solana/runtime/src/accounts_index.rs

2784 lines
90 KiB
Rust

use crate::{
contains::Contains,
inline_spl_token_v2_0::{self, SPL_TOKEN_ACCOUNT_MINT_OFFSET, SPL_TOKEN_ACCOUNT_OWNER_OFFSET},
secondary_index::*,
};
use bv::BitVec;
use dashmap::DashSet;
use ouroboros::self_referencing;
use solana_measure::measure::Measure;
use solana_sdk::{
clock::Slot,
pubkey::{Pubkey, PUBKEY_BYTES},
};
use std::{
collections::{
btree_map::{self, BTreeMap},
HashMap, HashSet,
},
ops::{
Bound,
Bound::{Excluded, Included, Unbounded},
Range, RangeBounds,
},
sync::{
atomic::{AtomicU64, Ordering},
Arc, RwLock, RwLockReadGuard, RwLockWriteGuard,
},
};
pub const ITER_BATCH_SIZE: usize = 1000;
pub type SlotList<T> = Vec<(Slot, T)>;
pub type SlotSlice<'s, T> = &'s [(Slot, T)];
pub type Ancestors = HashMap<Slot, usize>;
pub type RefCount = u64;
pub type AccountMap<K, V> = BTreeMap<K, V>;
type AccountMapEntry<T> = Arc<AccountMapEntryInner<T>>;
pub trait IsCached {
fn is_cached(&self) -> bool;
}
impl IsCached for bool {
fn is_cached(&self) -> bool {
false
}
}
impl IsCached for u64 {
fn is_cached(&self) -> bool {
false
}
}
enum ScanTypes<R: RangeBounds<Pubkey>> {
Unindexed(Option<R>),
Indexed(IndexKey),
}
#[derive(Debug, Clone, Copy)]
pub enum IndexKey {
ProgramId(Pubkey),
SplTokenMint(Pubkey),
SplTokenOwner(Pubkey),
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum AccountIndex {
ProgramId,
SplTokenMint,
SplTokenOwner,
}
#[derive(Debug)]
pub struct AccountMapEntryInner<T> {
ref_count: AtomicU64,
pub slot_list: RwLock<SlotList<T>>,
}
impl<T> AccountMapEntryInner<T> {
pub fn ref_count(&self) -> u64 {
self.ref_count.load(Ordering::Relaxed)
}
}
#[self_referencing]
pub struct ReadAccountMapEntry<T: 'static> {
owned_entry: AccountMapEntry<T>,
#[borrows(owned_entry)]
slot_list_guard: RwLockReadGuard<'this, SlotList<T>>,
}
impl<T: Clone> ReadAccountMapEntry<T> {
pub fn from_account_map_entry(account_map_entry: AccountMapEntry<T>) -> Self {
ReadAccountMapEntryBuilder {
owned_entry: account_map_entry,
slot_list_guard_builder: |lock| lock.slot_list.read().unwrap(),
}
.build()
}
pub fn slot_list(&self) -> &SlotList<T> {
&*self.borrow_slot_list_guard()
}
pub fn ref_count(&self) -> &AtomicU64 {
&self.borrow_owned_entry_contents().ref_count
}
pub fn unref(&self) {
self.ref_count().fetch_sub(1, Ordering::Relaxed);
}
}
#[self_referencing]
pub struct WriteAccountMapEntry<T: 'static> {
owned_entry: AccountMapEntry<T>,
#[borrows(owned_entry)]
slot_list_guard: RwLockWriteGuard<'this, SlotList<T>>,
}
impl<T: 'static + Clone + IsCached> WriteAccountMapEntry<T> {
pub fn from_account_map_entry(account_map_entry: AccountMapEntry<T>) -> Self {
WriteAccountMapEntryBuilder {
owned_entry: account_map_entry,
slot_list_guard_builder: |lock| lock.slot_list.write().unwrap(),
}
.build()
}
pub fn slot_list(&mut self) -> &SlotList<T> {
&*self.borrow_slot_list_guard()
}
pub fn slot_list_mut<RT>(
&mut self,
user: impl for<'this> FnOnce(&mut RwLockWriteGuard<'this, SlotList<T>>) -> RT,
) -> RT {
self.with_slot_list_guard_mut(user)
}
pub fn ref_count(&self) -> &AtomicU64 {
&self.borrow_owned_entry_contents().ref_count
}
// Try to update an item in the slot list the given `slot` If an item for the slot
// already exists in the list, remove the older item, add it to `reclaims`, and insert
// the new item.
pub fn update(&mut self, slot: Slot, account_info: T, reclaims: &mut SlotList<T>) {
// filter out other dirty entries from the same slot
let mut same_slot_previous_updates: Vec<(usize, &(Slot, T))> = self
.slot_list()
.iter()
.enumerate()
.filter(|(_, (s, _))| *s == slot)
.collect();
assert!(same_slot_previous_updates.len() <= 1);
if let Some((list_index, (s, previous_update_value))) = same_slot_previous_updates.pop() {
let is_flush_from_cache =
previous_update_value.is_cached() && !account_info.is_cached();
reclaims.push((*s, previous_update_value.clone()));
self.slot_list_mut(|list| list.remove(list_index));
if is_flush_from_cache {
self.ref_count().fetch_add(1, Ordering::Relaxed);
}
} else if !account_info.is_cached() {
// If it's the first non-cache insert, also bump the stored ref count
self.ref_count().fetch_add(1, Ordering::Relaxed);
}
self.slot_list_mut(|list| list.push((slot, account_info)));
}
}
#[derive(Debug, Default)]
pub struct RollingBitField {
max_width: u64,
min: u64,
max: u64, // exclusive
bits: BitVec,
count: usize,
}
// functionally similar to a hashset
// Relies on there being a sliding window of key values. The key values continue to increase.
// Old key values are removed from the lesser values and do not accumulate.
impl RollingBitField {
pub fn new(max_width: u64) -> Self {
assert!(max_width > 0);
assert!(max_width.is_power_of_two()); // power of 2 to make dividing a shift
let bits = BitVec::new_fill(false, max_width);
Self {
max_width,
bits,
count: 0,
min: 0,
max: 0,
}
}
// find the array index
fn get_address(&self, key: &u64) -> u64 {
key % self.max_width
}
fn check_range(&self, key: u64) {
assert!(
self.count == 0
|| (self.max.saturating_sub(key) <= self.max_width as u64
&& key.saturating_sub(self.min) < self.max_width as u64),
"out of range"
);
}
pub fn insert(&mut self, key: u64) {
self.check_range(key);
let address = self.get_address(&key);
let value = self.bits.get(address);
if !value {
self.bits.set(address, true);
if self.count == 0 {
self.min = key;
self.max = key + 1;
} else {
self.min = std::cmp::min(self.min, key);
self.max = std::cmp::max(self.max, key + 1);
}
self.count += 1;
}
}
pub fn remove(&mut self, key: &u64) {
self.check_range(*key);
let address = self.get_address(key);
let value = self.bits.get(address);
if value {
self.count -= 1;
self.bits.set(address, false);
self.purge(key);
}
}
// after removing 'key' where 'key' = min, make min the correct new min value
fn purge(&mut self, key: &u64) {
if key == &self.min && self.count > 0 {
let start = self.min + 1; // min just got removed
for key in start..self.max {
if self.contains_assume_in_range(&key) {
self.min = key;
break;
}
}
}
}
fn contains_assume_in_range(&self, key: &u64) -> bool {
// the result may be aliased. Caller is responsible for determining key is in range.
let address = self.get_address(key);
self.bits.get(address)
}
pub fn contains(&self, key: &u64) -> bool {
let result = self.contains_assume_in_range(key);
// A contains call outside min and max is allowed. The answer will be false.
// Only need to do range check if we found true.
result && (key >= &self.min && key < &self.max)
}
pub fn len(&self) -> usize {
self.count
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn clear(&mut self) {
let mut n = Self::new(self.max_width);
std::mem::swap(&mut n, self);
}
pub fn get_all(&self) -> Vec<u64> {
let mut all = Vec::with_capacity(self.count);
for key in self.min..self.max {
if self.contains_assume_in_range(&key) {
all.push(key);
}
}
all
}
}
#[derive(Debug)]
pub struct RootsTracker {
roots: RollingBitField,
max_root: Slot,
uncleaned_roots: HashSet<Slot>,
previous_uncleaned_roots: HashSet<Slot>,
}
impl Default for RootsTracker {
fn default() -> Self {
// we expect to keep a rolling set of 400k slots around at a time
// 2M gives us plenty of extra room to handle a width 5x what we should need.
