_lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
if new_lighter_validator_latest_vote != lighter_validator_latest_vote {
info!(
"Lighter validator switched forks at slot: {}",
new_lighter_validator_latest_vote
);
let (heavier_validator_latest_vote, _) = last_vote_in_tower(
&heavier_validator_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
let (smaller, larger) =
if new_lighter_validator_latest_vote > heavier_validator_latest_vote {
(
heavier_validator_latest_vote,
new_lighter_validator_latest_vote,
)
} else {
(
new_lighter_validator_latest_vote,
heavier_validator_latest_vote,
)
};
// Check the new vote is on the same fork as the heaviest fork
let heavier_blockstore = open_blockstore(&heavier_validator_ledger_path);
let larger_slot_ancestors: HashSet<Slot> =
AncestorIterator::new(larger, &heavier_blockstore)
.chain(std::iter::once(larger))
.collect();
assert!(larger_slot_ancestors.contains(&smaller));
break;
} else {
sleep(Duration::from_millis(50));
}
}
};
let ticks_per_slot = 8;
run_kill_partition_switch_threshold(
&[(failures_stake as usize, 0)],
partitions,
Some(ticks_per_slot),
PartitionContext::default(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_listener_startup() {
let mut config = ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
num_listeners: 3,
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
1,
),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let cluster_nodes = discover_cluster(
&cluster.entry_point_info.gossip().unwrap(),
4,
SocketAddrSpace::Unspecified,
)
.unwrap();
assert_eq!(cluster_nodes.len(), 4);
}
fn find_latest_replayed_slot_from_ledger(
ledger_path: &Path,
mut latest_slot: Slot,
) -> (Slot, HashSet<Slot>) {
loop {
let mut blockstore = open_blockstore(ledger_path);
// This is kind of a hack because we can't query for new frozen blocks over RPC
// since the validator is not voting.
let new_latest_slots: Vec<Slot> = blockstore
.slot_meta_iterator(latest_slot)
.unwrap()
.filter_map(|(s, _)| if s > latest_slot { Some(s) } else { None })
.collect();
for new_latest_slot in new_latest_slots {
latest_slot = new_latest_slot;
info!("Checking latest_slot {}", latest_slot);
// Wait for the slot to be fully received by the validator
loop {
info!("Waiting for slot {} to be full", latest_slot);
if blockstore.is_full(latest_slot) {
break;
} else {
sleep(Duration::from_millis(50));
blockstore = open_blockstore(ledger_path);
}
}
// Wait for the slot to be replayed
loop {
info!("Waiting for slot {} to be replayed", latest_slot);
if blockstore.get_bank_hash(latest_slot).is_some() {
return (
latest_slot,
AncestorIterator::new(latest_slot, &blockstore).collect(),
);
} else {
sleep(Duration::from_millis(50));
blockstore = open_blockstore(ledger_path);
}
}
}
sleep(Duration::from_millis(50));
}
}
#[test]
#[serial]
fn test_cluster_partition_1_1() {
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_cluster_partition(
&[1, 1],
None,
(),
empty,
empty,
on_partition_resolved,
None,
vec![],
)
}
#[test]
#[serial]
fn test_cluster_partition_1_1_1() {
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_cluster_partition(
&[1, 1, 1],
None,
(),
empty,
empty,
on_partition_resolved,
None,
vec![],
)
}
// Cluster needs a supermajority to remain, so the minimum size for this test is 4
#[test]
#[serial]
fn test_leader_failure_4() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_leader_failure_4");
let num_nodes = 4;
let validator_config = ValidatorConfig::default_for_test();
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
node_stakes: vec![DEFAULT_NODE_STAKE; 4],
validator_configs: make_identical_validator_configs(&validator_config, num_nodes),
..ClusterConfig::default()
};
let local = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
cluster_tests::kill_entry_and_spend_and_verify_rest(
&local.entry_point_info,
&local
.validators
.get(local.entry_point_info.pubkey())
.unwrap()
.config
.validator_exit,
&local.funding_keypair,
&local.connection_cache,
num_nodes,
config.ticks_per_slot * config.poh_config.target_tick_duration.as_millis() as u64,
SocketAddrSpace::Unspecified,
);
}
#[test]
#[serial]
fn test_ledger_cleanup_service() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
error!("test_ledger_cleanup_service");
let num_nodes = 3;
let validator_config = ValidatorConfig {
max_ledger_shreds: Some(100),
..ValidatorConfig::default_for_test()
};
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
poh_config: PohConfig::new_sleep(Duration::from_millis(50)),
node_stakes: vec![DEFAULT_NODE_STAKE; num_nodes],
validator_configs: make_identical_validator_configs(&validator_config, num_nodes),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
// 200ms/per * 100 = 20 seconds, so sleep a little longer than that.
sleep(Duration::from_secs(60));
cluster_tests::spend_and_verify_all_nodes(
&cluster.entry_point_info,
&cluster.funding_keypair,
num_nodes,
HashSet::new(),
SocketAddrSpace::Unspecified,
&cluster.connection_cache,
);
cluster.close_preserve_ledgers();
//check everyone's ledgers and make sure only ~100 slots are stored
for info in cluster.validators.values() {
let mut slots = 0;
let blockstore = Blockstore::open(&info.info.ledger_path).unwrap();
blockstore
.slot_meta_iterator(0)
.unwrap()
.for_each(|_| slots += 1);
// with 3 nodes up to 3 slots can be in progress and not complete so max slots in blockstore should be up to 103
assert!(slots <= 103, "got {slots}");
}
}
// This test verifies that even if votes from a validator end up taking too long to land, and thus
// some of the referenced slots are slots are no longer present in the slot hashes sysvar,
// consensus can still be attained.
//
// Validator A (60%)
// Validator B (40%)
// / --- 10 --- [..] --- 16 (B is voting, due to network issues is initally not able to see the other fork at all)
// /
// 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 (A votes 1 - 9 votes are landing normally. B does the same however votes are not landing)
// \
// \--[..]-- 73 (majority fork)
// A is voting on the majority fork and B wants to switch to this fork however in this majority fork
// the earlier votes for B (1 - 9) never landed so when B eventually goes to vote on 73, slots in
// its local vote state are no longer present in slot hashes.
//
// 1. Wait for B's tower to see local vote state was updated to new fork
// 2. Wait X blocks, check B's vote state on chain has been properly updated
//
// NOTE: it is not reliable for B to organically have 1 to reach 2^16 lockout, so we simulate the 6
// consecutive votes on the minor fork by manually incrementing the confirmation levels for the
// common ancestor votes in tower.
