solana/core/src/duplicate_repair_status.rs

855 lines
35 KiB
Rust

use {
solana_ledger::blockstore::Blockstore,
solana_sdk::{clock::Slot, hash::Hash, pubkey::Pubkey, timing::timestamp},
std::{collections::HashMap, net::SocketAddr},
};
// Number of validators to sample for the ancestor repair
pub const ANCESTOR_HASH_REPAIR_SAMPLE_SIZE: usize = 21;
// Even assuming 20% of validators malicious, the chance that >= 11 of the
// ANCESTOR_HASH_REPAIR_SAMPLE_SIZE = 21 validators is malicious is roughly 1/1000.
// Assuming we send a separate sample every 5 seconds, that's once every hour.
// On the other hand with a 52-48 split of validators with one version of the block vs
// another, the chance of >= 11 of the 21 sampled being from the 52% portion is
// about 57%, so we should be able to find a correct sample in a reasonable amount of time.
const MINIMUM_ANCESTOR_AGREEMENT_SIZE: usize = (ANCESTOR_HASH_REPAIR_SAMPLE_SIZE + 1) / 2;
const RETRY_INTERVAL_SECONDS: usize = 5;
#[derive(Debug, PartialEq, Eq)]
pub enum DuplicateAncestorDecision {
InvalidSample,
AncestorsAllMatch,
SampleNotDuplicateConfirmed,
ContinueSearch(DuplicateSlotRepairStatus),
EarliestAncestorNotFrozen(DuplicateSlotRepairStatus),
EarliestMismatchFound(DuplicateSlotRepairStatus),
}
impl DuplicateAncestorDecision {
pub fn is_retryable(&self) -> bool {
match self {
// If we get a bad sample from malicious validators, then retry
DuplicateAncestorDecision::InvalidSample
// It may be possible the validators have not yet detected duplicate confirmation
// so retry
| DuplicateAncestorDecision::SampleNotDuplicateConfirmed => true,
DuplicateAncestorDecision::AncestorsAllMatch => false,
DuplicateAncestorDecision::ContinueSearch(_status)
| DuplicateAncestorDecision::EarliestAncestorNotFrozen(_status)
| DuplicateAncestorDecision::EarliestMismatchFound(_status) => false,
}
}
pub fn repair_status(&self) -> Option<&DuplicateSlotRepairStatus> {
match self {
DuplicateAncestorDecision::InvalidSample
| DuplicateAncestorDecision::AncestorsAllMatch
| DuplicateAncestorDecision::SampleNotDuplicateConfirmed => None,
DuplicateAncestorDecision::ContinueSearch(status) => Some(status),
DuplicateAncestorDecision::EarliestAncestorNotFrozen(status) => Some(status),
DuplicateAncestorDecision::EarliestMismatchFound(status) => Some(status),
}
}
fn repair_status_mut(&mut self) -> Option<&mut DuplicateSlotRepairStatus> {
match self {
DuplicateAncestorDecision::InvalidSample
| DuplicateAncestorDecision::AncestorsAllMatch
| DuplicateAncestorDecision::SampleNotDuplicateConfirmed => None,
DuplicateAncestorDecision::ContinueSearch(status) => Some(status),
DuplicateAncestorDecision::EarliestAncestorNotFrozen(status) => Some(status),
DuplicateAncestorDecision::EarliestMismatchFound(status) => Some(status),
}
}
}
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct DuplicateSlotRepairStatus {
// Any ancestor slots that are either missing or are mismatched.
// A mismatched ancestor slot is one that has been replayed (frozen)
// that has a different hash than the one agreed upon by the sampled peers.
//
//
// These are the slots that need to be dumped in order to repair the correct
// versions. The hash is None if the slot is not frozen, because it's:
// 1) Dead
// 2) Hasn't been replayed
// 3) We don't have the slot in our Ledger
pub correct_ancestors_to_repair: Vec<(Slot, Hash)>,
pub repair_pubkey_and_addr: Option<(Pubkey, SocketAddr)>,
pub start_ts: u64,
}
impl DuplicateSlotRepairStatus {
fn new(correct_ancestors_to_repair: Vec<(Slot, Hash)>) -> Self {
Self {
correct_ancestors_to_repair,
repair_pubkey_and_addr: None,
start_ts: timestamp(),
}
}
}
#[derive(Default, Clone)]
pub struct DeadSlotAncestorRequestStatus {
// The mismatched slot that was the subject of the AncestorHashes(requested_mismatched_slot)
// repair request. All responses to this request should be for ancestors of this slot.