// cost is 2M bits of memory
RootsTracker::new(2097152)
}
}
impl RootsTracker {
pub fn new(max_width: u64) -> Self {
Self {
roots: RollingBitField::new(max_width),
max_root: 0,
uncleaned_roots: HashSet::new(),
previous_uncleaned_roots: HashSet::new(),
}
}
}
#[derive(Debug, Default)]
pub struct AccountsIndexRootsStats {
pub roots_len: usize,
pub uncleaned_roots_len: usize,
pub previous_uncleaned_roots_len: usize,
}
pub struct AccountsIndexIterator<'a, T> {
account_maps: &'a RwLock<AccountMap<Pubkey, AccountMapEntry<T>>>,
start_bound: Bound<Pubkey>,
end_bound: Bound<Pubkey>,
is_finished: bool,
}
impl<'a, T> AccountsIndexIterator<'a, T> {
fn clone_bound(bound: Bound<&Pubkey>) -> Bound<Pubkey> {
match bound {
Unbounded => Unbounded,
Included(k) => Included(*k),
Excluded(k) => Excluded(*k),
}
}
pub fn new<R>(
account_maps: &'a RwLock<AccountMap<Pubkey, AccountMapEntry<T>>>,
range: Option<R>,
) -> Self
where
R: RangeBounds<Pubkey>,
{
Self {
start_bound: range
.as_ref()
.map(|r| Self::clone_bound(r.start_bound()))
.unwrap_or(Unbounded),
end_bound: range
.as_ref()
.map(|r| Self::clone_bound(r.end_bound()))
.unwrap_or(Unbounded),
account_maps,
is_finished: false,
}
}
}
impl<'a, T: 'static + Clone> Iterator for AccountsIndexIterator<'a, T> {
type Item = Vec<(Pubkey, AccountMapEntry<T>)>;
fn next(&mut self) -> Option<Self::Item> {
if self.is_finished {
return None;
}
let chunk: Vec<(Pubkey, AccountMapEntry<T>)> = self
.account_maps
.read()
.unwrap()
.range((self.start_bound, self.end_bound))
.map(|(pubkey, account_map_entry)| (*pubkey, account_map_entry.clone()))
.take(ITER_BATCH_SIZE)
.collect();
if chunk.is_empty() {
self.is_finished = true;
return None;
}
self.start_bound = Excluded(chunk.last().unwrap().0);
Some(chunk)
}
}
pub trait ZeroLamport {
fn is_zero_lamport(&self) -> bool;
}
#[derive(Debug, Default)]
pub struct AccountsIndex<T> {
pub account_maps: RwLock<AccountMap<Pubkey, AccountMapEntry<T>>>,
program_id_index: SecondaryIndex<DashMapSecondaryIndexEntry>,
spl_token_mint_index: SecondaryIndex<DashMapSecondaryIndexEntry>,
spl_token_owner_index: SecondaryIndex<RwLockSecondaryIndexEntry>,
roots_tracker: RwLock<RootsTracker>,
ongoing_scan_roots: RwLock<BTreeMap<Slot, u64>>,
zero_lamport_pubkeys: DashSet<Pubkey>,
}
impl<T: 'static + Clone + IsCached + ZeroLamport> AccountsIndex<T> {
fn iter<R>(&self, range: Option<R>) -> AccountsIndexIterator<T>
where
R: RangeBounds<Pubkey>,
{
AccountsIndexIterator::new(&self.account_maps, range)
}
fn do_checked_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
func: F,
scan_type: ScanTypes<R>,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
let max_root = {
let mut w_ongoing_scan_roots = self
// This lock is also grabbed by clean_accounts(), so clean
// has at most cleaned up to the current `max_root` (since
// clean only happens *after* BankForks::set_root() which sets
// the `max_root`)
.ongoing_scan_roots
.write()
.unwrap();
// `max_root()` grabs a lock while
// the `ongoing_scan_roots` lock is held,
// make sure inverse doesn't happen to avoid
// deadlock
let max_root = self.max_root();
*w_ongoing_scan_roots.entry(max_root).or_default() += 1;
max_root
};
// First we show that for any bank `B` that is a descendant of
// the current `max_root`, it must be true that and `B.ancestors.contains(max_root)`,
// regardless of the pattern of `squash()` behavior, where `ancestors` is the set
// of ancestors that is tracked in each bank.
//
// Proof: At startup, if starting from a snapshot, generate_index() adds all banks
// in the snapshot to the index via `add_root()` and so `max_root` will be the
// greatest of these. Thus, so the claim holds at startup since there are no
// descendants of `max_root`.
//
// Now we proceed by induction on each `BankForks::set_root()`.
// Assume the claim holds when the `max_root` is `R`. Call the set of
// descendants of `R` present in BankForks `R_descendants`.
//
// Then for any banks `B` in `R_descendants`, it must be that `B.ancestors.contains(S)`,
// where `S` is any ancestor of `B` such that `S >= R`.
//
// For example:
// `R` -> `A` -> `C` -> `B`
// Then `B.ancestors == {R, A, C}`
//
// Next we call `BankForks::set_root()` at some descendant of `R`, `R_new`,
// where `R_new > R`.
//
// When we squash `R_new`, `max_root` in the AccountsIndex here is now set to `R_new`,
// and all nondescendants of `R_new` are pruned.
//
// Now consider any outstanding references to banks in the system that are descended from
// `max_root == R_new`. Take any one of these references and call it `B`. Because `B` is
// a descendant of `R_new`, this means `B` was also a descendant of `R`. Thus `B`
// must be a member of `R_descendants` because `B` was constructed and added to
// BankForks before the `set_root`.
//
// This means by the guarantees of `R_descendants` described above, because
// `R_new` is an ancestor of `B`, and `R < R_new < B`, then `B.ancestors.contains(R_new)`.
//
// Now until the next `set_root`, any new banks constructed from `new_from_parent` will
// also have `max_root == R_new` in their ancestor set, so the claim holds for those descendants
// as well. Once the next `set_root` happens, we once again update `max_root` and the same
// inductive argument can be applied again to show the claim holds.
// Check that the `max_root` is present in `ancestors`. From the proof above, if
// `max_root` is not present in `ancestors`, this means the bank `B` with the
// given `ancestors` is not descended from `max_root, which means
// either:
// 1) `B` is on a different fork or
// 2) `B` is an ancestor of `max_root`.
// In both cases we can ignore the given ancestors and instead just rely on the roots
// present as `max_root` indicates the roots present in the index are more up to date
// than the ancestors given.
let empty = Ancestors::default();
let ancestors = if ancestors.contains_key(&max_root) {
ancestors
} else {
/*
This takes of edge cases like:
Diagram 1:
slot 0
|
slot 1
/ \
slot 2 |
| slot 3 (max root)
slot 4 (scan)
By the time the scan on slot 4 is called, slot 2 may already have been
cleaned by a clean on slot 3, but slot 4 may not have been cleaned.
The state in slot 2 would have been purged and is not saved in any roots.
In this case, a scan on slot 4 wouldn't accurately reflect the state when bank 4
was frozen. In cases like this, we default to a scan on the latest roots by
removing all `ancestors`.
*/
&empty
};
/*
Now there are two cases, either `ancestors` is empty or nonempty:
1) If ancestors is empty, then this is the same as a scan on a rooted bank,
and `ongoing_scan_roots` provides protection against cleanup of roots necessary
for the scan, and passing `Some(max_root)` to `do_scan_accounts()` ensures newer
roots don't appear in the scan.
2) If ancestors is non-empty, then from the `ancestors_contains(&max_root)` above, we know
that the fork structure must look something like:
Diagram 2:
Build fork structure:
slot 0
|
slot 1 (max_root)
/ \
slot 2 |
| slot 3 (potential newer max root)
slot 4
|
slot 5 (scan)
Consider both types of ancestors, ancestor <= `max_root` and
ancestor > `max_root`, where `max_root == 1` as illustrated above.
a) The set of `ancestors <= max_root` are all rooted, which means their state
is protected by the same guarantees as 1).