// To allow this test to run in a reasonable time we change the
// slot_hash expiry to 64 slots.
#[test]
fn test_slot_hash_expiry() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
solana_sdk::slot_hashes::set_entries_for_tests_only(64);
let slots_per_epoch = 2048;
let node_stakes = vec![60 * DEFAULT_NODE_STAKE, 40 * DEFAULT_NODE_STAKE];
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.collect::<Vec<_>>();
let node_vote_keys = [
"3NDQ3ud86RTVg8hTy2dDWnS4P8NfjhZ2gDgQAJbr3heaKaUVS1FW3sTLKA1GmDrY9aySzsa4QxpDkbLv47yHxzr3",
"46ZHpHE6PEvXYPu3hf9iQqjBk2ZNDaJ9ejqKWHEjxaQjpAGasKaWKbKHbP3646oZhfgDRzx95DH9PCBKKsoCVngk",
]
.iter()
.map(|s| Arc::new(Keypair::from_base58_string(s)))
.collect::<Vec<_>>();
let vs = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let (a_pubkey, b_pubkey) = (vs[0], vs[1]);
// We want B to not vote (we are trying to simulate its votes not landing until it gets to the
// minority fork)
let mut validator_configs =
make_identical_validator_configs(&ValidatorConfig::default_for_test(), node_stakes.len());
validator_configs[1].voting_disabled = true;
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + node_stakes.iter().sum::<u64>(),
node_stakes,
validator_configs,
validator_keys: Some(validator_keys),
node_vote_keys: Some(node_vote_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let mut common_ancestor_slot = 8;
let a_ledger_path = cluster.ledger_path(&a_pubkey);
let b_ledger_path = cluster.ledger_path(&b_pubkey);
// Immediately kill B (we just needed it for the initial stake distribution)
info!("Killing B");
let mut b_info = cluster.exit_node(&b_pubkey);
// Let A run for a while until we get to the common ancestor
info!("Letting A run until common_ancestor_slot");
loop {
if let Some((last_vote, _)) = last_vote_in_tower(&a_ledger_path, &a_pubkey) {
if last_vote >= common_ancestor_slot {
break;
}
}
sleep(Duration::from_millis(100));
}
// Keep A running, but setup B so that it thinks it has voted up until common ancestor (but
// doesn't know anything past that)
{
info!("Copying A's ledger to B");
std::fs::remove_dir_all(&b_info.info.ledger_path).unwrap();
let mut opt = fs_extra::dir::CopyOptions::new();
opt.copy_inside = true;
fs_extra::dir::copy(&a_ledger_path, &b_ledger_path, &opt).unwrap();
// remove A's tower in B's new copied ledger
info!("Removing A's tower in B's ledger dir");
remove_tower(&b_ledger_path, &a_pubkey);
// load A's tower and save it as B's tower
info!("Loading A's tower");
if let Some(mut a_tower) = restore_tower(&a_ledger_path, &a_pubkey) {
a_tower.node_pubkey = b_pubkey;
// Update common_ancestor_slot because A is still running
if let Some(s) = a_tower.last_voted_slot() {
common_ancestor_slot = s;
info!("New common_ancestor_slot {}", common_ancestor_slot);
} else {
panic!("A's tower has no votes");
}
info!("Increase lockout by 6 confirmation levels and save as B's tower");
a_tower.increase_lockout(6);
save_tower(&b_ledger_path, &a_tower, &b_info.info.keypair);
info!("B's new tower: {:?}", a_tower.tower_slots());
} else {
panic!("A's tower is missing");
}
// Get rid of any slots past common_ancestor_slot
info!("Removing extra slots from B's blockstore");
let blockstore = open_blockstore(&b_ledger_path);
purge_slots_with_count(&blockstore, common_ancestor_slot + 1, 100);
}
info!(
"Run A on majority fork until it reaches slot hash expiry {}",
solana_sdk::slot_hashes::get_entries()
);
let mut last_vote_on_a;
// Keep A running for a while longer so the majority fork has some decent size
loop {
last_vote_on_a =
wait_for_last_vote_in_tower_to_land_in_ledger(&a_ledger_path, &a_pubkey).unwrap();
if last_vote_on_a
>= common_ancestor_slot + 2 * (solana_sdk::slot_hashes::get_entries() as u64)
{
let blockstore = open_blockstore(&a_ledger_path);
info!(
"A majority fork: {:?}",
AncestorIterator::new(last_vote_on_a, &blockstore).collect::<Vec<Slot>>()
);
break;
}
sleep(Duration::from_millis(100));
}
// Kill A and restart B with voting. B should now fork off
info!("Killing A");
let a_info = cluster.exit_node(&a_pubkey);
info!("Restarting B");
b_info.config.voting_disabled = false;
cluster.restart_node(&b_pubkey, b_info, SocketAddrSpace::Unspecified);
// B will fork off and accumulate enough lockout
info!("Allowing B to fork");
loop {
let blockstore = open_blockstore(&b_ledger_path);
let last_vote =
wait_for_last_vote_in_tower_to_land_in_ledger(&b_ledger_path, &b_pubkey).unwrap();
let mut ancestors = AncestorIterator::new(last_vote, &blockstore);
if let Some(index) = ancestors.position(|x| x == common_ancestor_slot) {
if index > 7 {
info!(
"B has forked for enough lockout: {:?}",
AncestorIterator::new(last_vote, &blockstore).collect::<Vec<Slot>>()
);
break;
}
}
sleep(Duration::from_millis(1000));
}
info!("Kill B");
b_info = cluster.exit_node(&b_pubkey);
info!("Resolve the partition");
{
// Here we let B know about the missing blocks that A had produced on its partition
let a_blockstore = open_blockstore(&a_ledger_path);
let b_blockstore = open_blockstore(&b_ledger_path);
copy_blocks(last_vote_on_a, &a_blockstore, &b_blockstore);
}
// Now restart A and B and see if B is able to eventually switch onto the majority fork
info!("Restarting A & B");
cluster.restart_node(&a_pubkey, a_info, SocketAddrSpace::Unspecified);
cluster.restart_node(&b_pubkey, b_info, SocketAddrSpace::Unspecified);
info!("Waiting for B to switch to majority fork and make a root");
cluster_tests::check_for_new_roots(
16,
&[cluster.get_contact_info(&a_pubkey).unwrap().clone()],
&cluster.connection_cache,
"test_slot_hashes_expiry",
);
}
// This test simulates a case where a leader sends a duplicate block with different ancestory. One
// version builds off of the rooted path, however the other version builds off a pruned branch. The
// validators that receive the pruned version will need to repair in order to continue, which
// requires an ancestor hashes repair.