requested_mismatched_slot: Slot,
// Timestamp at which we sent out the requests
start_ts: u64,
// The addresses of the validators we asked for a response, a response is only acceptable
// from these validators. The boolean represents whether the validator
// has responded.
sampled_validators: HashMap<SocketAddr, bool>,
// The number of sampled validators that have responded
num_responses: usize,
// Validators who have responded to our ancestor repair requests. An entry
// Vec<(Slot, Hash)> -> usize tells us which validators have
// responded with the same Vec<(Slot, Hash)> set of ancestors.
//
// TODO: Trie may be more efficient
ancestor_request_responses: HashMap<Vec<(Slot, Hash)>, Vec<SocketAddr>>,
}
impl DeadSlotAncestorRequestStatus {
pub fn new(
sampled_validators: impl Iterator<Item = SocketAddr>,
requested_mismatched_slot: Slot,
) -> Self {
DeadSlotAncestorRequestStatus {
requested_mismatched_slot,
start_ts: timestamp(),
sampled_validators: sampled_validators.map(|p| (p, false)).collect(),
..DeadSlotAncestorRequestStatus::default()
}
}
/// Record the response from `from_addr`. Returns Some(DuplicateAncestorDecision)
/// if we have finalized a decision based on the responses. We can finalize a decision when
/// one of the following conditions is met:
/// 1) We have heard from all the validators, OR
/// 2) >= MINIMUM_ANCESTOR_AGREEMENT_SIZE have agreed that we have the correct versions
/// of nth ancestor, for some `n>0`, AND >= MINIMUM_ANCESTOR_AGREEMENT_SIZE have
/// agreed we have the wrong version of the `n-1` ancestor.
pub fn add_response(
&mut self,
from_addr: &SocketAddr,
response_slot_hashes: Vec<(Slot, Hash)>,
blockstore: &Blockstore,
) -> Option<DuplicateAncestorDecision> {
if let Some(did_get_response) = self.sampled_validators.get_mut(from_addr) {
if *did_get_response {
// If we've already received a response from this validator, return.
return None;
}
// Mark we got a response from this validator already
*did_get_response = true;
self.num_responses += 1;
} else {
// If this is not a response from one of the sampled validators, return.
return None;
}
let validators_with_same_response = self
.ancestor_request_responses
.entry(response_slot_hashes.clone())
.or_default();
validators_with_same_response.push(*from_addr);
// If we got enough of the sampled validators to respond, we are confident
// this is the correct set of ancestors
if validators_with_same_response.len()
== MINIMUM_ANCESTOR_AGREEMENT_SIZE.min(self.sampled_validators.len())
{
// When we reach MINIMUM_ANCESTOR_AGREEMENT_SIZE of the same responses,
// check for mismatches.
return Some(
self.handle_sampled_validators_reached_agreement(blockstore, response_slot_hashes),
);
}
// If everyone responded and we still haven't agreed upon a set of
// ancestors, that means there was a lot of disagreement and we sampled
// a bad set of validators.
if self.num_responses == ANCESTOR_HASH_REPAIR_SAMPLE_SIZE.min(self.sampled_validators.len())
{
info!(
"{} return invalid sample no agreement",
self.requested_mismatched_slot
);
return Some(DuplicateAncestorDecision::InvalidSample);
}
None
}
fn handle_sampled_validators_reached_agreement(
&mut self,
blockstore: &Blockstore,
mut agreed_response: Vec<(Slot, Hash)>,
) -> DuplicateAncestorDecision {
if agreed_response.is_empty() {
info!(
"{} return invalid sample not duplicate confirmed",
self.requested_mismatched_slot
);
return DuplicateAncestorDecision::SampleNotDuplicateConfirmed;
}
if agreed_response.first().unwrap().0 != self.requested_mismatched_slot {
return DuplicateAncestorDecision::InvalidSample;
}
// Recall:
// 1) *correct* validators only respond to `AncestorHashes(slot)` repair requests IFF they
// saw the ancestors of `slot` get duplicate confirmed, AND
// 2) *correct* validators respond with the ancestors of slot in sequential order
// 3) `slot` should get duplicate confirmed on only one fork in the cluster
//
// From 1) and 3) we can conclude that it is highly likely at least one correct
// validator reported `agreed_response` were the duplicate confirmed ancestors of
// `self.requested_mismatched_slot`. From 2), all the `agreed_response` ancestors
// are ordered such that the ancestor at index `i+1` is the direct descendant of the
// ancestor at `i`.