b) As for the `ancestors > max_root`, those banks have at least one reference discoverable
through the chain of `Bank::BankRc::parent` starting from the calling bank. For instance
bank 5's parent reference keeps bank 4 alive, which will prevent the `Bank::drop()` from
running and cleaning up bank 4. Furthermore, no cleans can happen past the saved max_root == 1,
so a potential newer max root at 3 will not clean up any of the ancestors > 1, so slot 4
will not be cleaned in the middle of the scan either. (NOTE similar reasoning is employed for
assert!() justification in AccountsDb::retry_to_get_account_accessor)
*/
match scan_type {
ScanTypes::Unindexed(range) => {
// Pass "" not to log metrics, so RPC doesn't get spammy
self.do_scan_accounts(metric_name, ancestors, func, range, Some(max_root));
}
ScanTypes::Indexed(IndexKey::ProgramId(program_id)) => {
self.do_scan_secondary_index(
ancestors,
func,
&self.program_id_index,
&program_id,
Some(max_root),
);
}
ScanTypes::Indexed(IndexKey::SplTokenMint(mint_key)) => {
self.do_scan_secondary_index(
ancestors,
func,
&self.spl_token_mint_index,
&mint_key,
Some(max_root),
);
}
ScanTypes::Indexed(IndexKey::SplTokenOwner(owner_key)) => {
self.do_scan_secondary_index(
ancestors,
func,
&self.spl_token_owner_index,
&owner_key,
Some(max_root),
);
}
}
{
let mut ongoing_scan_roots = self.ongoing_scan_roots.write().unwrap();
let count = ongoing_scan_roots.get_mut(&max_root).unwrap();
*count -= 1;
if *count == 0 {
ongoing_scan_roots.remove(&max_root);
}
}
}
fn do_unchecked_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
func: F,
range: Option<R>,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
self.do_scan_accounts(metric_name, ancestors, func, range, None);
}
// Scan accounts and return latest version of each account that is either:
// 1) rooted or
// 2) present in ancestors
fn do_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
mut func: F,
range: Option<R>,
max_root: Option<Slot>,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
// TODO: expand to use mint index to find the `pubkey_list` below more efficiently
// instead of scanning the entire range
let mut total_elapsed_timer = Measure::start("total");
let mut num_keys_iterated = 0;
let mut latest_slot_elapsed = 0;
let mut load_account_elapsed = 0;
let mut read_lock_elapsed = 0;
let mut iterator_elapsed = 0;
let mut iterator_timer = Measure::start("iterator_elapsed");
for pubkey_list in self.iter(range) {
iterator_timer.stop();
iterator_elapsed += iterator_timer.as_us();
for (pubkey, list) in pubkey_list {
num_keys_iterated += 1;
let mut read_lock_timer = Measure::start("read_lock");
let list_r = &list.slot_list.read().unwrap();
read_lock_timer.stop();
read_lock_elapsed += read_lock_timer.as_us();
let mut latest_slot_timer = Measure::start("latest_slot");
if let Some(index) = self.latest_slot(Some(ancestors), &list_r, max_root) {
latest_slot_timer.stop();
latest_slot_elapsed += latest_slot_timer.as_us();
let mut load_account_timer = Measure::start("load_account");
func(&pubkey, (&list_r[index].1, list_r[index].0));
load_account_timer.stop();
load_account_elapsed += load_account_timer.as_us();
}
}
iterator_timer = Measure::start("iterator_elapsed");
}
total_elapsed_timer.stop();
if !metric_name.is_empty() {
datapoint_info!(
metric_name,
("total_elapsed", total_elapsed_timer.as_us(), i64),
("latest_slot_elapsed", latest_slot_elapsed, i64),
("read_lock_elapsed", read_lock_elapsed, i64),
("load_account_elapsed", load_account_elapsed, i64),
("iterator_elapsed", iterator_elapsed, i64),
("num_keys_iterated", num_keys_iterated, i64),
)
}
}
fn do_scan_secondary_index<
F,
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
&self,
ancestors: &Ancestors,
mut func: F,
index: &SecondaryIndex<SecondaryIndexEntryType>,
index_key: &Pubkey,
max_root: Option<Slot>,
) where
F: FnMut(&Pubkey, (&T, Slot)),
{
for pubkey in index.get(index_key) {
// Maybe these reads from the AccountsIndex can be batched every time it
// grabs the read lock as well...
if let Some((list_r, index)) = self.get(&pubkey, Some(ancestors), max_root) {
func(
&pubkey,
(&list_r.slot_list()[index].1, list_r.slot_list()[index].0),
);
}
}
}
pub fn get_account_read_entry(&self, pubkey: &Pubkey) -> Option<ReadAccountMapEntry<T>> {
self.account_maps
.read()
.unwrap()
.get(pubkey)
.cloned()
.map(ReadAccountMapEntry::from_account_map_entry)
}
fn get_account_write_entry(&self, pubkey: &Pubkey) -> Option<WriteAccountMapEntry<T>> {
self.account_maps
.read()
.unwrap()
.get(pubkey)
.cloned()
.map(WriteAccountMapEntry::from_account_map_entry)
}
fn insert_new_entry_if_missing(&self, pubkey: &Pubkey) -> (WriteAccountMapEntry<T>, bool) {
let new_entry = Arc::new(AccountMapEntryInner {
ref_count: AtomicU64::new(0),
slot_list: RwLock::new(SlotList::with_capacity(1)),
});
let mut w_account_maps = self.account_maps.write().unwrap();
let mut is_newly_inserted = false;
let account_entry = w_account_maps.entry(*pubkey).or_insert_with(|| {
is_newly_inserted = true;
new_entry
});
let w_account_entry = WriteAccountMapEntry::from_account_map_entry(account_entry.clone());
(w_account_entry, is_newly_inserted)
}
fn get_account_write_entry_else_create(
&self,
pubkey: &Pubkey,
) -> (WriteAccountMapEntry<T>, bool) {
let mut w_account_entry = self.get_account_write_entry(pubkey);
let mut is_newly_inserted = false;
if w_account_entry.is_none() {
let entry_is_new = self.insert_new_entry_if_missing(pubkey);
w_account_entry = Some(entry_is_new.0);
is_newly_inserted = entry_is_new.1;
}
(w_account_entry.unwrap(), is_newly_inserted)
}
pub fn handle_dead_keys(&self, dead_keys: &[&Pubkey], account_indexes: &HashSet<AccountIndex>) {
if !dead_keys.is_empty() {
for key in dead_keys.iter() {
let mut w_index = self.account_maps.write().unwrap();
if let btree_map::Entry::Occupied(index_entry) = w_index.entry(**key) {
if index_entry.get().slot_list.read().unwrap().is_empty() {
index_entry.remove();
// Note passing `None` to remove all the entries for this key
// is only safe because we have the lock for this key's entry
// in the AccountsIndex, so no other thread is also updating
// the index
self.purge_secondary_indexes_by_inner_key(
key,
None::<&Slot>,
account_indexes,
);
}
}
}
}
}
/// call func with every pubkey and index visible from a given set of ancestors
pub(crate) fn scan_accounts<F>(&self, ancestors: &Ancestors, func: F)
where
F: FnMut(&Pubkey, (&T, Slot)),
{
// Pass "" not to log metrics, so RPC doesn't get spammy
self.do_checked_scan_accounts(
"",
ancestors,
func,
ScanTypes::Unindexed(None::<Range<Pubkey>>),
);
}
pub(crate) fn unchecked_scan_accounts<F>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
func: F,
) where
F: FnMut(&Pubkey, (&T, Slot)),
{
self.do_unchecked_scan_accounts(metric_name, ancestors, func, None::<Range<Pubkey>>);
}
/// call func with every pubkey and index visible from a given set of ancestors with range
pub(crate) fn range_scan_accounts<F, R>(
&self,
metric_name: &'static str,
ancestors: &Ancestors,
range: R,
func: F,
) where
F: FnMut(&Pubkey, (&T, Slot)),
R: RangeBounds<Pubkey>,
{
// Only the rent logic should be calling this, which doesn't need the safety checks
self.do_unchecked_scan_accounts(metric_name, ancestors, func, Some(range));
}
/// call func with every pubkey and index visible from a given set of ancestors
pub(crate) fn index_scan_accounts<F>(&self, ancestors: &Ancestors, index_key: IndexKey, func: F)
where
F: FnMut(&Pubkey, (&T, Slot)),
{
// Pass "" not to log metrics, so RPC doesn't get spammy
self.do_checked_scan_accounts(
"",
ancestors,
func,
ScanTypes::<Range<Pubkey>>::Indexed(index_key),
);
}
pub fn get_rooted_entries(&self, slice: SlotSlice<T>, max: Option<Slot>) -> SlotList<T> {
let max = max.unwrap_or(Slot::MAX);
let lock = &self.roots_tracker.read().unwrap().roots;
slice
.iter()
.filter(|(slot, _)| *slot <= max && lock.contains(slot))
.cloned()
.collect()
}
// returns the rooted entries and the storage ref count
pub fn roots_and_ref_count(
&self,
locked_account_entry: &ReadAccountMapEntry<T>,
max: Option<Slot>,
) -> (SlotList<T>, RefCount) {
(
self.get_rooted_entries(&locked_account_entry.slot_list(), max),
locked_account_entry.ref_count().load(Ordering::Relaxed),
)
}
pub fn purge_exact<'a, C>(
&'a self,
pubkey: &Pubkey,
slots_to_purge: &'a C,
reclaims: &mut SlotList<T>,
account_indexes: &HashSet<AccountIndex>,
) -> bool
where
C: Contains<'a, Slot>,
{
let is_empty = {
let mut write_account_map_entry = self.get_account_write_entry(pubkey).unwrap();
write_account_map_entry.slot_list_mut(|slot_list| {
slot_list.retain(|(slot, item)| {
let should_purge = slots_to_purge.contains(&slot);
if should_purge {
reclaims.push((*slot, item.clone()));
false
} else {
true
}
});
slot_list.is_empty()
})
};
self.purge_secondary_indexes_by_inner_key(pubkey, Some(slots_to_purge), account_indexes);
is_empty
}
pub fn min_ongoing_scan_root(&self) -> Option<Slot> {
self.ongoing_scan_roots
.read()
.unwrap()
.keys()
.next()
.cloned()
}
// Given a SlotSlice `L`, a list of ancestors and a maximum slot, find the latest element
// in `L`, where the slot `S` is an ancestor or root, and if `S` is a root, then `S <= max_root`
fn latest_slot(
&self,
ancestors: Option<&Ancestors>,
slice: SlotSlice<T>,
max_root: Option<Slot>,
) -> Option<usize> {
let mut current_max = 0;
let mut rv = None;
if let Some(ancestors) = ancestors {
if !ancestors.is_empty() {
for (i, (slot, _t)) in slice.iter().rev().enumerate() {
if (rv.is_none() || *slot > current_max) && ancestors.contains_key(slot) {
rv = Some(i);
current_max = *slot;
}
}
}
}
let max_root = max_root.unwrap_or(Slot::MAX);
let mut tracker = None;
for (i, (slot, _t)) in slice.iter().rev().enumerate() {
if (rv.is_none() || *slot > current_max) && *slot <= max_root {
let lock = match tracker {
Some(inner) => inner,
None => self.roots_tracker.read().unwrap(),
};
if lock.roots.contains(&slot) {
rv = Some(i);
current_max = *slot;
}
tracker = Some(lock);
}
}
rv.map(|index| slice.len() - 1 - index)
}
/// Get an account
/// The latest account that appears in `ancestors` or `roots` is returned.