//
// We setup 3 validators:
// - majority, will produce the rooted path
// - minority, will produce the pruned path
// - our_node, will be fed the pruned version of the duplicate block and need to repair
//
// Additionally we setup 3 observer nodes to propagate votes and participate in the ancestor hashes
// sample.
//
// Fork structure:
//
// 0 - 1 - ... - 10 (fork slot) - 30 - ... - 61 (rooted path) - ...
// |
// |- 11 - ... - 29 (pruned path) - 81'
//
//
// Steps:
// 1) Different leader schedule, minority thinks it produces 0-29 and majority rest, majority
// thinks minority produces all blocks. This is to avoid majority accidentally producing blocks
// before it shuts down.
// 2) Start cluster, kill our_node.
// 3) Kill majority cluster after it votes for any slot > fork slot (guarantees that the fork slot is
// reached as minority cannot pass threshold otherwise).
// 4) Let minority produce forks on pruned forks until out of leader slots then kill.
// 5) Truncate majority ledger past fork slot so it starts building off of fork slot.
// 6) Restart majority and wait untill it starts producing blocks on main fork and roots something
// past the fork slot.
// 7) Construct our ledger by copying majority ledger and copying blocks from minority for the pruned path.
// 8) In our node's ledger, change the parent of the latest slot in majority fork to be the latest
// slot in the minority fork (simulates duplicate built off of pruned block)
// 9) Start our node which will pruned the minority fork on ledger replay and verify that we can make roots.
//
#[test]
#[serial]
fn test_duplicate_with_pruned_ancestor() {
solana_logger::setup_with("info,solana_metrics=off");
solana_core::repair::duplicate_repair_status::set_ancestor_hash_repair_sample_size_for_tests_only(3);
let majority_leader_stake = 10_000_000 * DEFAULT_NODE_STAKE;
let minority_leader_stake = 2_000_000 * DEFAULT_NODE_STAKE;
let our_node = DEFAULT_NODE_STAKE;
let observer_stake = DEFAULT_NODE_STAKE;
let slots_per_epoch = 2048;
let fork_slot: u64 = 10;
let fork_length: u64 = 20;
let majority_fork_buffer = 5;
let mut node_stakes = vec![majority_leader_stake, minority_leader_stake, our_node];
// We need enough observers to reach `ANCESTOR_HASH_REPAIR_SAMPLE_SIZE`
node_stakes.append(&mut vec![observer_stake; 3]);
let num_nodes = node_stakes.len();
let validator_keys = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
"4mx9yoFBeYasDKBGDWCTWGJdWuJCKbgqmuP8bN9umybCh5Jzngw7KQxe99Rf5uzfyzgba1i65rJW4Wqk7Ab5S8ye",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.chain(std::iter::repeat_with(|| (Arc::new(Keypair::new()), true)))
.take(node_stakes.len())
.collect::<Vec<_>>();
let validators = validator_keys
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
let (majority_pubkey, minority_pubkey, our_node_pubkey) =
(validators[0], validators[1], validators[2]);
let mut default_config = ValidatorConfig::default_for_test();
// Minority fork is leader long enough to create pruned fork
let validator_to_slots = vec![
(minority_pubkey, (fork_slot + fork_length) as usize),
(majority_pubkey, slots_per_epoch as usize),
];
let leader_schedule = create_custom_leader_schedule(validator_to_slots.into_iter());
default_config.fixed_leader_schedule = Some(FixedSchedule {
leader_schedule: Arc::new(leader_schedule),
});
let mut validator_configs = make_identical_validator_configs(&default_config, num_nodes);
// Don't let majority produce anything past the fork by tricking its leader schedule
validator_configs[0].fixed_leader_schedule = Some(FixedSchedule {
leader_schedule: Arc::new(create_custom_leader_schedule(
[(minority_pubkey, slots_per_epoch as usize)].into_iter(),
)),
});
let mut config = ClusterConfig {
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS + node_stakes.iter().sum::<u64>(),
node_stakes,
validator_configs,
validator_keys: Some(validator_keys),
slots_per_epoch,
stakers_slot_offset: slots_per_epoch,
skip_warmup_slots: true,
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let majority_ledger_path = cluster.ledger_path(&majority_pubkey);
let minority_ledger_path = cluster.ledger_path(&minority_pubkey);
let our_node_ledger_path = cluster.ledger_path(&our_node_pubkey);
info!(
"majority {} ledger path {:?}",
majority_pubkey, majority_ledger_path
);
info!(
"minority {} ledger path {:?}",
minority_pubkey, minority_ledger_path
);
info!(
"our_node {} ledger path {:?}",
our_node_pubkey, our_node_ledger_path
);
info!("Killing our node");
let our_node_info = cluster.exit_node(&our_node_pubkey);
info!("Waiting on majority validator to vote on at least {fork_slot}");
let now = Instant::now();
let mut last_majority_vote = 0;
loop {
let elapsed = now.elapsed();
assert!(
elapsed <= Duration::from_secs(30),
"Majority validator failed to vote on a slot >= {} in {} secs,
majority validator last vote: {}",
fork_slot,
elapsed.as_secs(),
last_majority_vote,
);
sleep(Duration::from_millis(100));
if let Some((last_vote, _)) = last_vote_in_tower(&majority_ledger_path, &majority_pubkey) {
last_majority_vote = last_vote;
if last_vote >= fork_slot {
break;
}
}
}
info!("Killing majority validator, waiting for minority fork to reach a depth of at least 15",);
let mut majority_validator_info = cluster.exit_node(&majority_pubkey);
let now = Instant::now();
let mut last_minority_vote = 0;
while last_minority_vote < fork_slot + 15 {
let elapsed = now.elapsed();
assert!(
elapsed <= Duration::from_secs(30),
"Minority validator failed to create a fork of depth >= {} in {} secs,
last_minority_vote: {}",
15,
elapsed.as_secs(),
last_minority_vote,
);
if let Some((last_vote, _)) = last_vote_in_tower(&minority_ledger_path, &minority_pubkey) {
last_minority_vote = last_vote;
}
}
info!(
"Killing minority validator, fork created successfully: {:?}",
last_minority_vote
);
let last_minority_vote =
wait_for_last_vote_in_tower_to_land_in_ledger(&minority_ledger_path, &minority_pubkey)
.unwrap();
let minority_validator_info = cluster.exit_node(&minority_pubkey);
info!("Truncating majority validator ledger to {fork_slot}");
{
remove_tower(&majority_ledger_path, &majority_pubkey);
let blockstore = open_blockstore(&majority_ledger_path);
purge_slots_with_count(&blockstore, fork_slot + 1, 100);
}
info!("Restarting majority validator");
// Make sure we don't send duplicate votes
majority_validator_info.config.wait_to_vote_slot = Some(fork_slot + fork_length);
// Fix the leader schedule so we can produce blocks
majority_validator_info.config.fixed_leader_schedule =
minority_validator_info.config.fixed_leader_schedule.clone();
cluster.restart_node(
&majority_pubkey,
majority_validator_info,
SocketAddrSpace::Unspecified,
);
let mut last_majority_root = 0;
let now = Instant::now();
info!(
"Waiting for majority validator to root something past {}",
fork_slot + fork_length + majority_fork_buffer
);
while last_majority_root <= fork_slot + fork_length + majority_fork_buffer {
let elapsed = now.elapsed();
assert!(
elapsed <= Duration::from_secs(60),
"Majority validator failed to root something > {} in {} secs,
last majority validator vote: {},",
fork_slot + fork_length + majority_fork_buffer,
elapsed.as_secs(),
last_majority_vote,
);
sleep(Duration::from_millis(100));
if let Some(last_root) = last_root_in_tower(&majority_ledger_path, &majority_pubkey) {
last_majority_root = last_root;
}
}
let last_majority_vote =
wait_for_last_vote_in_tower_to_land_in_ledger(&majority_ledger_path, &majority_pubkey)
.unwrap();
info!(
"Creating duplicate block built off of pruned branch for our node.