let mut last_ancestor = 0;
let mut earliest_erroring_ancestor = None;
// Iterate from smallest to largest ancestor, performing integrity checks.
for (i, (ancestor_slot, agreed_upon_hash)) in agreed_response.iter().rev().enumerate() {
if i != 0 && *ancestor_slot <= last_ancestor {
info!(
"{} return invalid sample out of order",
self.requested_mismatched_slot
);
// Responses were not properly ordered
return DuplicateAncestorDecision::InvalidSample;
}
last_ancestor = *ancestor_slot;
if *ancestor_slot > self.requested_mismatched_slot {
// We should only get ancestors of `self.requested_mismatched_slot`
// in valid responses
info!(
"{} return invalid sample big ancestor",
self.requested_mismatched_slot
);
return DuplicateAncestorDecision::InvalidSample;
}
let our_frozen_hash = blockstore.get_bank_hash(*ancestor_slot);
if let Some(our_frozen_hash) = our_frozen_hash {
if earliest_erroring_ancestor.is_some() && our_frozen_hash == *agreed_upon_hash {
// It's impossible have a different version of an earlier ancestor, but
// then also have the same version of a later ancestor.
info!("{} mismatches then matches", self.requested_mismatched_slot);
return DuplicateAncestorDecision::InvalidSample;
} else if our_frozen_hash != *agreed_upon_hash
&& earliest_erroring_ancestor.is_none()
{
earliest_erroring_ancestor = Some((
agreed_response.len() - i - 1,
DuplicateAncestorDecision::EarliestMismatchFound(
DuplicateSlotRepairStatus::default(),
),
));
}
} else if earliest_erroring_ancestor.is_none() {
// If in our current ledger, `ancestor_slot` is actually on the same fork as
// `self.requested_mismatched_slot`, then the `frozen_hash` should not be None here.
// This is because we had to freeze `ancestor_slot` in order to replay its descendant
// `self.requested_mismatched_slot`.
//
// However, it's possible that we have a version of
// `self.requested_mismatched_slot` that is on the wrong fork with the wrong set of
// ancestors. In this case, we could get responses about ancestors that are not
// ancestors of our version of `self.requested_mismatched_slot`
//
// ```
// 1 - 2 - 3 - 5' - 6' (our current fork)
// /
// 0
// \
// 1 - 2 - 4 - 5 - 6 (cluster agreed fork)
// ```
//
// In this case, if we make a AncestorsHashes(6) request for our dead slot 6', we may
// get a response with slot `4` in it, which is a slot that doesn't have a frozen
// hash in blockstore yet because either:
//
// 1) We haven't replayed that slot yet (it's on a different fork).
// 2) We don't have that slot yet in our ledger.
// 3) We have the correct/incorrect version of `4`, but we may have replayed
// it on the wrong branch and it's dead.
//
// We ignore such ancestors in this loop.
//
// Note also that besides the missing slot `4`, there are also duplicates between
// both the forks, namely `1, 2, 5` for which we have different versions of these slots
// in our ledger. So how do we handle such cases where there are both missing and mismatched
// ancestors?
//
// There are two cases:
// 1) The first such mismatch `first_mismatch` appears BEFORE the slot `4` that is
// missing from our blockstore.
// 2) The first such mismatch `first_mismatch` appears AFTER the slot `4` that is
// missing from our blockstore.
//
// Because we know any mismatches will also trigger the mismatch casing earlier in
// the function, we will return`EarliestMismatchFound(first_mismatch)`. This will
// cause us to dump and repair `first_mismatch` and all its descendants, which should
// be the right behavior in both above cases.
warn!(
"Blockstore is missing frozen hash for slot {},
which the cluster claims is an ancestor of dead slot {}. Potentially
our version of the dead slot chains to the wrong fork!",
ancestor_slot, self.requested_mismatched_slot
);
earliest_erroring_ancestor = Some((
agreed_response.len() - i - 1,
DuplicateAncestorDecision::EarliestAncestorNotFrozen(
DuplicateSlotRepairStatus::default(),
),
));
}
}
if let Some((earliest_erroring_ancestor_index, mut decision)) = earliest_erroring_ancestor {
// We found the earliest mismatch `earliest_erroring_ancestor_index`.
