solana/ledger/src/sigverify_shreds.rs

922 lines
32 KiB
Rust

#![allow(clippy::implicit_hasher)]
use {
crate::shred::{self, MerkleRoot, SIZE_OF_MERKLE_ROOT},
itertools::{izip, Itertools},
rayon::{prelude::*, ThreadPool},
sha2::{Digest, Sha512},
solana_metrics::inc_new_counter_debug,
solana_perf::{
cuda_runtime::PinnedVec,
packet::{Packet, PacketBatch},
perf_libs,
recycler_cache::RecyclerCache,
sigverify::{self, count_packets_in_batches, TxOffset},
},
solana_rayon_threadlimit::get_thread_count,
solana_sdk::{
clock::Slot,
pubkey::Pubkey,
signature::{Keypair, Signature, Signer},
},
std::{collections::HashMap, fmt::Debug, iter::repeat, mem::size_of, ops::Range, sync::Arc},
};
const SIGN_SHRED_GPU_MIN: usize = 256;
lazy_static! {
static ref SIGVERIFY_THREAD_POOL: ThreadPool = rayon::ThreadPoolBuilder::new()
.num_threads(get_thread_count())
.thread_name(|ix| format!("solSvrfyShred{ix:02}"))
.build()
.unwrap();
}
#[must_use]
pub fn verify_shred_cpu(
packet: &Packet,
slot_leaders: &HashMap<Slot, /*pubkey:*/ [u8; 32]>,
) -> bool {
if packet.meta().discard() {
return false;
}
let shred = match shred::layout::get_shred(packet) {
None => return false,
Some(shred) => shred,
};
let slot = match shred::layout::get_slot(shred) {
None => return false,
Some(slot) => slot,
};
trace!("slot {}", slot);
let pubkey = match slot_leaders.get(&slot) {
None => return false,
Some(pubkey) => pubkey,
};
let signature = match shred::layout::get_signature(shred) {
None => return false,
Some(signature) => signature,
};
trace!("signature {}", signature);
let data = match shred::layout::get_signed_data(shred) {
None => return false,
Some(data) => data,
};
signature.verify(pubkey, data.as_ref())
}
fn verify_shreds_cpu(
batches: &[PacketBatch],
slot_leaders: &HashMap<Slot, /*pubkey:*/ [u8; 32]>,
) -> Vec<Vec<u8>> {
let packet_count = count_packets_in_batches(batches);
debug!("CPU SHRED ECDSA for {}", packet_count);
let rv = SIGVERIFY_THREAD_POOL.install(|| {
batches
.into_par_iter()
.map(|batch| {
batch
.par_iter()
.map(|packet| u8::from(verify_shred_cpu(packet, slot_leaders)))
.collect()
})
.collect()
});
inc_new_counter_debug!("ed25519_shred_verify_cpu", packet_count);
rv
}
fn slot_key_data_for_gpu<T>(
batches: &[PacketBatch],
slot_keys: &HashMap<Slot, /*pubkey:*/ T>,
recycler_cache: &RecyclerCache,
) -> (/*pubkeys:*/ PinnedVec<u8>, TxOffset)
where
T: AsRef<[u8]> + Copy + Debug + Default + Eq + std::hash::Hash + Sync,
{
//TODO: mark Pubkey::default shreds as failed after the GPU returns
assert_eq!(slot_keys.get(&Slot::MAX), Some(&T::default()));
let slots: Vec<Slot> = SIGVERIFY_THREAD_POOL.install(|| {
batches
.into_par_iter()
.flat_map_iter(|batch| {
batch.iter().map(|packet| {
if packet.meta().discard() {
return Slot::MAX;
}
let shred = shred::layout::get_shred(packet);
match shred.and_then(shred::layout::get_slot) {
Some(slot) if slot_keys.contains_key(&slot) => slot,
_ => Slot::MAX,
}
})
})
.collect()
});
let keys_to_slots: HashMap<T, Vec<Slot>> = slots
.iter()
.map(|slot| (slot_keys[slot], *slot))
.into_group_map();
let mut keyvec = recycler_cache.buffer().allocate("shred_gpu_pubkeys");
keyvec.set_pinnable();
let keyvec_size = keys_to_slots.len() * size_of::<T>();
resize_buffer(&mut keyvec, keyvec_size);
let key_offsets: HashMap<Slot, /*key offset:*/ usize> = {
let mut next_offset = 0;
keys_to_slots
.into_iter()
.flat_map(|(key, slots)| {
let offset = next_offset;
next_offset += std::mem::size_of::<T>();
keyvec[offset..next_offset].copy_from_slice(key.as_ref());
slots.into_iter().zip(repeat(offset))
})
.collect()
};
let mut offsets = recycler_cache.offsets().allocate("shred_offsets");
offsets.set_pinnable();
for slot in slots {
offsets.push(key_offsets[&slot] as u32);
}
trace!("keyvec.len: {}", keyvec.len());
trace!("keyvec: {:?}", keyvec);
trace!("offsets: {:?}", offsets);
(keyvec, offsets)
}
// Recovers merkle roots from shreds binary.