Last majority vote {last_majority_vote}, Last minority vote {last_minority_vote}"
);
{
{
// Copy majority fork
std::fs::remove_dir_all(&our_node_info.info.ledger_path).unwrap();
let mut opt = fs_extra::dir::CopyOptions::new();
opt.copy_inside = true;
fs_extra::dir::copy(&majority_ledger_path, &our_node_ledger_path, &opt).unwrap();
remove_tower(&our_node_ledger_path, &majority_pubkey);
}
// Copy minority fork. Rewind our root so that we can copy over the purged bank
let minority_blockstore = open_blockstore(&minority_validator_info.info.ledger_path);
let mut our_blockstore = open_blockstore(&our_node_info.info.ledger_path);
our_blockstore.set_last_root(fork_slot - 1);
copy_blocks(last_minority_vote, &minority_blockstore, &our_blockstore);
// Change last block parent to chain off of (purged) minority fork
info!("For our node, changing parent of {last_majority_vote} to {last_minority_vote}");
our_blockstore.clear_unconfirmed_slot(last_majority_vote);
let entries = create_ticks(
64 * (std::cmp::max(1, last_majority_vote - last_minority_vote)),
0,
Hash::default(),
);
let shreds = entries_to_test_shreds(
&entries,
last_majority_vote,
last_minority_vote,
true,
0,
true, // merkle_variant
);
our_blockstore.insert_shreds(shreds, None, false).unwrap();
// Update the root to set minority fork back as pruned
our_blockstore.set_last_root(fork_slot + fork_length);
}
// Actual test, `our_node` will replay the minority fork, then the majority fork which will
// prune the minority fork. Then finally the problematic block will be skipped (not replayed)
// because its parent has been pruned from bank forks. Meanwhile the majority validator has
// continued making blocks and voting, duplicate confirming everything. This will cause the
// pruned fork to become popular triggering an ancestor hashes repair, eventually allowing our
// node to dump & repair & continue making roots.
info!("Restarting our node, verifying that our node is making roots past the duplicate block");
cluster.restart_node(
&our_node_pubkey,
our_node_info,
SocketAddrSpace::Unspecified,
);
cluster_tests::check_for_new_roots(
16,
&[cluster.get_contact_info(&our_node_pubkey).unwrap().clone()],
&cluster.connection_cache,
"test_duplicate_with_pruned_ancestor",
);
}
/// Test fastboot to ensure a node can boot from local state and still produce correct snapshots
///
/// 1. Start node 1 and wait for it to take snapshots
/// 2. Start node 2 with the snapshots from (1)
/// 3. Wait for node 2 to take a bank snapshot
/// 4. Restart node 2 with the local state from (3)
/// 5. Wait for node 2 to take new snapshots
/// 6. Start node 3 with the snapshots from (5)
/// 7. Wait for node 3 to take new snapshots
/// 8. Ensure the snapshots from (7) match node's 1 and 2
#[test]
#[serial]
fn test_boot_from_local_state() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
const FULL_SNAPSHOT_INTERVAL: Slot = 100;
const INCREMENTAL_SNAPSHOT_INTERVAL: Slot = 10;
let validator1_config = SnapshotValidatorConfig::new(
FULL_SNAPSHOT_INTERVAL,
INCREMENTAL_SNAPSHOT_INTERVAL,
INCREMENTAL_SNAPSHOT_INTERVAL,
2,
);
let validator2_config = SnapshotValidatorConfig::new(
FULL_SNAPSHOT_INTERVAL,
INCREMENTAL_SNAPSHOT_INTERVAL,
INCREMENTAL_SNAPSHOT_INTERVAL,
4,
);
let validator3_config = SnapshotValidatorConfig::new(
FULL_SNAPSHOT_INTERVAL,
INCREMENTAL_SNAPSHOT_INTERVAL,
INCREMENTAL_SNAPSHOT_INTERVAL,
3,
);
let mut cluster_config = ClusterConfig {
node_stakes: vec![100 * DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
validator_configs: make_identical_validator_configs(&validator1_config.validator_config, 1),
..ClusterConfig::default()
};
let mut cluster = LocalCluster::new(&mut cluster_config, SocketAddrSpace::Unspecified);
// in order to boot from local state, need to first have snapshot archives
info!("Waiting for validator1 to create snapshots...");
let (incremental_snapshot_archive, full_snapshot_archive) =
LocalCluster::wait_for_next_incremental_snapshot(
&cluster,
&validator1_config.full_snapshot_archives_dir,
&validator1_config.incremental_snapshot_archives_dir,
Some(Duration::from_secs(5 * 60)),
);
debug!("snapshot archives:\n\tfull: {full_snapshot_archive:?}\n\tincr: {incremental_snapshot_archive:?}");
info!("Waiting for validator1 to create snapshots... DONE");
info!("Copying snapshots to validator2...");
std::fs::copy(
full_snapshot_archive.path(),
validator2_config
.full_snapshot_archives_dir
.path()
.join(full_snapshot_archive.path().file_name().unwrap()),
)
.unwrap();
std::fs::copy(
incremental_snapshot_archive.path(),
validator2_config
.incremental_snapshot_archives_dir
.path()
.join(incremental_snapshot_archive.path().file_name().unwrap()),
)
.unwrap();
info!("Copying snapshots to validator2... DONE");
info!("Starting validator2...");
let validator2_identity = Arc::new(Keypair::new());
cluster.add_validator(
&validator2_config.validator_config,
DEFAULT_NODE_STAKE,
validator2_identity.clone(),
None,
SocketAddrSpace::Unspecified,
);
info!("Starting validator2... DONE");
// wait for a new bank snapshot to fastboot from that is newer than its snapshot archives
info!("Waiting for validator2 to create a new bank snapshot...");
let timer = Instant::now();
let bank_snapshot = loop {
if let Some(full_snapshot_slot) = snapshot_utils::get_highest_full_snapshot_archive_slot(
&validator2_config.full_snapshot_archives_dir,
) {
if let Some(incremental_snapshot_slot) =
snapshot_utils::get_highest_incremental_snapshot_archive_slot(