// We know all slots for indexes > `earliest_erroring_ancestor_index` in
// `agreed_response` match the version we have replayed.
if earliest_erroring_ancestor_index == agreed_response.len() - 1 {
// If the earliest ancestor is missing or a mismatch, then we need to keep searching
// for earlier mismatches
let repair_status = DuplicateSlotRepairStatus::new(agreed_response);
DuplicateAncestorDecision::ContinueSearch(repair_status)
} else {
// We only need to look through the first `earliest_erroring_ancestor_index + 1`
// elements and dump/repair any mismatches.
agreed_response.truncate(earliest_erroring_ancestor_index + 1);
let repair_status = decision.repair_status_mut().unwrap();
repair_status.correct_ancestors_to_repair = agreed_response;
decision
}
} else {
// If we haven't returned by now, this implies all the ancestors matched our versions
// of those ancestors. Only slot to dump and repair is `self.requested_mismatched_slot`
DuplicateAncestorDecision::AncestorsAllMatch
}
}
/// Given a timestamp in milliseconds, return if we should retry with another sample batch
/// due to timeout
pub fn is_expired(&self) -> bool {
timestamp() - self.start_ts > RETRY_INTERVAL_SECONDS as u64 * 1000
}
#[cfg(test)]
pub fn make_expired(&mut self) {
self.start_ts = timestamp() - RETRY_INTERVAL_SECONDS as u64 * 1000 - 1;
}
}
#[cfg(test)]
pub mod tests {
use {
super::*,
rand::{self, seq::SliceRandom, thread_rng},
solana_ledger::get_tmp_ledger_path_auto_delete,
std::{collections::BTreeMap, net::IpAddr},
tempfile::TempDir,
};
struct TestSetup {
sampled_addresses: Vec<SocketAddr>,
correct_ancestors_response: Vec<(Slot, Hash)>,
_blockstore_temp_dir: TempDir,
blockstore: Blockstore,
status: DeadSlotAncestorRequestStatus,
}
fn create_rand_socket_addr() -> SocketAddr {
let bytes: [u16; 8] = rand::random();
let ip = IpAddr::from(bytes);
SocketAddr::new(ip, 8080)
}
fn setup_add_response_test(request_slot: Slot, num_ancestors_in_response: usize) -> TestSetup {
assert!(request_slot >= num_ancestors_in_response as u64);
let sampled_addresses: Vec<SocketAddr> = std::iter::repeat_with(create_rand_socket_addr)
.take(ANCESTOR_HASH_REPAIR_SAMPLE_SIZE)
.collect();
let status =
DeadSlotAncestorRequestStatus::new(sampled_addresses.iter().cloned(), request_slot);
let blockstore_temp_dir = get_tmp_ledger_path_auto_delete!();
let blockstore = Blockstore::open(blockstore_temp_dir.path()).unwrap();
let correct_ancestors_response: Vec<(Slot, Hash)> =
(request_slot - num_ancestors_in_response as u64..=request_slot)
.map(|ancestor| (ancestor, Hash::new_unique()))
.rev()
.collect();
TestSetup {
sampled_addresses,
correct_ancestors_response,
_blockstore_temp_dir: blockstore_temp_dir,
blockstore,
status,
}
}
#[test]
fn test_add_response_invalid_peer() {
let request_slot = 100;
let TestSetup {
blockstore,
mut status,
..
} = setup_add_response_test(request_slot, 10);
// Try adding a response from an invalid peer, should not be registered
let rand_addr = create_rand_socket_addr();
assert!(status
.add_response(&rand_addr, vec![(99, Hash::new_unique())], &blockstore)
.is_none());
assert_eq!(status.num_responses, 0);
assert!(status.ancestor_request_responses.is_empty());
}
#[test]
fn test_add_multiple_responses_same_peer() {
let request_slot = 100;
let TestSetup {
sampled_addresses,
correct_ancestors_response,
blockstore,
mut status,
..