pub(crate) fn get(
&self,
pubkey: &Pubkey,
ancestors: Option<&Ancestors>,
max_root: Option<Slot>,
) -> Option<(ReadAccountMapEntry<T>, usize)> {
self.get_account_read_entry(pubkey)
.and_then(|locked_entry| {
let found_index =
self.latest_slot(ancestors, &locked_entry.slot_list(), max_root)?;
Some((locked_entry, found_index))
})
}
// Get the maximum root <= `max_allowed_root` from the given `slice`
fn get_max_root(
roots: &RollingBitField,
slice: SlotSlice<T>,
max_allowed_root: Option<Slot>,
) -> Slot {
let mut max_root = 0;
for (f, _) in slice.iter() {
if let Some(max_allowed_root) = max_allowed_root {
if *f > max_allowed_root {
continue;
}
}
if *f > max_root && roots.contains(f) {
max_root = *f;
}
}
max_root
}
fn update_secondary_indexes(
&self,
pubkey: &Pubkey,
slot: Slot,
account_owner: &Pubkey,
account_data: &[u8],
account_indexes: &HashSet<AccountIndex>,
) {
if account_indexes.is_empty() {
return;
}
if account_indexes.contains(&AccountIndex::ProgramId) {
self.program_id_index.insert(account_owner, pubkey, slot);
}
// Note because of the below check below on the account data length, when an
// account hits zero lamports and is reset to AccountSharedData::Default, then we skip
// the below updates to the secondary indexes.
//
// Skipping means not updating secondary index to mark the account as missing.
// This doesn't introduce false positives during a scan because the caller to scan
// provides the ancestors to check. So even if a zero-lamport account is not yet
// removed from the secondary index, the scan function will:
// 1) consult the primary index via `get(&pubkey, Some(ancestors), max_root)`
// and find the zero-lamport version
// 2) When the fetch from storage occurs, it will return AccountSharedData::Default
// (as persisted tombstone for snapshots). This will then ultimately be
// filtered out by post-scan filters, like in `get_filtered_spl_token_accounts_by_owner()`.
if *account_owner == inline_spl_token_v2_0::id()
&& account_data.len() == inline_spl_token_v2_0::state::Account::get_packed_len()
{
if account_indexes.contains(&AccountIndex::SplTokenOwner) {
let owner_key = Pubkey::new(
&account_data[SPL_TOKEN_ACCOUNT_OWNER_OFFSET
..SPL_TOKEN_ACCOUNT_OWNER_OFFSET + PUBKEY_BYTES],
);
self.spl_token_owner_index.insert(&owner_key, pubkey, slot);
}
if account_indexes.contains(&AccountIndex::SplTokenMint) {
let mint_key = Pubkey::new(
&account_data[SPL_TOKEN_ACCOUNT_MINT_OFFSET
..SPL_TOKEN_ACCOUNT_MINT_OFFSET + PUBKEY_BYTES],
);
self.spl_token_mint_index.insert(&mint_key, pubkey, slot);
}
}
}
// Same functionally to upsert, but doesn't take the read lock
// initially on the accounts_map
// Can save time when inserting lots of new keys
pub fn insert_new_if_missing(
&self,
slot: Slot,
pubkey: &Pubkey,
account_owner: &Pubkey,
account_data: &[u8],
account_indexes: &HashSet<AccountIndex>,
account_info: T,
reclaims: &mut SlotList<T>,
) {
{
let (mut w_account_entry, _is_new) = self.insert_new_entry_if_missing(pubkey);
if account_info.is_zero_lamport() {
self.zero_lamport_pubkeys.insert(*pubkey);
}
w_account_entry.update(slot, account_info, reclaims);
}
self.update_secondary_indexes(pubkey, slot, account_owner, account_data, account_indexes);
}
// Updates the given pubkey at the given slot with the new account information.
// Returns true if the pubkey was newly inserted into the index, otherwise, if the
// pubkey updates an existing entry in the index, returns false.
pub fn upsert(
&self,
slot: Slot,
pubkey: &Pubkey,
account_owner: &Pubkey,
account_data: &[u8],
account_indexes: &HashSet<AccountIndex>,
account_info: T,
reclaims: &mut SlotList<T>,
) -> bool {
let is_newly_inserted = {
let (mut w_account_entry, is_newly_inserted) =
self.get_account_write_entry_else_create(pubkey);
// We don't atomically update both primary index and secondary index together.
// This certainly creates small time window with inconsistent state across the two indexes.
// However, this is acceptable because:
//
// - A strict consistent view at any given moment of time is not necessary, because the only
// use case for the secondary index is `scan`, and `scans` are only supported/require consistency
// on frozen banks, and this inconsistency is only possible on working banks.
//
// - The secondary index is never consulted as primary source of truth for gets/stores.
// So, what the accounts_index sees alone is sufficient as a source of truth for other non-scan
// account operations.
if account_info.is_zero_lamport() {
self.zero_lamport_pubkeys.insert(*pubkey);
}
w_account_entry.update(slot, account_info, reclaims);
is_newly_inserted
};
self.update_secondary_indexes(pubkey, slot, account_owner, account_data, account_indexes);
is_newly_inserted
}
pub fn remove_zero_lamport_key(&self, pubkey: &Pubkey) {
self.zero_lamport_pubkeys.remove(pubkey);
}
pub fn zero_lamport_pubkeys(&self) -> &DashSet<Pubkey> {
&self.zero_lamport_pubkeys
}
pub fn unref_from_storage(&self, pubkey: &Pubkey) {
if let Some(locked_entry) = self.get_account_read_entry(pubkey) {
locked_entry.unref();
}
}
pub fn ref_count_from_storage(&self, pubkey: &Pubkey) -> RefCount {
if let Some(locked_entry) = self.get_account_read_entry(pubkey) {
locked_entry.ref_count().load(Ordering::Relaxed)
} else {
0
}
}
fn purge_secondary_indexes_by_inner_key<'a, C>(
&'a self,
inner_key: &Pubkey,
slots_to_remove: Option<&'a C>,
account_indexes: &HashSet<AccountIndex>,
) where
C: Contains<'a, Slot>,
{
if account_indexes.contains(&AccountIndex::ProgramId) {
self.program_id_index
.remove_by_inner_key(inner_key, slots_to_remove);
}
if account_indexes.contains(&AccountIndex::SplTokenOwner) {
self.spl_token_owner_index
.remove_by_inner_key(inner_key, slots_to_remove);
}
if account_indexes.contains(&AccountIndex::SplTokenMint) {
self.spl_token_mint_index
.remove_by_inner_key(inner_key, slots_to_remove);
}
}
fn purge_older_root_entries(
&self,
pubkey: &Pubkey,
list: &mut SlotList<T>,
reclaims: &mut SlotList<T>,
max_clean_root: Option<Slot>,
account_indexes: &HashSet<AccountIndex>,
) {
let roots_tracker = &self.roots_tracker.read().unwrap();
let max_root = Self::get_max_root(&roots_tracker.roots, &list, max_clean_root);
let mut purged_slots: HashSet<Slot> = HashSet::new();
list.retain(|(slot, value)| {
let should_purge = Self::can_purge(max_root, *slot) && !value.is_cached();
if should_purge {
reclaims.push((*slot, value.clone()));
purged_slots.insert(*slot);
false
} else {
true
}
});
self.purge_secondary_indexes_by_inner_key(pubkey, Some(&purged_slots), account_indexes);
}
pub fn clean_rooted_entries(
&self,
pubkey: &Pubkey,
reclaims: &mut SlotList<T>,
max_clean_root: Option<Slot>,
account_indexes: &HashSet<AccountIndex>,
) {
if let Some(mut locked_entry) = self.get_account_write_entry(pubkey) {
locked_entry.slot_list_mut(|slot_list| {
self.purge_older_root_entries(
pubkey,
slot_list,
reclaims,
max_clean_root,
account_indexes,
);
});
}
}
pub fn can_purge(max_root: Slot, slot: Slot) -> bool {
slot < max_root
}
pub fn is_root(&self, slot: Slot) -> bool {
self.roots_tracker.read().unwrap().roots.contains(&slot)
}
pub fn add_root(&self, slot: Slot, caching_enabled: bool) {
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.roots.insert(slot);
// we delay cleaning until flushing!