&validator2_config.incremental_snapshot_archives_dir,
full_snapshot_slot,
)
{
if let Some(bank_snapshot) = snapshot_utils::get_highest_bank_snapshot_post(
&validator2_config.bank_snapshots_dir,
) {
if bank_snapshot.slot > incremental_snapshot_slot {
break bank_snapshot;
}
}
}
}
assert!(
timer.elapsed() < Duration::from_secs(30),
"It should not take longer than 30 seconds to create a new bank snapshot"
);
std::thread::yield_now();
};
debug!("bank snapshot: {bank_snapshot:?}");
info!("Waiting for validator2 to create a new bank snapshot... DONE");
// restart WITH fastboot
info!("Restarting validator2 from local state...");
let mut validator2_info = cluster.exit_node(&validator2_identity.pubkey());
validator2_info.config.use_snapshot_archives_at_startup = UseSnapshotArchivesAtStartup::Never;
cluster.restart_node(
&validator2_identity.pubkey(),
validator2_info,
SocketAddrSpace::Unspecified,
);
info!("Restarting validator2 from local state... DONE");
info!("Waiting for validator2 to create snapshots...");
let (incremental_snapshot_archive, full_snapshot_archive) =
LocalCluster::wait_for_next_incremental_snapshot(
&cluster,
&validator2_config.full_snapshot_archives_dir,
&validator2_config.incremental_snapshot_archives_dir,
Some(Duration::from_secs(5 * 60)),
);
debug!("snapshot archives:\n\tfull: {full_snapshot_archive:?}\n\tincr: {incremental_snapshot_archive:?}");
info!("Waiting for validator2 to create snapshots... DONE");
info!("Copying snapshots to validator3...");
std::fs::copy(
full_snapshot_archive.path(),
validator3_config
.full_snapshot_archives_dir
.path()
.join(full_snapshot_archive.path().file_name().unwrap()),
)
.unwrap();
std::fs::copy(
incremental_snapshot_archive.path(),
validator3_config
.incremental_snapshot_archives_dir
.path()
.join(incremental_snapshot_archive.path().file_name().unwrap()),
)
.unwrap();
info!("Copying snapshots to validator3... DONE");
info!("Starting validator3...");
let validator3_identity = Arc::new(Keypair::new());
cluster.add_validator(
&validator3_config.validator_config,
DEFAULT_NODE_STAKE,
validator3_identity,
None,
SocketAddrSpace::Unspecified,
);
info!("Starting validator3... DONE");
// wait for a new snapshot to ensure the validator is making roots
info!("Waiting for validator3 to create snapshots...");
let (incremental_snapshot_archive, full_snapshot_archive) =
LocalCluster::wait_for_next_incremental_snapshot(
&cluster,
&validator3_config.full_snapshot_archives_dir,
&validator3_config.incremental_snapshot_archives_dir,
Some(Duration::from_secs(5 * 60)),
);
debug!("snapshot archives:\n\tfull: {full_snapshot_archive:?}\n\tincr: {incremental_snapshot_archive:?}");
info!("Waiting for validator3 to create snapshots... DONE");
// ensure that all validators have the correct state by comparing snapshots
// - wait for the other validators to have high enough snapshots
// - ensure validator3's snapshot hashes match the other validators' snapshot hashes
//
// NOTE: There's a chance validator's 1 or 2 have crossed the next full snapshot past what
// validator 3 has. If that happens, validator's 1 or 2 may have purged the snapshots needed
// to compare with validator 3, and thus assert. If that happens, the full snapshot interval
// may need to be adjusted larger.
for (i, other_validator_config) in [(1, &validator1_config), (2, &validator2_config)] {
info!("Checking if validator{i} has the same snapshots as validator3...");
let timer = Instant::now();
loop {
if let Some(other_full_snapshot_slot) =
snapshot_utils::get_highest_full_snapshot_archive_slot(
&other_validator_config.full_snapshot_archives_dir,
)
{
let other_incremental_snapshot_slot =
snapshot_utils::get_highest_incremental_snapshot_archive_slot(
&other_validator_config.incremental_snapshot_archives_dir,
other_full_snapshot_slot,
);
if other_full_snapshot_slot >= full_snapshot_archive.slot()
&& other_incremental_snapshot_slot >= Some(incremental_snapshot_archive.slot())
{
break;
}
}
assert!(
timer.elapsed() < Duration::from_secs(60),
"It should not take longer than 60 seconds to take snapshots"
);
std::thread::yield_now();
}
let other_full_snapshot_archives = snapshot_utils::get_full_snapshot_archives(
&other_validator_config.full_snapshot_archives_dir,
);
debug!("validator{i} full snapshot archives: {other_full_snapshot_archives:?}");
assert!(other_full_snapshot_archives
.iter()
.any(
|other_full_snapshot_archive| other_full_snapshot_archive.slot()
== full_snapshot_archive.slot()
&& other_full_snapshot_archive.hash() == full_snapshot_archive.hash()
));
let other_incremental_snapshot_archives = snapshot_utils::get_incremental_snapshot_archives(
&other_validator_config.incremental_snapshot_archives_dir,
);
debug!(
"validator{i} incremental snapshot archives: {other_incremental_snapshot_archives:?}"
);
assert!(other_incremental_snapshot_archives.iter().any(
|other_incremental_snapshot_archive| other_incremental_snapshot_archive.base_slot()
== incremental_snapshot_archive.base_slot()
&& other_incremental_snapshot_archive.slot() == incremental_snapshot_archive.slot()
&& other_incremental_snapshot_archive.hash() == incremental_snapshot_archive.hash()
));
info!("Checking if validator{i} has the same snapshots as validator3... DONE");
}
}
// We want to simulate the following:
// /--- 1 --- 3 (duplicate block)
// 0
// \--- 2
//
// 1. > DUPLICATE_THRESHOLD of the nodes vote on some version of the the duplicate block 3,
// but don't immediately duplicate confirm so they remove 3 from fork choice and reset PoH back to 1.