} = setup_add_response_test(request_slot, 10);
// Create an incorrect response
let mut incorrect_ancestors_response = correct_ancestors_response.clone();
incorrect_ancestors_response.pop().unwrap();
// Add a mixture of correct and incorrect responses from the same `responder_addr`.
let num_repeated_responses = ANCESTOR_HASH_REPAIR_SAMPLE_SIZE;
let responder_addr = &sampled_addresses[0];
for i in 0..num_repeated_responses {
let response = if i % 2 == 0 {
// This is the first response when i == 0, so it should be the only response that
// persists. All later responses, both correct and incorrect should be ignored
correct_ancestors_response.clone()
} else {
incorrect_ancestors_response.clone()
};
assert!(status
.add_response(responder_addr, response, &blockstore)
.is_none());
assert_eq!(status.num_responses, 1);
assert_eq!(status.ancestor_request_responses.len(), 1);
let correct_responses = status
.ancestor_request_responses
.get(&correct_ancestors_response)
.unwrap();
assert!(correct_responses.contains(responder_addr));
assert_eq!(correct_responses.len(), 1);
}
}
/// Add `num_correct_responses` correct responses from the sampled valdiators, and
/// then add incorrect responses from the remaining validators.
fn run_add_multiple_correct_and_incorrect_responses(
incorrect_responses: Vec<(Vec<(Slot, Hash)>, usize)>,
test_setup: &mut TestSetup,
) -> DuplicateAncestorDecision {
let &mut TestSetup {
ref sampled_addresses,
ref correct_ancestors_response,
ref blockstore,
ref mut status,
..
} = test_setup;
// Generate an event order of adding correct/incorrect responses
let events: BTreeMap<usize, Vec<(Slot, Hash)>> = incorrect_responses
.into_iter()
.scan(
0,
|total_count, /*accumulated state*/
(
incorrect_response,
num_responses, /*number of validators returning this response*/
)| {
assert!(num_responses > 0);
*total_count += num_responses;
Some((*total_count, incorrect_response))
},
)
.collect();
let total_incorrect_responses = events.iter().last().map(|(count, _)| *count).unwrap_or(0);
assert!(total_incorrect_responses <= ANCESTOR_HASH_REPAIR_SAMPLE_SIZE);
let mut event_order: Vec<usize> = (0..sampled_addresses.len()).collect();
event_order.shuffle(&mut thread_rng());
for (event, responder_addr) in event_order.iter().zip(sampled_addresses.iter()) {
let response = events
.range((event + 1)..)
.next()
.map(|(_count, response)| response)
.unwrap_or_else(|| correct_ancestors_response)
.clone();
if let Some(decision) = status.add_response(responder_addr, response, blockstore) {
// Note we may get a decision before we've heard back from all the
// sampled validators
return decision;
}
}
// Should never get here
panic!("Decision must be made after hearing back from all the sampled validators");
}
#[test]
fn test_add_multiple_responses_invalid_sample_no_agreement() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Create an incorrect response
let mut incorrect_ancestors_response_0 = test_setup.correct_ancestors_response.clone();
incorrect_ancestors_response_0.pop().unwrap();
// Create another incorrect response
let mut incorrect_ancestors_response_1 = incorrect_ancestors_response_0.clone();
incorrect_ancestors_response_1.pop().unwrap();
let desired_incorrect_responses = vec![
(
incorrect_ancestors_response_0,
MINIMUM_ANCESTOR_AGREEMENT_SIZE - 1,
),
(incorrect_ancestors_response_1, 2),
];
// Ensure that no response gets >= MINIMUM_ANCESTOR_AGREEMENT_SIZE responses
let total_invalid_responses: usize = desired_incorrect_responses
.iter()
.map(|(_, count)| count)
.sum();
assert!(
ANCESTOR_HASH_REPAIR_SAMPLE_SIZE - total_invalid_responses
< MINIMUM_ANCESTOR_AGREEMENT_SIZE
);
assert_eq!(
run_add_multiple_correct_and_incorrect_responses(
desired_incorrect_responses,
&mut test_setup
),
DuplicateAncestorDecision::InvalidSample
);
}
#[test]
fn test_add_multiple_responses_not_duplicate_confirmed() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Create an incorrect response that is empty
let incorrect_ancestors_response = vec![];
let desired_incorrect_responses = vec![(
incorrect_ancestors_response,
MINIMUM_ANCESTOR_AGREEMENT_SIZE,
)];
assert_eq!(
run_add_multiple_correct_and_incorrect_responses(
desired_incorrect_responses,
&mut test_setup
),
DuplicateAncestorDecision::SampleNotDuplicateConfirmed