if !caching_enabled {
w_roots_tracker.uncleaned_roots.insert(slot);
}
// `AccountsDb::flush_accounts_cache()` relies on roots being added in order
assert!(slot >= w_roots_tracker.max_root);
w_roots_tracker.max_root = slot;
}
pub fn add_uncleaned_roots<I>(&self, roots: I)
where
I: IntoIterator<Item = Slot>,
{
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.uncleaned_roots.extend(roots);
}
pub fn max_root(&self) -> Slot {
self.roots_tracker.read().unwrap().max_root
}
/// Remove the slot when the storage for the slot is freed
/// Accounts no longer reference this slot.
pub fn clean_dead_slot(&self, slot: Slot) -> Option<AccountsIndexRootsStats> {
if self.is_root(slot) {
let (roots_len, uncleaned_roots_len, previous_uncleaned_roots_len) = {
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.roots.remove(&slot);
w_roots_tracker.uncleaned_roots.remove(&slot);
w_roots_tracker.previous_uncleaned_roots.remove(&slot);
(
w_roots_tracker.roots.len(),
w_roots_tracker.uncleaned_roots.len(),
w_roots_tracker.previous_uncleaned_roots.len(),
)
};
Some(AccountsIndexRootsStats {
roots_len,
uncleaned_roots_len,
previous_uncleaned_roots_len,
})
} else {
None
}
}
pub fn reset_uncleaned_roots(&self, max_clean_root: Option<Slot>) -> HashSet<Slot> {
let mut cleaned_roots = HashSet::new();
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.uncleaned_roots.retain(|root| {
let is_cleaned = max_clean_root
.map(|max_clean_root| *root <= max_clean_root)
.unwrap_or(true);
if is_cleaned {
cleaned_roots.insert(*root);
}
// Only keep the slots that have yet to be cleaned
!is_cleaned
});
std::mem::replace(&mut w_roots_tracker.previous_uncleaned_roots, cleaned_roots)
}
#[cfg(test)]
pub fn clear_uncleaned_roots(&self, max_clean_root: Option<Slot>) -> HashSet<Slot> {
let mut cleaned_roots = HashSet::new();
let mut w_roots_tracker = self.roots_tracker.write().unwrap();
w_roots_tracker.uncleaned_roots.retain(|root| {
let is_cleaned = max_clean_root
.map(|max_clean_root| *root <= max_clean_root)
.unwrap_or(true);
if is_cleaned {
cleaned_roots.insert(*root);
}
// Only keep the slots that have yet to be cleaned
!is_cleaned
});
cleaned_roots
}
pub fn is_uncleaned_root(&self, slot: Slot) -> bool {
self.roots_tracker
.read()
.unwrap()
.uncleaned_roots
.contains(&slot)
}
pub fn num_roots(&self) -> usize {
self.roots_tracker.read().unwrap().roots.len()
}
pub fn all_roots(&self) -> Vec<Slot> {
let tracker = self.roots_tracker.read().unwrap();
tracker.roots.get_all()
}
#[cfg(test)]
pub fn clear_roots(&self) {
self.roots_tracker.write().unwrap().roots.clear()
}
#[cfg(test)]
pub fn uncleaned_roots_len(&self) -> usize {
self.roots_tracker.read().unwrap().uncleaned_roots.len()
}
#[cfg(test)]
// filter any rooted entries and return them along with a bool that indicates
// if this account has no more entries. Note this does not update the secondary
// indexes!
pub fn purge_roots(&self, pubkey: &Pubkey) -> (SlotList<T>, bool) {
let mut write_account_map_entry = self.get_account_write_entry(pubkey).unwrap();
write_account_map_entry.slot_list_mut(|slot_list| {
let reclaims = self.get_rooted_entries(slot_list, None);
slot_list.retain(|(slot, _)| !self.is_root(*slot));
(reclaims, slot_list.is_empty())
})
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use log::*;
use solana_sdk::signature::{Keypair, Signer};
pub enum SecondaryIndexTypes<'a> {
RwLock(&'a SecondaryIndex<RwLockSecondaryIndexEntry>),
DashMap(&'a SecondaryIndex<DashMapSecondaryIndexEntry>),
}
pub fn spl_token_mint_index_enabled() -> HashSet<AccountIndex> {
let mut account_indexes = HashSet::new();
account_indexes.insert(AccountIndex::SplTokenMint);
account_indexes
}
pub fn spl_token_owner_index_enabled() -> HashSet<AccountIndex> {
let mut account_indexes = HashSet::new();
account_indexes.insert(AccountIndex::SplTokenOwner);
account_indexes
}
fn create_dashmap_secondary_index_state() -> (usize, usize, HashSet<AccountIndex>) {
{
// Check that we're actually testing the correct variant
let index = AccountsIndex::<bool>::default();
let _type_check = SecondaryIndexTypes::DashMap(&index.spl_token_mint_index);
}
(0, PUBKEY_BYTES, spl_token_mint_index_enabled())
}
fn create_rwlock_secondary_index_state() -> (usize, usize, HashSet<AccountIndex>) {
{
// Check that we're actually testing the correct variant
let index = AccountsIndex::<bool>::default();
let _type_check = SecondaryIndexTypes::RwLock(&index.spl_token_owner_index);
}
(
SPL_TOKEN_ACCOUNT_OWNER_OFFSET,
SPL_TOKEN_ACCOUNT_OWNER_OFFSET + PUBKEY_BYTES,
spl_token_owner_index_enabled(),
)
}
#[test]
fn test_bitfield_permutations() {
solana_logger::setup();
let mut bitfield = RollingBitField::new(2097152);
let mut hash = HashSet::new();
let min = 101_000;
let width = 400_000;
let dead = 19;
let mut slot = min;
while hash.len() < width {
slot += 1;
if slot % dead == 0 {
continue;
}
hash.insert(slot);
bitfield.insert(slot);
}
compare(&hash, &bitfield);
let max = slot + 1;
let mut time = Measure::start("");
let mut count = 0;
for slot in (min - 10)..max + 100 {
if hash.contains(&slot) {
count += 1;
}
}
time.stop();
let mut time2 = Measure::start("");
let mut count2 = 0;
for slot in (min - 10)..max + 100 {
if bitfield.contains(&slot) {
count2 += 1;
}
}
time2.stop();
info!(
"{}ms, {}ms, {} ratio",
time.as_ms(),
time2.as_ms(),
time.as_ns() / time2.as_ns()
);
assert_eq!(count, count2);
}
#[test]
#[should_panic(expected = "assertion failed: max_width.is_power_of_two()")]
fn test_bitfield_power_2() {
let _ = RollingBitField::new(3);
}
#[test]
#[should_panic(expected = "assertion failed: max_width > 0")]
fn test_bitfield_0() {
let _ = RollingBitField::new(0);
}
fn setup_wide(width: u64, start: u64) -> (RollingBitField, HashSet<u64>) {
let mut bitfield = RollingBitField::new(width);
let mut hash = HashSet::new();
compare(&hash, &bitfield);
let mut slot = start;
bitfield.insert(slot);
hash.insert(slot);
compare(&hash, &bitfield);
slot += 1;
bitfield.insert(slot);
hash.insert(slot);
compare(&hash, &bitfield);
(bitfield, hash)
}
#[test]
#[should_panic(expected = "out of range")]
fn test_bitfield_insert_wide() {
solana_logger::setup();
let width = 16;
let start = 0;
let (mut bitfield, _hash) = setup_wide(width, start);
let slot = start + width;
// assert here -- higher than max range
bitfield.insert(slot);
}
#[test]
#[should_panic(expected = "out of range")]
fn test_bitfield_insert_wide_before() {
solana_logger::setup();
let width = 16;
let start = 100;
let (mut bitfield, _hash) = setup_wide(width, start);
let slot = start + 1 - width;
// assert here - would make min too low, causing too wide of a range
bitfield.insert(slot);
}
#[test]
fn test_bitfield_insert_wide_before_ok() {
solana_logger::setup();
let width = 16;
let start = 100;
let (mut bitfield, _hash) = setup_wide(width, start);
let slot = start + 2 - width; // this item would make our width exactly equal to what is allowed
bitfield.insert(slot);
assert!(bitfield.contains(&slot));
}
#[test]
fn test_bitfield_contains_wide_no_assert() {
{
let width = 16;
let start = 0;
let (bitfield, _hash) = setup_wide(width, start);
let mut slot = width;
assert!(!bitfield.contains(&slot));
slot += 1;
assert!(!bitfield.contains(&slot));
}
{
let width = 16;
let start = 100;
let (bitfield, _hash) = setup_wide(width, start);
// too large
let mut slot = width;
assert!(!bitfield.contains(&slot));
slot += 1;
assert!(!bitfield.contains(&slot));
// too small, before min
slot = 0;
assert!(!bitfield.contains(&slot));
}
}
#[test]
#[should_panic(expected = "out of range")]
fn test_bitfield_remove_wide() {
let width = 16;
let start = 0;
let (mut bitfield, _hash) = setup_wide(width, start);
let slot = width;
// not set anyway, so no need to assert
bitfield.remove(&slot);
}
#[test]
#[should_panic(expected = "out of range")]
fn test_bitfield_remove_wide_before() {
let width = 16;
let start = 100;
let (mut bitfield, _hash) = setup_wide(width, start);
let slot = start + 1 - width;
bitfield.remove(&slot);
}
fn compare(hashset: &HashSet<u64>, bitfield: &RollingBitField) {
assert_eq!(hashset.len(), bitfield.len());
assert_eq!(hashset.is_empty(), bitfield.is_empty());
for item in bitfield.get_all() {
assert!(hashset.contains(&item));
}
}
#[test]
fn test_bitfield_functionality() {
solana_logger::setup();
// bitfield sizes are powers of 2, cycle through values of 1, 2, 4, .. 2^9
for power in 0..10 {
let max_bitfield_width = 2u64.pow(power) as u64;
let width_iteration_max = if max_bitfield_width > 1 {
// add up to 2 items so we can test out multiple items
3
} else {
// 0 or 1 items is all we can fit with a width of 1 item
2
};
for width in 0..width_iteration_max {