// 2. All the votes on 3 don't land because there are no further blocks building off 3.
// 3. Some < SWITCHING_THRESHOLD of nodes vote on 2, making it the heaviest fork because no votes on 3 landed
// 4. Nodes then see duplicate confirmation on 3.
// 5. Unless somebody builds off of 3 to include the duplicate confirmed votes, 2 will still be the heaviest.
// However, because 2 has < SWITCHING_THRESHOLD of the votes, people who voted on 3 can't switch, leading to a
// stall
#[test]
#[serial]
#[allow(unused_attributes)]
fn test_duplicate_shreds_switch_failure() {
fn wait_for_duplicate_fork_frozen(ledger_path: &Path, dup_slot: Slot) -> Hash {
// Ensure all the slots <= dup_slot are also full so we know we can replay up to dup_slot
// on restart
info!(
"Waiting to receive and replay entire duplicate fork with tip {}",
dup_slot
);
loop {
let duplicate_fork_validator_blockstore = open_blockstore(ledger_path);
if let Some(frozen_hash) = duplicate_fork_validator_blockstore.get_bank_hash(dup_slot) {
return frozen_hash;
}
sleep(Duration::from_millis(1000));
}
}
fn clear_ledger_and_tower(ledger_path: &Path, pubkey: &Pubkey, start_slot: Slot) {
remove_tower_if_exists(ledger_path, pubkey);
let blockstore = open_blockstore(ledger_path);
purge_slots_with_count(&blockstore, start_slot, 1000);
{
// Remove all duplicate proofs so that this dup_slot will vote on the `dup_slot`.
while let Some((proof_slot, _)) = blockstore.get_first_duplicate_proof() {
blockstore.remove_slot_duplicate_proof(proof_slot).unwrap();
}
}
}
fn restart_dup_validator(
cluster: &mut LocalCluster,
mut duplicate_fork_validator_info: ClusterValidatorInfo,
pubkey: &Pubkey,
dup_slot: Slot,
dup_shred1: &Shred,
dup_shred2: &Shred,
) {
let disable_turbine = Arc::new(AtomicBool::new(true));
duplicate_fork_validator_info.config.voting_disabled = false;
duplicate_fork_validator_info.config.turbine_disabled = disable_turbine.clone();
info!("Restarting node: {}", pubkey);
cluster.restart_node(
pubkey,
duplicate_fork_validator_info,
SocketAddrSpace::Unspecified,
);
let ledger_path = cluster.ledger_path(pubkey);
// Lift the partition after `pubkey` votes on the `dup_slot`
info!(
"Waiting on duplicate fork to vote on duplicate slot: {}",
dup_slot
);
loop {
let last_vote = last_vote_in_tower(&ledger_path, pubkey);
if let Some((latest_vote_slot, _hash)) = last_vote {
info!("latest vote: {}", latest_vote_slot);
if latest_vote_slot == dup_slot {
break;
}
}
sleep(Duration::from_millis(1000));
}
disable_turbine.store(false, Ordering::Relaxed);
// Send the validator the other version of the shred so they realize it's duplicate
info!("Resending duplicate shreds to duplicate fork validator");
cluster.send_shreds_to_validator(vec![dup_shred1, dup_shred2], pubkey);
// Check the validator detected a duplicate proof
info!("Waiting on duplicate fork validator to see duplicate shreds and make a proof",);
loop {
let duplicate_fork_validator_blockstore = open_blockstore(&ledger_path);
if let Some(dup_proof) = duplicate_fork_validator_blockstore.get_first_duplicate_proof()
{
assert_eq!(dup_proof.0, dup_slot);
break;
}
sleep(Duration::from_millis(1000));
}
}
fn wait_for_duplicate_proof(ledger_path: &Path, dup_slot: Slot) -> Option<DuplicateSlotProof> {
for _ in 0..10 {
let duplicate_fork_validator_blockstore = open_blockstore(ledger_path);
if let Some((found_dup_slot, found_duplicate_proof)) =
duplicate_fork_validator_blockstore.get_first_duplicate_proof()
{
if found_dup_slot == dup_slot {
return Some(found_duplicate_proof);
};
}
sleep(Duration::from_millis(1000));
}
None
}
solana_logger::setup_with_default(RUST_LOG_FILTER);
let validator_keypairs = [
"28bN3xyvrP4E8LwEgtLjhnkb7cY4amQb6DrYAbAYjgRV4GAGgkVM2K7wnxnAS7WDneuavza7x21MiafLu1HkwQt4",
"2saHBBoTkLMmttmPQP8KfBkcCw45S5cwtV3wTdGCscRC8uxdgvHxpHiWXKx4LvJjNJtnNcbSv5NdheokFFqnNDt8",
"4mx9yoFBeYasDKBGDWCTWGJdWuJCKbgqmuP8bN9umybCh5Jzngw7KQxe99Rf5uzfyzgba1i65rJW4Wqk7Ab5S8ye",
"2XFPyuzPuXMsPnkH98UNcQpfA7M4b2TUhRxcWEoWjy4M6ojQ7HGJSvotktEVbaq49Qxt16wUjdqvSJc6ecbFfZwj",
]
.iter()
.map(|s| (Arc::new(Keypair::from_base58_string(s)), true))
.collect::<Vec<_>>();
let validators = validator_keypairs
.iter()
.map(|(kp, _)| kp.pubkey())
.collect::<Vec<_>>();
// Create 4 nodes:
// 1) Two nodes that sum to > DUPLICATE_THRESHOLD but < 2/3+ supermajority. It's important both
// of them individually have <= DUPLICATE_THRESHOLD to avoid duplicate confirming their own blocks
// immediately upon voting
// 2) One with <= SWITCHING_THRESHOLD so that validator from 1) can't switch to it
// 3) One bad leader to make duplicate slots
let total_stake = 100 * DEFAULT_NODE_STAKE;
let target_switch_fork_stake = (total_stake as f64 * SWITCH_FORK_THRESHOLD) as u64;
// duplicate_fork_node1_stake + duplicate_fork_node2_stake > DUPLICATE_THRESHOLD. Don't want
// one node with > DUPLICATE_THRESHOLD, otherwise they will automatically duplicate confirm a
// slot when they vote, which will prevent them from resetting to an earlier ancestor when they
// later discover that slot as duplicate.