fn get_merkle_roots(
packets: &[PacketBatch],
recycler_cache: &RecyclerCache,
) -> (
PinnedVec<u8>, // Merkle roots
Vec<Option<usize>>, // Offsets
) {
let merkle_roots: Vec<Option<MerkleRoot>> = SIGVERIFY_THREAD_POOL.install(|| {
packets
.par_iter()
.flat_map(|packets| {
packets.par_iter().map(|packet| {
if packet.meta().discard() {
return None;
}
let shred = shred::layout::get_shred(packet)?;
shred::layout::get_merkle_root(shred)
})
})
.collect()
});
let num_merkle_roots = merkle_roots.iter().flatten().count();
let mut buffer = recycler_cache.buffer().allocate("shred_gpu_merkle_roots");
buffer.set_pinnable();
resize_buffer(&mut buffer, num_merkle_roots * SIZE_OF_MERKLE_ROOT);
let offsets = {
let mut next_offset = 0;
merkle_roots
.into_iter()
.map(|root| {
let root = root?;
let offset = next_offset;
next_offset += SIZE_OF_MERKLE_ROOT;
buffer[offset..next_offset].copy_from_slice(&root);
Some(offset)
})
.collect()
};
(buffer, offsets)
}
// Resizes the buffer to >= size and a multiple of
// std::mem::size_of::<Packet>().
fn resize_buffer(buffer: &mut PinnedVec<u8>, size: usize) {
//HACK: Pubkeys vector is passed along as a `PacketBatch` buffer to the GPU
//TODO: GPU needs a more opaque interface, which can handle variable sized structures for data
//Pad the Pubkeys buffer such that it is bigger than a buffer of Packet sized elems
let num_packets = (size + std::mem::size_of::<Packet>() - 1) / std::mem::size_of::<Packet>();
let size = num_packets * std::mem::size_of::<Packet>();
buffer.resize(size, 0u8);
}
fn elems_from_buffer(buffer: &PinnedVec<u8>) -> perf_libs::Elems {
// resize_buffer ensures that buffer size is a multiple of Packet size.
debug_assert_eq!(buffer.len() % std::mem::size_of::<Packet>(), 0);
let num_packets = buffer.len() / std::mem::size_of::<Packet>();
perf_libs::Elems {
elems: buffer.as_ptr().cast::<u8>(),
num: num_packets as u32,
}
}
fn shred_gpu_offsets(
offset: usize,
batches: &[PacketBatch],
merkle_roots_offsets: impl IntoIterator<Item = Option<usize>>,
recycler_cache: &RecyclerCache,
) -> (TxOffset, TxOffset, TxOffset) {
fn add_offset(range: Range<usize>, offset: usize) -> Range<usize> {
range.start + offset..range.end + offset
}
let mut signature_offsets = recycler_cache.offsets().allocate("shred_signatures");
signature_offsets.set_pinnable();
let mut msg_start_offsets = recycler_cache.offsets().allocate("shred_msg_starts");
msg_start_offsets.set_pinnable();
let mut msg_sizes = recycler_cache.offsets().allocate("shred_msg_sizes");
msg_sizes.set_pinnable();
let offsets = std::iter::successors(Some(offset), |offset| {
offset.checked_add(std::mem::size_of::<Packet>())
});
let packets = batches.iter().flatten();
for (offset, packet, merkle_root_offset) in izip!(offsets, packets, merkle_roots_offsets) {
let sig = shred::layout::get_signature_range();
let sig = add_offset(sig, offset);
debug_assert_eq!(sig.end - sig.start, std::mem::size_of::<Signature>());
// Signature may verify for an empty message but the packet will be
// discarded during deserialization.