let mut bitfield = RollingBitField::new(max_bitfield_width);
let mut hash = HashSet::new();
let min = 101_000;
let dead = 19;
compare(&hash, &bitfield);
let mut slot = min;
while hash.len() < width {
slot += 1;
if max_bitfield_width > 2 && slot % dead == 0 {
// with max_bitfield_width of 1 and 2, there is no room for dead slots
continue;
}
hash.insert(slot);
bitfield.insert(slot);
}
let max = slot + 1;
compare(&hash, &bitfield);
for slot in (min - 10)..max + 100 {
assert_eq!(bitfield.contains(&slot), hash.contains(&slot));
}
let all = bitfield.get_all();
if width > 0 {
hash.remove(&slot);
bitfield.remove(&slot);
}
compare(&hash, &bitfield);
// remove the rest, including a call that removes slot again
for item in all.iter() {
hash.remove(&item);
bitfield.remove(&item);
compare(&hash, &bitfield);
}
let min = max + ((width * 2) as u64) + 3;
let slot = min; // several widths past previous min
let max = slot + 1;
hash.insert(slot);
bitfield.insert(slot);
compare(&hash, &bitfield);
assert!(hash.contains(&slot));
for slot in (min - 10)..max + 100 {
assert_eq!(bitfield.contains(&slot), hash.contains(&slot));
}
}
}
}
fn bitfield_insert_and_test(bitfield: &mut RollingBitField, slot: Slot) {
let len = bitfield.len();
let old_all = bitfield.get_all();
let (new_min, new_max) = if bitfield.is_empty() {
(slot, slot + 1)
} else {
(
std::cmp::min(bitfield.min, slot),
std::cmp::max(bitfield.max, slot + 1),
)
};
bitfield.insert(slot);
assert_eq!(bitfield.min, new_min);
assert_eq!(bitfield.max, new_max);
assert_eq!(bitfield.len(), len + 1);
assert!(!bitfield.is_empty());
assert!(bitfield.contains(&slot));
// verify aliasing is what we expect
assert!(bitfield.contains_assume_in_range(&(slot + bitfield.max_width)));
let get_all = bitfield.get_all();
old_all
.into_iter()
.for_each(|slot| assert!(get_all.contains(&slot)));
assert!(get_all.contains(&slot));
assert!(get_all.len() == len + 1);
}
#[test]
fn test_bitfield_clear() {
let mut bitfield = RollingBitField::new(4);
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
bitfield_insert_and_test(&mut bitfield, 0);
bitfield.clear();
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 1);
bitfield.clear();
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 4);
}
#[test]
fn test_bitfield_wrapping() {
let mut bitfield = RollingBitField::new(4);
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
bitfield_insert_and_test(&mut bitfield, 0);
assert_eq!(bitfield.get_all(), vec![0]);
bitfield_insert_and_test(&mut bitfield, 2);
assert_eq!(bitfield.get_all(), vec![0, 2]);
bitfield_insert_and_test(&mut bitfield, 3);
bitfield.insert(3); // redundant insert
assert_eq!(bitfield.get_all(), vec![0, 2, 3]);
bitfield.remove(&0);
assert_eq!(bitfield.min, 2);
assert_eq!(bitfield.max, 4);
assert_eq!(bitfield.len(), 2);
bitfield.remove(&0); // redundant remove
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.get_all(), vec![2, 3]);
bitfield.insert(4); // wrapped around value - same bit as '0'
assert_eq!(bitfield.min, 2);
assert_eq!(bitfield.max, 5);
assert_eq!(bitfield.len(), 3);
assert_eq!(bitfield.get_all(), vec![2, 3, 4]);
bitfield.remove(&2);
assert_eq!(bitfield.min, 3);
assert_eq!(bitfield.max, 5);
assert_eq!(bitfield.len(), 2);
assert_eq!(bitfield.get_all(), vec![3, 4]);
bitfield.remove(&3);
assert_eq!(bitfield.min, 4);
assert_eq!(bitfield.max, 5);
assert_eq!(bitfield.len(), 1);
assert_eq!(bitfield.get_all(), vec![4]);
bitfield.remove(&4);
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 8);
bitfield.remove(&8);
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
bitfield_insert_and_test(&mut bitfield, 9);
bitfield.remove(&9);
assert_eq!(bitfield.len(), 0);
assert!(bitfield.is_empty());
assert!(bitfield.get_all().is_empty());
}
#[test]
fn test_bitfield_smaller() {
// smaller bitfield, fewer entries, including 0
solana_logger::setup();
for width in 0..34 {
let mut bitfield = RollingBitField::new(4096);
let mut hash = HashSet::new();
let min = 1_010_000;
let dead = 19;
let mut slot = min;
while hash.len() < width {
slot += 1;
if slot % dead == 0 {
continue;
}
hash.insert(slot);
bitfield.insert(slot);
}
let max = slot + 1;
let mut time = Measure::start("");
let mut count = 0;
for slot in (min - 10)..max + 100 {
if hash.contains(&slot) {
count += 1;
}
}
time.stop();
let mut time2 = Measure::start("");
let mut count2 = 0;
for slot in (min - 10)..max + 100 {
if bitfield.contains(&slot) {
count2 += 1;
}
}
time2.stop();
info!(
"{}, {}, {}",
time.as_ms(),
time2.as_ms(),
time.as_ns() / time2.as_ns()
);
assert_eq!(count, count2);
}
}
#[test]
fn test_get_empty() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let ancestors = Ancestors::default();
assert!(index.get(&key.pubkey(), Some(&ancestors), None).is_none());
assert!(index.get(&key.pubkey(), None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts("", &ancestors, |_pubkey, _index| num += 1);
assert_eq!(num, 0);
}
#[test]
fn test_insert_no_ancestors() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(gc.is_empty());
let ancestors = Ancestors::default();
assert!(index.get(&key.pubkey(), Some(&ancestors), None).is_none());
assert!(index.get(&key.pubkey(), None, None).is_none());
let mut num = 0;
index.unchecked_scan_accounts("", &ancestors, |_pubkey, _index| num += 1);
assert_eq!(num, 0);
}
#[test]
fn test_insert_wrong_ancestors() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(gc.is_empty());
let ancestors = vec![(1, 1)].into_iter().collect();
assert!(index.get(&key.pubkey(), Some(&ancestors), None).is_none());
let mut num = 0;
index.unchecked_scan_accounts("", &ancestors, |_pubkey, _index| num += 1);
assert_eq!(num, 0);
}
#[test]
fn test_insert_with_ancestors() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(gc.is_empty());
let ancestors = vec![(0, 0)].into_iter().collect();
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
let mut num = 0;
let mut found_key = false;
index.unchecked_scan_accounts("", &ancestors, |pubkey, _index| {
if pubkey == &key.pubkey() {
found_key = true
};
num += 1
});
assert_eq!(num, 1);
assert!(found_key);
}
fn setup_accounts_index_keys(num_pubkeys: usize) -> (AccountsIndex<bool>, Vec<Pubkey>) {
let index = AccountsIndex::<bool>::default();
let root_slot = 0;
let mut pubkeys: Vec<Pubkey> = std::iter::repeat_with(|| {
let new_pubkey = solana_sdk::pubkey::new_rand();
index.upsert(
root_slot,
&new_pubkey,
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut vec![],
);
new_pubkey
})
.take(num_pubkeys.saturating_sub(1))
.collect();
if num_pubkeys != 0 {
pubkeys.push(Pubkey::default());
index.upsert(
root_slot,
&Pubkey::default(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut vec![],
);
}
index.add_root(root_slot, false);
(index, pubkeys)
}
fn run_test_range(
index: &AccountsIndex<bool>,
pubkeys: &[Pubkey],
start_bound: Bound<usize>,
end_bound: Bound<usize>,
) {
// Exclusive `index_start`
let (pubkey_start, index_start) = match start_bound {
Unbounded => (Unbounded, 0),
Included(i) => (Included(pubkeys[i]), i),
Excluded(i) => (Excluded(pubkeys[i]), i + 1),
};
// Exclusive `index_end`
let (pubkey_end, index_end) = match end_bound {
Unbounded => (Unbounded, pubkeys.len()),
Included(i) => (Included(pubkeys[i]), i + 1),
Excluded(i) => (Excluded(pubkeys[i]), i),
};
let pubkey_range = (pubkey_start, pubkey_end);
let ancestors = Ancestors::default();
let mut scanned_keys = HashSet::new();
index.range_scan_accounts("", &ancestors, pubkey_range, |pubkey, _index| {
scanned_keys.insert(*pubkey);
});
let mut expected_len = 0;
for key in &pubkeys[index_start..index_end] {
expected_len += 1;
assert!(scanned_keys.contains(key));
}
assert_eq!(scanned_keys.len(), expected_len);
}
fn run_test_range_indexes(
index: &AccountsIndex<bool>,
pubkeys: &[Pubkey],
start: Option<usize>,
end: Option<usize>,
) {
let start_options = start
.map(|i| vec![Included(i), Excluded(i)])
.unwrap_or_else(|| vec![Unbounded]);
let end_options = end
.map(|i| vec![Included(i), Excluded(i)])
.unwrap_or_else(|| vec![Unbounded]);
for start in &start_options {
for end in &end_options {
run_test_range(index, pubkeys, *start, *end);
}
}
}
#[test]
fn test_range_scan_accounts() {
let (index, mut pubkeys) = setup_accounts_index_keys(3 * ITER_BATCH_SIZE);
pubkeys.sort();
run_test_range_indexes(&index, &pubkeys, None, None);
run_test_range_indexes(&index, &pubkeys, Some(ITER_BATCH_SIZE), None);
run_test_range_indexes(&index, &pubkeys, None, Some(2 * ITER_BATCH_SIZE as usize));
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE as usize),
Some(2 * ITER_BATCH_SIZE as usize),
);
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE as usize),