let duplicate_fork_node1_stake = (total_stake as f64 * DUPLICATE_THRESHOLD) as u64;
let duplicate_fork_node2_stake = 1;
let duplicate_leader_stake = total_stake
- target_switch_fork_stake
- duplicate_fork_node1_stake
- duplicate_fork_node2_stake;
assert!(
duplicate_fork_node1_stake + duplicate_fork_node2_stake
> (total_stake as f64 * DUPLICATE_THRESHOLD) as u64
);
assert!(duplicate_fork_node1_stake <= (total_stake as f64 * DUPLICATE_THRESHOLD) as u64);
assert!(duplicate_fork_node2_stake <= (total_stake as f64 * DUPLICATE_THRESHOLD) as u64);
let node_stakes = vec![
duplicate_leader_stake,
target_switch_fork_stake,
duplicate_fork_node1_stake,
duplicate_fork_node2_stake,
];
let (
// Has to be first in order to be picked as the duplicate leader
duplicate_leader_validator_pubkey,
target_switch_fork_validator_pubkey,
duplicate_fork_validator1_pubkey,
duplicate_fork_validator2_pubkey,
) = (validators[0], validators[1], validators[2], validators[3]);
info!(
"duplicate_fork_validator1_pubkey: {},
duplicate_fork_validator2_pubkey: {},
target_switch_fork_validator_pubkey: {},
duplicate_leader_validator_pubkey: {}",
duplicate_fork_validator1_pubkey,
duplicate_fork_validator2_pubkey,
target_switch_fork_validator_pubkey,
duplicate_leader_validator_pubkey
);
let validator_to_slots = vec![
(duplicate_leader_validator_pubkey, 50),
(target_switch_fork_validator_pubkey, 5),
// The ideal sequence of events for the `duplicate_fork_validator1_pubkey` validator would go:
// 1. Vote for duplicate block `D`
// 2. See `D` is duplicate, remove from fork choice and reset to ancestor `A`, potentially generating a fork off that ancestor
// 3. See `D` is duplicate confirmed, but because of the bug fixed by https://github.com/solana-labs/solana/pull/28172
// where we disallow resetting to a slot which matches the last vote slot, we still don't build off `D`,
// and continue building on `A`.
//
// The `target_switch_fork_validator_pubkey` fork is necessary in 2. to force the validator stall trying to switch
// vote on that other fork and prevent the validator from making a freebie vote from `A` and allowing consensus to continue.
// It's important we don't give the `duplicate_fork_validator1_pubkey` leader slots until a certain number
// of slots have elapsed to ensure:
// 1. We have ample time to ensure he doesn't have a chance to make a block until after 2 when they see the block is duplicate.
// Otherwise, they'll build the block on top of the duplicate block, which will possibly include a vote for the duplicate block.
// We want to avoid this because this will make fork choice pick the duplicate block.
// 2. Ensure the `duplicate_fork_validator1_pubkey` sees the target switch fork before it can make another vote
// on any forks he himself generates from A. Otherwise, he will make a freebie vote on his own fork from `A` and
// consensus will continue on that fork.
// Give the duplicate fork validator plenty of leader slots after the initial delay to prevent
// 1. Switch fork from getting locked out for too long
// 2. A lot of consecutive slots in which to build up lockout in tower and make new roots
// to resolve the partition
(duplicate_fork_validator1_pubkey, 500),
];
let leader_schedule = create_custom_leader_schedule(validator_to_slots.into_iter());
// 1) Set up the cluster
let (duplicate_slot_sender, duplicate_slot_receiver) = unbounded();
let validator_configs = validator_keypairs
.into_iter()
.map(|(validator_keypair, in_genesis)| {
let pubkey = validator_keypair.pubkey();
// Only allow the leader to vote so that no version gets duplicate confirmed.
// This is to avoid the leader dumping his own block.
let voting_disabled = { pubkey != duplicate_leader_validator_pubkey };
ValidatorTestConfig {
validator_keypair,
validator_config: ValidatorConfig {
voting_disabled,
..ValidatorConfig::default()
},
in_genesis,
}
})
.collect();
let (mut cluster, _validator_keypairs) = test_faulty_node(
BroadcastStageType::BroadcastDuplicates(BroadcastDuplicatesConfig {
partition: ClusterPartition::Pubkey(vec![
// Don't include the other dup validator here, otherwise
// this dup version will have enough to be duplicate confirmed and
// will cause the dup leader to try and dump its own slot,
// crashing before it can signal the duplicate slot via the
// `duplicate_slot_receiver` below
duplicate_fork_validator1_pubkey,
]),
duplicate_slot_sender: Some(duplicate_slot_sender),
}),
node_stakes,
Some(validator_configs),
Some(FixedSchedule {
leader_schedule: Arc::new(leader_schedule),
}),
);
// Kill two validators that might duplicate confirm the duplicate block
info!("Killing unnecessary validators");
let duplicate_fork_validator2_ledger_path =
cluster.ledger_path(&duplicate_fork_validator2_pubkey);
let duplicate_fork_validator2_info = cluster.exit_node(&duplicate_fork_validator2_pubkey);
let target_switch_fork_validator_ledger_path =
cluster.ledger_path(&target_switch_fork_validator_pubkey);
let mut target_switch_fork_validator_info =
cluster.exit_node(&target_switch_fork_validator_pubkey);
// 2) Wait for a duplicate slot to land on both validators and for the target switch
// fork validator to get another version of the slot. Also ensure all versions of
// the block are playable
let dup_slot;
loop {
dup_slot = duplicate_slot_receiver
.recv_timeout(Duration::from_millis(30_000))
.expect("Duplicate leader failed to make a duplicate slot in allotted time");
// Make sure both validators received and replay the complete blocks
let dup_frozen_hash = wait_for_duplicate_fork_frozen(
&cluster.ledger_path(&duplicate_fork_validator1_pubkey),
dup_slot,
);
let original_frozen_hash = wait_for_duplicate_fork_frozen(
&cluster.ledger_path(&duplicate_leader_validator_pubkey),
dup_slot,
);
if original_frozen_hash != dup_frozen_hash {
break;
} else {
panic!(
"Duplicate leader and partition target got same hash: {}",