);
}
#[test]
fn test_add_multiple_responses_invalid_sample_missing_requested_slot() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Create an incorrect response that is missing `request_slot`
let incorrect_ancestors_response = vec![(request_slot - 1, Hash::new_unique())];
let desired_incorrect_responses = vec![(
incorrect_ancestors_response,
MINIMUM_ANCESTOR_AGREEMENT_SIZE,
)];
assert_eq!(
run_add_multiple_correct_and_incorrect_responses(
desired_incorrect_responses,
&mut test_setup
),
DuplicateAncestorDecision::InvalidSample
);
}
#[test]
fn test_add_multiple_responses_invalid_sample_responses_not_ancestors() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Create an incorrect response. If the agreed upon response contains
// slots >= request_slot, we still mark the responses as invalid
let mut incorrect_ancestors_response = test_setup.correct_ancestors_response.clone();
incorrect_ancestors_response.push((request_slot + 1, Hash::new_unique()));
let desired_incorrect_responses = vec![(
incorrect_ancestors_response,
MINIMUM_ANCESTOR_AGREEMENT_SIZE,
)];
assert_eq!(
run_add_multiple_correct_and_incorrect_responses(
desired_incorrect_responses,
&mut test_setup
),
DuplicateAncestorDecision::InvalidSample
);
}
#[test]
fn test_add_multiple_responses_invalid_sample_responses_out_of_order() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Create an incorrect response that is out of order
let mut incorrect_ancestors_response = test_setup.correct_ancestors_response.clone();
incorrect_ancestors_response.swap_remove(0);
let desired_incorrect_responses = vec![(
incorrect_ancestors_response,
MINIMUM_ANCESTOR_AGREEMENT_SIZE,
)];
assert_eq!(
run_add_multiple_correct_and_incorrect_responses(
desired_incorrect_responses,
&mut test_setup
),
DuplicateAncestorDecision::InvalidSample
);
}
#[test]
fn test_add_multiple_responses_invalid_sample_matches_then_mismatches() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Insert all the correct frozen ancestors
for &(slot, correct_hash) in &test_setup.correct_ancestors_response {
test_setup
.blockstore
.insert_bank_hash(slot, correct_hash, false);
}
// Create an incorrect response where there is a mismatched ancestor `X`, then
// a matching ancestor `Y > X`
let mut incorrect_ancestors_response = test_setup.correct_ancestors_response.clone();
incorrect_ancestors_response[5].1 = Hash::new_unique();
let desired_incorrect_responses = vec![(
incorrect_ancestors_response,
MINIMUM_ANCESTOR_AGREEMENT_SIZE,
)];
assert_eq!(
run_add_multiple_correct_and_incorrect_responses(
desired_incorrect_responses,
&mut test_setup
),
DuplicateAncestorDecision::InvalidSample
);
}
#[test]
fn test_add_multiple_responses_ancestors_all_not_frozen() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Create an incorrect response, but the agreed upon response will be the correct
// one.
let mut incorrect_ancestors_response = test_setup.correct_ancestors_response.clone();
incorrect_ancestors_response.push((request_slot, Hash::new_unique()));
let desired_incorrect_responses = vec![(
incorrect_ancestors_response,
MINIMUM_ANCESTOR_AGREEMENT_SIZE - 1,
)];
// We have no entries in the blockstore, so all the ancestors will be missing
match run_add_multiple_correct_and_incorrect_responses(
desired_incorrect_responses,
&mut test_setup,
) {
DuplicateAncestorDecision::ContinueSearch(repair_status) => {
assert_eq!(
repair_status.correct_ancestors_to_repair,
test_setup.correct_ancestors_response
);
}
x => panic!("Incorrect decision {:?}", x),
};
}
#[test]
fn test_add_multiple_responses_ancestors_some_not_frozen() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Set up a situation where some of our ancestors are correct,
// but then we fork off and are missing some ancestors like so:
// ```
// 93 - 95 - 97 - 99 - 100 (our current fork, missing some slots like 98)
// /
// 90 - 91 - 92 (all correct)
// \
// 93 - 94 - 95 - 96 - 97 - 98 - 99 - 100 (correct fork)
// ```
let rand_num: u64 = rand::random();
let insert_even_or_odds: u64 = rand_num % 2;
for &(slot, correct_hash) in &test_setup.correct_ancestors_response {
if slot <= 92 {
test_setup
.blockstore
.insert_bank_hash(slot, correct_hash, false);
} else if slot % 2 == insert_even_or_odds {
// Here we either skip slot 93 or 94.