Some(2 * ITER_BATCH_SIZE as usize - 1),
);
run_test_range_indexes(
&index,
&pubkeys,
Some(ITER_BATCH_SIZE - 1_usize),
Some(2 * ITER_BATCH_SIZE as usize + 1),
);
}
fn run_test_scan_accounts(num_pubkeys: usize) {
let (index, _) = setup_accounts_index_keys(num_pubkeys);
let ancestors = Ancestors::default();
let mut scanned_keys = HashSet::new();
index.unchecked_scan_accounts("", &ancestors, |pubkey, _index| {
scanned_keys.insert(*pubkey);
});
assert_eq!(scanned_keys.len(), num_pubkeys);
}
#[test]
fn test_scan_accounts() {
run_test_scan_accounts(0);
run_test_scan_accounts(1);
run_test_scan_accounts(ITER_BATCH_SIZE * 10);
run_test_scan_accounts(ITER_BATCH_SIZE * 10 - 1);
run_test_scan_accounts(ITER_BATCH_SIZE * 10 + 1);
}
#[test]
fn test_accounts_iter_finished() {
let (index, _) = setup_accounts_index_keys(0);
let mut iter = index.iter(None::<Range<Pubkey>>);
assert!(iter.next().is_none());
let mut gc = vec![];
index.upsert(
0,
&solana_sdk::pubkey::new_rand(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(iter.next().is_none());
}
#[test]
fn test_is_root() {
let index = AccountsIndex::<bool>::default();
assert!(!index.is_root(0));
index.add_root(0, false);
assert!(index.is_root(0));
}
#[test]
fn test_insert_with_root() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(gc.is_empty());
index.add_root(0, false);
let (list, idx) = index.get(&key.pubkey(), None, None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
}
#[test]
fn test_clean_first() {
let index = AccountsIndex::<bool>::default();
index.add_root(0, false);
index.add_root(1, false);
index.clean_dead_slot(0);
assert!(index.is_root(1));
assert!(!index.is_root(0));
}
#[test]
fn test_clean_last() {
//this behavior might be undefined, clean up should only occur on older slots
let index = AccountsIndex::<bool>::default();
index.add_root(0, false);
index.add_root(1, false);
index.clean_dead_slot(1);
assert!(!index.is_root(1));
assert!(index.is_root(0));
}
#[test]
fn test_clean_and_unclean_slot() {
let index = AccountsIndex::<bool>::default();
assert_eq!(0, index.roots_tracker.read().unwrap().uncleaned_roots.len());
index.add_root(0, false);
index.add_root(1, false);
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
0,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.reset_uncleaned_roots(None);
assert_eq!(2, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(0, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
2,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.add_root(2, false);
index.add_root(3, false);
assert_eq!(4, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
2,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.clean_dead_slot(1);
assert_eq!(3, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(2, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
1,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
index.clean_dead_slot(2);
assert_eq!(2, index.roots_tracker.read().unwrap().roots.len());
assert_eq!(1, index.roots_tracker.read().unwrap().uncleaned_roots.len());
assert_eq!(
1,
index
.roots_tracker
.read()
.unwrap()
.previous_uncleaned_roots
.len()
);
}
#[test]
fn test_update_last_wins() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let ancestors = vec![(0, 0)].into_iter().collect();
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(gc.is_empty());
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
drop(list);
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
false,
&mut gc,
);
assert_eq!(gc, vec![(0, true)]);
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, false));
}
#[test]
fn test_update_new_slot() {
solana_logger::setup();
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let ancestors = vec![(0, 0)].into_iter().collect();
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(gc.is_empty());
index.upsert(
1,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
false,
&mut gc,
);
assert!(gc.is_empty());
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (0, true));
let ancestors = vec![(1, 0)].into_iter().collect();
let (list, idx) = index.get(&key.pubkey(), Some(&ancestors), None).unwrap();
assert_eq!(list.slot_list()[idx], (1, false));
}
#[test]
fn test_update_gc_purged_slot() {
let key = Keypair::new();
let index = AccountsIndex::<bool>::default();
let mut gc = Vec::new();
index.upsert(
0,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
assert!(gc.is_empty());
index.upsert(
1,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
false,
&mut gc,
);
index.upsert(
2,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
index.upsert(
3,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
index.add_root(0, false);
index.add_root(1, false);
index.add_root(3, false);
index.upsert(
4,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
true,
&mut gc,
);
// Updating index should not purge older roots, only purges
// previous updates within the same slot
assert_eq!(gc, vec![]);
let (list, idx) = index.get(&key.pubkey(), None, None).unwrap();
assert_eq!(list.slot_list()[idx], (3, true));
let mut num = 0;
let mut found_key = false;
index.unchecked_scan_accounts("", &Ancestors::default(), |pubkey, _index| {
if pubkey == &key.pubkey() {
found_key = true;
assert_eq!(_index, (&true, 3));
};
num += 1
});
assert_eq!(num, 1);
assert!(found_key);
}
#[test]
fn test_purge() {
let key = Keypair::new();
let index = AccountsIndex::<u64>::default();
let mut gc = Vec::new();
assert!(index.upsert(
1,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
12,
&mut gc
));
assert!(!index.upsert(
1,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
10,
&mut gc
));
let purges = index.purge_roots(&key.pubkey());
assert_eq!(purges, (vec![], false));
index.add_root(1, false);
let purges = index.purge_roots(&key.pubkey());
assert_eq!(purges, (vec![(1, 10)], true));
assert!(!index.upsert(
1,
&key.pubkey(),
&Pubkey::default(),
&[],
&HashSet::new(),
9,
&mut gc
));
}
#[test]
fn test_latest_slot() {
let slot_slice = vec![(0, true), (5, true), (3, true), (7, true)];
let index = AccountsIndex::<bool>::default();
// No ancestors, no root, should return None
assert!(index.latest_slot(None, &slot_slice, None).is_none());
// Given a root, should return the root
index.add_root(5, false);
assert_eq!(index.latest_slot(None, &slot_slice, None).unwrap(), 1);
// Given a max_root == root, should still return the root
assert_eq!(index.latest_slot(None, &slot_slice, Some(5)).unwrap(), 1);
// Given a max_root < root, should filter out the root
assert!(index.latest_slot(None, &slot_slice, Some(4)).is_none());
// Given a max_root, should filter out roots < max_root, but specified
// ancestors should not be affected
let ancestors = vec![(3, 1), (7, 1)].into_iter().collect();
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, Some(4))
.unwrap(),
3
);
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, Some(7))
.unwrap(),
3
);
// Given no max_root, should just return the greatest ancestor or root
assert_eq!(
index
.latest_slot(Some(&ancestors), &slot_slice, None)
.unwrap(),
3
);
}
fn run_test_purge_exact_secondary_index<
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
index: &AccountsIndex<bool>,
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
key_start: usize,
key_end: usize,
account_index: &HashSet<AccountIndex>,
) {
// No roots, should be no reclaims
let slots = vec![1, 2, 5, 9];
let index_key = Pubkey::new_unique();
let account_key = Pubkey::new_unique();
let mut account_data = vec![0; inline_spl_token_v2_0::state::Account::get_packed_len()];
account_data[key_start..key_end].clone_from_slice(&(index_key.to_bytes()));
// Insert slots into secondary index
for slot in &slots {
index.upsert(
*slot,
&account_key,
// Make sure these accounts are added to secondary index
&inline_spl_token_v2_0::id(),
&account_data,
account_index,
true,
&mut vec![],
);
}
// Only one top level index entry exists
assert_eq!(secondary_index.index.get(&index_key).unwrap().len(), 1);
// In the reverse index, one account maps across multiple slots
// to the same top level key
assert_eq!(
secondary_index
.reverse_index
.get(&account_key)
.unwrap()
.value()
.read()
.unwrap()
.len(),
slots.len()
);
index.purge_exact(
&account_key,
&slots.into_iter().collect::<HashSet<Slot>>(),
&mut vec![],
account_index,
);
assert!(secondary_index.index.is_empty());
assert!(secondary_index.reverse_index.is_empty());
}
#[test]
fn test_purge_exact_dashmap_secondary_index() {
let (key_start, key_end, account_index) = create_dashmap_secondary_index_state();
let index = AccountsIndex::<bool>::default();
run_test_purge_exact_secondary_index(
&index,
&index.spl_token_mint_index,
key_start,
key_end,