original_frozen_hash
);
}
}
// 3) Force `duplicate_fork_validator1_pubkey` to see a duplicate proof
info!("Waiting for duplicate proof for slot: {}", dup_slot);
let duplicate_proof = {
// Grab the other version of the slot from the `duplicate_leader_validator_pubkey`
// which we confirmed to have a different version of the frozen hash in the loop
// above
let ledger_path = cluster.ledger_path(&duplicate_leader_validator_pubkey);
let blockstore = open_blockstore(&ledger_path);
let dup_shred = blockstore
.get_data_shreds_for_slot(dup_slot, 0)
.unwrap()
.pop()
.unwrap();
info!(
"Sending duplicate shred: {:?} to {:?}",
dup_shred.signature(),
duplicate_fork_validator1_pubkey
);
cluster.send_shreds_to_validator(vec![&dup_shred], &duplicate_fork_validator1_pubkey);
wait_for_duplicate_proof(
&cluster.ledger_path(&duplicate_fork_validator1_pubkey),
dup_slot,
)
.unwrap_or_else(|| panic!("Duplicate proof for slot {} not found", dup_slot))
};
// 3) Kill all the validators
info!("Killing remaining validators");
let duplicate_fork_validator1_ledger_path =
cluster.ledger_path(&duplicate_fork_validator1_pubkey);
let duplicate_fork_validator1_info = cluster.exit_node(&duplicate_fork_validator1_pubkey);
let duplicate_leader_ledger_path = cluster.ledger_path(&duplicate_leader_validator_pubkey);
cluster.exit_node(&duplicate_leader_validator_pubkey);
let dup_shred1 = Shred::new_from_serialized_shred(duplicate_proof.shred1.clone()).unwrap();
let dup_shred2 = Shred::new_from_serialized_shred(duplicate_proof.shred2).unwrap();
assert_eq!(dup_shred1.slot(), dup_shred2.slot());
assert_eq!(dup_shred1.slot(), dup_slot);
// Purge everything including the `dup_slot` from the `target_switch_fork_validator_pubkey`
info!(
"Purging towers and ledgers for: {:?}",
duplicate_leader_validator_pubkey
);
Blockstore::destroy(&target_switch_fork_validator_ledger_path).unwrap();
{
let blockstore1 = open_blockstore(&duplicate_leader_ledger_path);
let blockstore2 = open_blockstore(&target_switch_fork_validator_ledger_path);
copy_blocks(dup_slot, &blockstore1, &blockstore2);
}
clear_ledger_and_tower(
&target_switch_fork_validator_ledger_path,
&target_switch_fork_validator_pubkey,
dup_slot,
);
info!(
"Purging towers and ledgers for: {:?}",
duplicate_fork_validator1_pubkey
);
clear_ledger_and_tower(
&duplicate_fork_validator1_ledger_path,
&duplicate_fork_validator1_pubkey,
dup_slot + 1,
);
info!(
"Purging towers and ledgers for: {:?}",
duplicate_fork_validator2_pubkey
);
// Copy validator 1's ledger to validator 2 so that they have the same version
// of the duplicate slot
clear_ledger_and_tower(
&duplicate_fork_validator2_ledger_path,
&duplicate_fork_validator2_pubkey,
dup_slot,
);
Blockstore::destroy(&duplicate_fork_validator2_ledger_path).unwrap();
{
let blockstore1 = open_blockstore(&duplicate_fork_validator1_ledger_path);
let blockstore2 = open_blockstore(&duplicate_fork_validator2_ledger_path);
copy_blocks(dup_slot, &blockstore1, &blockstore2);
}
// Set entrypoint to `target_switch_fork_validator_pubkey` so we can run discovery in gossip even without the
// bad leader
cluster.set_entry_point(target_switch_fork_validator_info.info.contact_info.clone());
// 4) Restart `target_switch_fork_validator_pubkey`, and ensure they vote on their own leader slot
// that's not descended from the duplicate slot
info!("Restarting switch fork node");
target_switch_fork_validator_info.config.voting_disabled = false;
cluster.restart_node(
&target_switch_fork_validator_pubkey,
target_switch_fork_validator_info,
SocketAddrSpace::Unspecified,
);
let target_switch_fork_validator_ledger_path =
cluster.ledger_path(&target_switch_fork_validator_pubkey);
info!("Waiting for switch fork to make block past duplicate fork");
loop {
let last_vote = wait_for_last_vote_in_tower_to_land_in_ledger(
&target_switch_fork_validator_ledger_path,
&target_switch_fork_validator_pubkey,
);
if let Some(latest_vote_slot) = last_vote {
if latest_vote_slot > dup_slot {
let blockstore = open_blockstore(&target_switch_fork_validator_ledger_path);
let ancestor_slots: HashSet<Slot> =
AncestorIterator::new_inclusive(latest_vote_slot, &blockstore).collect();
assert!(ancestor_slots.contains(&latest_vote_slot));
assert!(ancestor_slots.contains(&0));
assert!(!ancestor_slots.contains(&dup_slot));
break;
}
}
sleep(Duration::from_millis(1000));
}
// Now restart the duplicate validators
// Start the node with partition enabled so they don't see the `target_switch_fork_validator_pubkey`
// before voting on the duplicate block
info!("Restarting duplicate fork node");
// Ensure `duplicate_fork_validator1_pubkey` votes before starting up `duplicate_fork_validator2_pubkey`
// to prevent them seeing `dup_slot` as duplicate confirmed before voting.
restart_dup_validator(
&mut cluster,
duplicate_fork_validator1_info,
&duplicate_fork_validator1_pubkey,
dup_slot,
&dup_shred1,
&dup_shred2,
);
restart_dup_validator(
&mut cluster,
duplicate_fork_validator2_info,
&duplicate_fork_validator2_pubkey,
dup_slot,
&dup_shred1,
&dup_shred2,
);
// Wait for the `duplicate_fork_validator1_pubkey` to make another leader block on top
// of the duplicate fork which includes their own vote for `dup_block`. This
// should make the duplicate fork the heaviest
info!("Waiting on duplicate fork validator to generate block on top of duplicate fork",);
loop {
let duplicate_fork_validator_blockstore =
open_blockstore(&cluster.ledger_path(&duplicate_fork_validator1_pubkey));
let meta = duplicate_fork_validator_blockstore
.meta(dup_slot)
.unwrap()
.unwrap();
if !meta.next_slots.is_empty() {
info!(
"duplicate fork validator saw new slots: {:?} on top of duplicate slot",
meta.next_slots
);
break;
}
sleep(Duration::from_millis(1000));
}
// Check that the cluster is making progress
cluster.check_for_new_roots(
16,
"test_duplicate_shreds_switch_failure",
SocketAddrSpace::Unspecified,
);
}