//
// 1) If we skip slot 93, and insert mismatched slot 94 we're testing the order of
// events `Not frozen -> Mismatched hash`
//
// 2) If we insert mismatched slot 93, and skip slot 94 we're testing the order of
// events `Mismatched hash -> Not frozen`
//
// Both cases should return `EarliestMismatchFound`
test_setup
.blockstore
.insert_bank_hash(slot, Hash::new_unique(), false);
}
}
let repair_status =
match run_add_multiple_correct_and_incorrect_responses(vec![], &mut test_setup) {
DuplicateAncestorDecision::EarliestMismatchFound(repair_status)
if insert_even_or_odds == 1 =>
{
repair_status
}
DuplicateAncestorDecision::EarliestAncestorNotFrozen(repair_status)
if insert_even_or_odds == 0 =>
{
repair_status
}
x => panic!("Incorrect decision {:?}", x),
};
// Expect to find everything after 92 in the `correct_ancestors_to_repair`.
let expected_mismatched_slots: Vec<(Slot, Hash)> = test_setup
.correct_ancestors_response
.into_iter()
.filter(|(slot, _)| *slot > 92)
.collect();
assert_eq!(
repair_status.correct_ancestors_to_repair,
expected_mismatched_slots
);
}
#[test]
fn test_add_multiple_responses_ancestors_all_mismatched() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Insert all the wrong hashes for the slots
for (slot, _) in &test_setup.correct_ancestors_response {
test_setup
.blockstore
.insert_bank_hash(*slot, Hash::new_unique(), false);
}
// All the ancestors are mismatched, so we need to continue the search
match run_add_multiple_correct_and_incorrect_responses(vec![], &mut test_setup) {
DuplicateAncestorDecision::ContinueSearch(repair_status) => {
assert_eq!(
repair_status.correct_ancestors_to_repair,
test_setup.correct_ancestors_response
);
}
x => panic!("Incorrect decision {:?}", x),
};
}
#[test]
fn test_add_multiple_responses_ancestors_some_mismatched() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Set up a situation where some of our ancestors are correct,
// but then we fork off with different versions of the correct slots.
// ```
// 93' - 94' - 95' - 96' - 97' - 98' - 99' - 100' (our current fork, missing some slots like 98)
// /
// 90 - 91 - 92 (all correct)
// \
// 93 - 94 - 95 - 96 - 97 - 98 - 99 - 100 (correct fork)
// ```
// Insert all the wrong hashes for the slots
for &(slot, correct_hash) in &test_setup.correct_ancestors_response {
if slot <= 92 {
test_setup
.blockstore
.insert_bank_hash(slot, correct_hash, false);
} else {
test_setup
.blockstore
.insert_bank_hash(slot, Hash::new_unique(), false);
}
}
// All the ancestors are mismatched, so we need to continue the search
match run_add_multiple_correct_and_incorrect_responses(vec![], &mut test_setup) {
DuplicateAncestorDecision::EarliestMismatchFound(repair_status) => {
// Expect to find everything after 92 in the `correct_ancestors_to_repair`.
let expected_mismatched_slots: Vec<(Slot, Hash)> = test_setup
.correct_ancestors_response
.into_iter()
.filter(|(slot, _)| *slot > 92)
.collect();
assert_eq!(
repair_status.correct_ancestors_to_repair,
expected_mismatched_slots
);
}
x => panic!("Incorrect decision {:?}", x),
};
}
#[test]
fn test_add_multiple_responses_ancestors_all_match() {
let request_slot = 100;
let mut test_setup = setup_add_response_test(request_slot, 10);
// Insert all the correct frozen ancestors
for &(slot, correct_hash) in &test_setup.correct_ancestors_response {
test_setup
.blockstore
.insert_bank_hash(slot, correct_hash, false);
}
// All the ancestors matched
assert_eq!(
run_add_multiple_correct_and_incorrect_responses(vec![], &mut test_setup),
DuplicateAncestorDecision::AncestorsAllMatch
);
}
}