&account_index,
);
}
#[test]
fn test_purge_exact_rwlock_secondary_index() {
let (key_start, key_end, account_index) = create_rwlock_secondary_index_state();
let index = AccountsIndex::<bool>::default();
run_test_purge_exact_secondary_index(
&index,
&index.spl_token_owner_index,
key_start,
key_end,
&account_index,
);
}
#[test]
fn test_purge_older_root_entries() {
// No roots, should be no reclaims
let index = AccountsIndex::<bool>::default();
let mut slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
let mut reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
None,
&HashSet::new(),
);
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Add a later root, earlier slots should be reclaimed
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
index.add_root(1, false);
// Note 2 is not a root
index.add_root(5, false);
reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
None,
&HashSet::new(),
);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Add a later root that is not in the list, should not affect the outcome
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
index.add_root(6, false);
reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
None,
&HashSet::new(),
);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root >= than any root in the slot list, should not affect
// outcome
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
Some(6),
&HashSet::new(),
);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root, earlier slots should be reclaimed
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
Some(5),
&HashSet::new(),
);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
// Pass a max root 2. This means the latest root < 2 is 1 because 2 is not a root
// so nothing will be purged
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
Some(2),
&HashSet::new(),
);
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Pass a max root 1. This means the latest root < 3 is 1 because 2 is not a root
// so nothing will be purged
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
Some(1),
&HashSet::new(),
);
assert!(reclaims.is_empty());
assert_eq!(slot_list, vec![(1, true), (2, true), (5, true), (9, true)]);
// Pass a max root that doesn't exist in the list but is greater than
// some of the roots in the list, shouldn't return those smaller roots
slot_list = vec![(1, true), (2, true), (5, true), (9, true)];
reclaims = vec![];
index.purge_older_root_entries(
&Pubkey::default(),
&mut slot_list,
&mut reclaims,
Some(7),
&HashSet::new(),
);
assert_eq!(reclaims, vec![(1, true), (2, true)]);
assert_eq!(slot_list, vec![(5, true), (9, true)]);
}
fn check_secondary_index_unique<SecondaryIndexEntryType>(
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
slot: Slot,
key: &Pubkey,
account_key: &Pubkey,
) where
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
{
// Check secondary index has unique mapping from secondary index key
// to the account key and slot
assert_eq!(secondary_index.index.len(), 1);
let inner_key_map = secondary_index.index.get(key).unwrap();
assert_eq!(inner_key_map.len(), 1);
inner_key_map
.value()
.get(account_key, &|slots_map: Option<&RwLock<HashSet<Slot>>>| {
let slots_map = slots_map.unwrap();
assert_eq!(slots_map.read().unwrap().len(), 1);
assert!(slots_map.read().unwrap().contains(&slot));
});
// Check reverse index is unique
let slots_map = secondary_index.reverse_index.get(account_key).unwrap();
assert_eq!(slots_map.value().read().unwrap().get(&slot).unwrap(), key);
}
fn run_test_secondary_indexes<
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
index: &AccountsIndex<bool>,
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
key_start: usize,
key_end: usize,
account_index: &HashSet<AccountIndex>,
) {
let account_key = Pubkey::new_unique();
let index_key = Pubkey::new_unique();
let slot = 1;
let mut account_data = vec![0; inline_spl_token_v2_0::state::Account::get_packed_len()];
account_data[key_start..key_end].clone_from_slice(&(index_key.to_bytes()));
// Wrong program id
index.upsert(
0,
&account_key,
&Pubkey::default(),
&account_data,
account_index,
true,
&mut vec![],
);
assert!(index.spl_token_mint_index.index.is_empty());
assert!(index.spl_token_mint_index.reverse_index.is_empty());
// Wrong account data size
index.upsert(
0,
&account_key,
&inline_spl_token_v2_0::id(),
&account_data[1..],
account_index,
true,
&mut vec![],
);
assert!(index.spl_token_mint_index.index.is_empty());
assert!(index.spl_token_mint_index.reverse_index.is_empty());
// Just right. Inserting the same index multiple times should be ok
for _ in 0..2 {
index.update_secondary_indexes(
&account_key,
slot,
&inline_spl_token_v2_0::id(),
&account_data,
account_index,
);
check_secondary_index_unique(secondary_index, slot, &index_key, &account_key);
}
index
.get_account_write_entry(&account_key)
.unwrap()
.slot_list_mut(|slot_list| slot_list.clear());
// Everything should be deleted
index.handle_dead_keys(&[&account_key], account_index);
assert!(index.spl_token_mint_index.index.is_empty());
assert!(index.spl_token_mint_index.reverse_index.is_empty());
}
#[test]
fn test_dashmap_secondary_index() {
let (key_start, key_end, account_index) = create_dashmap_secondary_index_state();
let index = AccountsIndex::<bool>::default();
run_test_secondary_indexes(
&index,
&index.spl_token_mint_index,
key_start,
key_end,
&account_index,
);
}
#[test]
fn test_rwlock_secondary_index() {
let (key_start, key_end, account_index) = create_rwlock_secondary_index_state();
let index = AccountsIndex::<bool>::default();
run_test_secondary_indexes(
&index,
&index.spl_token_owner_index,
key_start,
key_end,
&account_index,
);
}
fn run_test_secondary_indexes_same_slot_and_forks<
SecondaryIndexEntryType: SecondaryIndexEntry + Default + Sync + Send,
>(
index: &AccountsIndex<bool>,
secondary_index: &SecondaryIndex<SecondaryIndexEntryType>,
index_key_start: usize,
index_key_end: usize,
account_index: &HashSet<AccountIndex>,
) {
let account_key = Pubkey::new_unique();
let secondary_key1 = Pubkey::new_unique();
let secondary_key2 = Pubkey::new_unique();
let slot = 1;
let mut account_data1 = vec![0; inline_spl_token_v2_0::state::Account::get_packed_len()];
account_data1[index_key_start..index_key_end]
.clone_from_slice(&(secondary_key1.to_bytes()));
let mut account_data2 = vec![0; inline_spl_token_v2_0::state::Account::get_packed_len()];
account_data2[index_key_start..index_key_end]
.clone_from_slice(&(secondary_key2.to_bytes()));
// First write one mint index
index.upsert(
slot,
&account_key,
&inline_spl_token_v2_0::id(),
&account_data1,
account_index,
true,
&mut vec![],
);
// Now write a different mint index
index.upsert(
slot,
&account_key,
&inline_spl_token_v2_0::id(),
&account_data2,
account_index,
true,
&mut vec![],
);
// Check correctness
check_secondary_index_unique(&secondary_index, slot, &secondary_key2, &account_key);
assert!(secondary_index.get(&secondary_key1).is_empty());
assert_eq!(secondary_index.get(&secondary_key2), vec![account_key]);
// If another fork reintroduces secondary_key1, then it should be re-added to the
// index
let fork = slot + 1;
index.upsert(
fork,
&account_key,
&inline_spl_token_v2_0::id(),
&account_data1,
account_index,
true,
&mut vec![],
);
assert_eq!(secondary_index.get(&secondary_key1), vec![account_key]);
// If we set a root at fork, and clean, then the secondary_key1 should no longer
// be findable
index.add_root(fork, false);
index
.get_account_write_entry(&account_key)
.unwrap()
.slot_list_mut(|slot_list| {
index.purge_older_root_entries(
&account_key,
slot_list,
&mut vec![],
None,
account_index,
)
});
assert!(secondary_index.get(&secondary_key2).is_empty());
assert_eq!(secondary_index.get(&secondary_key1), vec![account_key]);
// Check correctness
check_secondary_index_unique(secondary_index, fork, &secondary_key1, &account_key);
}
#[test]
fn test_dashmap_secondary_index_same_slot_and_forks() {
let (key_start, key_end, account_index) = create_dashmap_secondary_index_state();
let index = AccountsIndex::<bool>::default();
run_test_secondary_indexes_same_slot_and_forks(
&index,
&index.spl_token_mint_index,
key_start,
key_end,
&account_index,
);
}
#[test]
fn test_rwlock_secondary_index_same_slot_and_forks() {
let (key_start, key_end, account_index) = create_rwlock_secondary_index_state();
let index = AccountsIndex::<bool>::default();
run_test_secondary_indexes_same_slot_and_forks(
&index,
&index.spl_token_owner_index,
key_start,
key_end,
&account_index,
);
}
impl ZeroLamport for bool {
fn is_zero_lamport(&self) -> bool {
false
}
}
impl ZeroLamport for u64 {
fn is_zero_lamport(&self) -> bool {
false
}
}
}