let msg: Range<usize> = match merkle_root_offset {
None => {
let shred = shred::layout::get_shred(packet);
let msg = shred.and_then(shred::layout::get_signed_data_offsets);
add_offset(msg.unwrap_or_default(), offset)
}
Some(merkle_root_offset) => {
merkle_root_offset..merkle_root_offset + SIZE_OF_MERKLE_ROOT
}
};
signature_offsets.push(sig.start as u32);
msg_start_offsets.push(msg.start as u32);
let msg_size = msg.end.saturating_sub(msg.start);
msg_sizes.push(msg_size as u32);
}
(signature_offsets, msg_start_offsets, msg_sizes)
}
pub fn verify_shreds_gpu(
batches: &[PacketBatch],
slot_leaders: &HashMap<Slot, /*pubkey:*/ [u8; 32]>,
recycler_cache: &RecyclerCache,
) -> Vec<Vec<u8>> {
let api = match perf_libs::api() {
None => return verify_shreds_cpu(batches, slot_leaders),
Some(api) => api,
};
let (pubkeys, pubkey_offsets) = slot_key_data_for_gpu(batches, slot_leaders, recycler_cache);
//HACK: Pubkeys vector is passed along as a `PacketBatch` buffer to the GPU
//TODO: GPU needs a more opaque interface, which can handle variable sized structures for data
let (merkle_roots, merkle_roots_offsets) = get_merkle_roots(batches, recycler_cache);
// Merkle roots are placed after pubkeys; adjust offsets accordingly.
let merkle_roots_offsets = {
let shift = pubkeys.len();
merkle_roots_offsets
.into_iter()
.map(move |offset| Some(offset? + shift))
};
let offset = pubkeys.len() + merkle_roots.len();
let (signature_offsets, msg_start_offsets, msg_sizes) =
shred_gpu_offsets(offset, batches, merkle_roots_offsets, recycler_cache);
let mut out = recycler_cache.buffer().allocate("out_buffer");
out.set_pinnable();
out.resize(signature_offsets.len(), 0u8);
let mut elems = vec![
elems_from_buffer(&pubkeys),
elems_from_buffer(&merkle_roots),
];
elems.extend(batches.iter().map(|batch| perf_libs::Elems {
elems: batch.as_ptr().cast::<u8>(),
num: batch.len() as u32,
}));
let num_packets = elems.iter().map(|elem| elem.num).sum();
trace!("Starting verify num packets: {}", num_packets);
trace!("elem len: {}", elems.len() as u32);
trace!("packet sizeof: {}", size_of::<Packet>() as u32);
const USE_NON_DEFAULT_STREAM: u8 = 1;
unsafe {
let res = (api.ed25519_verify_many)(
elems.as_ptr(),
elems.len() as u32,
size_of::<Packet>() as u32,
num_packets,
signature_offsets.len() as u32,
msg_sizes.as_ptr(),
pubkey_offsets.as_ptr(),
signature_offsets.as_ptr(),
msg_start_offsets.as_ptr(),
out.as_mut_ptr(),
USE_NON_DEFAULT_STREAM,
);
if res != 0 {
trace!("RETURN!!!: {}", res);
}
}
trace!("done verify");
trace!("out buf {:?}", out);
// Each shred has exactly one signature.
let v_sig_lens = batches.iter().map(|batch| repeat(1u32).take(batch.len()));
let mut rvs: Vec<_> = batches.iter().map(|batch| vec![0u8; batch.len()]).collect();
sigverify::copy_return_values(v_sig_lens, &out, &mut rvs);
inc_new_counter_debug!("ed25519_shred_verify_gpu", out.len());
rvs
}
fn sign_shred_cpu(keypair: &Keypair, packet: &mut Packet) {
let sig = shred::layout::get_signature_range();
let msg = shred::layout::get_shred(packet)
.and_then(shred::layout::get_signed_data)
.unwrap();
assert!(
packet.meta().size >= sig.end,
"packet is not large enough for a signature"
);
let signature = keypair.sign_message(msg.as_ref());
trace!("signature {:?}", signature);
packet.buffer_mut()[sig].copy_from_slice(signature.as_ref());
}
pub fn sign_shreds_cpu(keypair: &Keypair, batches: &mut [PacketBatch]) {
let packet_count = count_packets_in_batches(batches);
debug!("CPU SHRED ECDSA for {}", packet_count);
SIGVERIFY_THREAD_POOL.install(|| {
batches.par_iter_mut().for_each(|batch| {
batch[..]
.par_iter_mut()
.for_each(|p| sign_shred_cpu(keypair, p));
});
});
inc_new_counter_debug!("ed25519_shred_sign_cpu", packet_count);
}
pub fn sign_shreds_gpu_pinned_keypair(keypair: &Keypair, cache: &RecyclerCache) -> PinnedVec<u8> {
let mut vec = cache.buffer().allocate("pinned_keypair");
let pubkey = keypair.pubkey().to_bytes();
let secret = keypair.secret().to_bytes();
let mut hasher = Sha512::default();
hasher.update(secret);
let mut result = hasher.finalize();
result[0] &= 248;
result[31] &= 63;
result[31] |= 64;
let size = pubkey.len() + result.len();
resize_buffer(&mut vec, size);
vec[0..pubkey.len()].copy_from_slice(&pubkey);
vec[pubkey.len()..size].copy_from_slice(&result);
vec
}
pub fn sign_shreds_gpu(
keypair: &Keypair,
pinned_keypair: &Option<Arc<PinnedVec<u8>>>,
batches: &mut [PacketBatch],
recycler_cache: &RecyclerCache,
) {
let sig_size = size_of::<Signature>();
let pubkey_size = size_of::<Pubkey>();
let packet_count = count_packets_in_batches(batches);
if packet_count < SIGN_SHRED_GPU_MIN || pinned_keypair.is_none() {
return sign_shreds_cpu(keypair, batches);
}
let api = match perf_libs::api() {
None => return sign_shreds_cpu(keypair, batches),
Some(api) => api,
};
let pinned_keypair = pinned_keypair.as_ref().unwrap();
//should be zero
let mut pubkey_offsets = recycler_cache.offsets().allocate("pubkey offsets");
pubkey_offsets.resize(packet_count, 0);
let mut secret_offsets = recycler_cache.offsets().allocate("secret_offsets");
secret_offsets.resize(packet_count, pubkey_size as u32);
let (merkle_roots, merkle_roots_offsets) = get_merkle_roots(batches, recycler_cache);
// Merkle roots are placed after the keypair; adjust offsets accordingly.
let merkle_roots_offsets = {
let shift = pinned_keypair.len();
merkle_roots_offsets
.into_iter()
.map(move |offset| Some(offset? + shift))
};
let offset = pinned_keypair.len() + merkle_roots.len();
trace!("offset: {}", offset);
let (signature_offsets, msg_start_offsets, msg_sizes) =
shred_gpu_offsets(offset, batches, merkle_roots_offsets, recycler_cache);
let total_sigs = signature_offsets.len();
let mut signatures_out = recycler_cache.buffer().allocate("ed25519 signatures");
signatures_out.set_pinnable();
signatures_out.resize(total_sigs * sig_size, 0);
let mut elems = vec![
elems_from_buffer(pinned_keypair),
elems_from_buffer(&merkle_roots),
];
elems.extend(batches.iter().map(|batch| perf_libs::Elems {
elems: batch.as_ptr().cast::<u8>(),
num: batch.len() as u32,
}));
let num_packets = elems.iter().map(|elem| elem.num).sum();
trace!("Starting verify num packets: {}", num_packets);
trace!("elem len: {}", elems.len() as u32);
trace!("packet sizeof: {}", size_of::<Packet>() as u32);
const USE_NON_DEFAULT_STREAM: u8 = 1;
unsafe {
let res = (api.ed25519_sign_many)(
elems.as_mut_ptr(),
elems.len() as u32,
size_of::<Packet>() as u32,
num_packets,
total_sigs as u32,
msg_sizes.as_ptr(),
pubkey_offsets.as_ptr(),
secret_offsets.as_ptr(),
msg_start_offsets.as_ptr(),
signatures_out.as_mut_ptr(),
USE_NON_DEFAULT_STREAM,
);
if res != 0 {
trace!("RETURN!!!: {}", res);
}
}
trace!("done sign");
// Cumulative number of packets within batches.
let num_packets: Vec<_> = batches
.iter()
.scan(0, |num_packets, batch| {
let out = *num_packets;
*num_packets += batch.len();
Some(out)
})
.collect();
SIGVERIFY_THREAD_POOL.install(|| {
batches
.par_iter_mut()
.zip(num_packets)
.for_each(|(batch, num_packets)| {
batch[..]
.par_iter_mut()
.enumerate()
.for_each(|(packet_ix, packet)| {
let sig_ix = packet_ix + num_packets;
let sig_start = sig_ix * sig_size;
let sig_end = sig_start + sig_size;
packet.buffer_mut()[..sig_size]
.copy_from_slice(&signatures_out[sig_start..sig_end]);
});
});
});
inc_new_counter_debug!("ed25519_shred_sign_gpu", packet_count);
}
#[cfg(test)]
mod tests {
use {
super::*,
crate::{
shred::{ProcessShredsStats, Shred, ShredFlags, LEGACY_SHRED_DATA_CAPACITY},
shredder::{ReedSolomonCache, Shredder},
},
matches::assert_matches,
rand::{seq::SliceRandom, Rng},
solana_entry::entry::Entry,
solana_sdk::{
hash,
hash::Hash,
signature::{Keypair, Signer},
system_transaction,
transaction::Transaction,
},
std::iter::{once, repeat_with},
};
fn run_test_sigverify_shred_cpu(slot: Slot) {
solana_logger::setup();
let mut packet = Packet::default();
let mut shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
assert_eq!(shred.slot(), slot);
let keypair = Keypair::new();
shred.sign(&keypair);
trace!("signature {}", shred.signature());
packet.buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
packet.meta_mut().size = shred.payload().len();
let leader_slots = [(slot, keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
assert!(verify_shred_cpu(&packet, &leader_slots));
let wrong_keypair = Keypair::new();
let leader_slots = [(slot, wrong_keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
assert!(!verify_shred_cpu(&packet, &leader_slots));
let leader_slots = HashMap::new();
assert!(!verify_shred_cpu(&packet, &leader_slots));
}
#[test]
fn test_sigverify_shred_cpu() {
run_test_sigverify_shred_cpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_cpu(slot: Slot) {
solana_logger::setup();
let mut batches = [PacketBatch::default()];
let mut shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
let keypair = Keypair::new();
shred.sign(&keypair);
batches[0].resize(1, Packet::default());
batches[0][0].buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
batches[0][0].meta_mut().size = shred.payload().len();
let leader_slots = [(slot, keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![1]]);
let wrong_keypair = Keypair::new();
let leader_slots = [(slot, wrong_keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![0]]);
let leader_slots = HashMap::new();
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![0]]);
let leader_slots = [(slot, keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
batches[0][0].meta_mut().size = 0;
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![0]]);
}
#[test]
fn test_sigverify_shreds_cpu() {
run_test_sigverify_shreds_cpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_gpu(slot: Slot) {
solana_logger::setup();
let recycler_cache = RecyclerCache::default();
let mut batches = [PacketBatch::default()];
let mut shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
let keypair = Keypair::new();
shred.sign(&keypair);
batches[0].resize(1, Packet::default());
batches[0][0].buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
batches[0][0].meta_mut().size = shred.payload().len();
let leader_slots = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![1]]);
let wrong_keypair = Keypair::new();
let leader_slots = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, wrong_keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![0]]);
let leader_slots = [(std::u64::MAX, [0u8; 32])].iter().cloned().collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![0]]);
batches[0][0].meta_mut().size = 0;
let leader_slots = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![0]]);
}
#[test]
fn test_sigverify_shreds_gpu() {
run_test_sigverify_shreds_gpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_sign_gpu(slot: Slot) {
solana_logger::setup();
let recycler_cache = RecyclerCache::default();
let num_packets = 32;
let num_batches = 100;
let mut packet_batch = PacketBatch::with_capacity(num_packets);
packet_batch.resize(num_packets, Packet::default());
for (i, p) in packet_batch.iter_mut().enumerate() {
let shred = Shred::new_from_data(
slot,
0xc0de,
i as u16,
&[5; LEGACY_SHRED_DATA_CAPACITY],
ShredFlags::LAST_SHRED_IN_SLOT,
1,
2,
0xc0de,
);
shred.copy_to_packet(p);
}
let mut batches = vec![packet_batch; num_batches];
let keypair = Keypair::new();
let pinned_keypair = sign_shreds_gpu_pinned_keypair(&keypair, &recycler_cache);
let pinned_keypair = Some(Arc::new(pinned_keypair));
let pubkeys = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
//unsigned
let rv = verify_shreds_gpu(&batches, &pubkeys, &recycler_cache);
assert_eq!(rv, vec![vec![0; num_packets]; num_batches]);
//signed
sign_shreds_gpu(&keypair, &pinned_keypair, &mut batches, &recycler_cache);
let rv = verify_shreds_cpu(&batches, &pubkeys);
assert_eq!(rv, vec![vec![1; num_packets]; num_batches]);
let rv = verify_shreds_gpu(&batches, &pubkeys, &recycler_cache);
assert_eq!(rv, vec![vec![1; num_packets]; num_batches]);
}
#[test]
fn test_sigverify_shreds_sign_gpu() {
run_test_sigverify_shreds_sign_gpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_sign_cpu(slot: Slot) {
solana_logger::setup();
let mut batches = [PacketBatch::default()];
let keypair = Keypair::new();
let shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
batches[0].resize(1, Packet::default());
batches[0][0].buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
batches[0][0].meta_mut().size = shred.payload().len();
let pubkeys = [
(slot, keypair.pubkey().to_bytes()),
(std::u64::MAX, Pubkey::default().to_bytes()),
]
.iter()
.cloned()
.collect();
//unsigned
let rv = verify_shreds_cpu(&batches, &pubkeys);
assert_eq!(rv, vec![vec![0]]);
//signed
sign_shreds_cpu(&keypair, &mut batches);
let rv = verify_shreds_cpu(&batches, &pubkeys);
assert_eq!(rv, vec![vec![1]]);
}
#[test]
fn test_sigverify_shreds_sign_cpu() {
run_test_sigverify_shreds_sign_cpu(0xdead_c0de);
}
fn make_transaction<R: Rng>(rng: &mut R) -> Transaction {
let block = rng.gen::<[u8; 32]>();
let recent_blockhash = hash::hashv(&[&block]);
system_transaction::transfer(
&Keypair::new(), // from
&Pubkey::new_unique(), // to
rng.gen(), // lamports
recent_blockhash,
)
}
fn make_entry<R: Rng>(rng: &mut R, prev_hash: &Hash) -> Entry {
let size = rng.gen_range(16, 32);
let txs = repeat_with(|| make_transaction(rng)).take(size).collect();
Entry::new(
prev_hash,
rng.gen_range(1, 64), // num_hashes
txs,
)
}
fn make_entries<R: Rng>(rng: &mut R, num_entries: usize) -> Vec<Entry> {
let prev_hash = hash::hashv(&[&rng.gen::<[u8; 32]>()]);
let entry = make_entry(rng, &prev_hash);
std::iter::successors(Some(entry), |entry| Some(make_entry(rng, &entry.hash)))
.take(num_entries)
.collect()
}
fn make_shreds<R: Rng>(rng: &mut R, keypairs: &HashMap<Slot, Keypair>) -> Vec<Shred> {
let reed_solomon_cache = ReedSolomonCache::default();
let mut shreds: Vec<_> = keypairs
.iter()
.flat_map(|(&slot, keypair)| {
let parent_slot = slot - rng.gen::<u16>().max(1) as Slot;
let num_entries = rng.gen_range(64, 128);
let (data_shreds, coding_shreds) = Shredder::new(
slot,
parent_slot,
rng.gen_range(0, 0x40), // reference_tick
rng.gen(), // version
)
.unwrap()
.entries_to_shreds(
keypair,
&make_entries(rng, num_entries),
rng.gen(), // is_last_in_slot
rng.gen_range(0, 2671), // next_shred_index
rng.gen_range(0, 2781), // next_code_index
rng.gen(), // merkle_variant,
&reed_solomon_cache,
&mut ProcessShredsStats::default(),
);
[data_shreds, coding_shreds]
})
.flatten()
.collect();
shreds.shuffle(rng);
// Assert that all shreds verfiy and sanitize.
for shred in &shreds {
let pubkey = keypairs[&shred.slot()].pubkey();
assert!(shred.verify(&pubkey));
assert_matches!(shred.sanitize(), Ok(()));
}
// Verfiy using layout api.
for shred in &shreds {
let shred = shred.payload();
let slot = shred::layout::get_slot(shred).unwrap();
let signature = shred::layout::get_signature(shred).unwrap();
let offsets = shred::layout::get_signed_data_offsets(shred).unwrap();
let pubkey = keypairs[&slot].pubkey();
assert!(signature.verify(pubkey.as_ref(), &shred[offsets]));
let data = shred::layout::get_signed_data(shred).unwrap();
assert!(signature.verify(pubkey.as_ref(), data.as_ref()));
}
shreds
}
fn make_packets<R: Rng>(rng: &mut R, shreds: &[Shred]) -> Vec<PacketBatch> {
let mut packets = shreds.iter().map(|shred| {
let mut packet = Packet::default();
shred.copy_to_packet(&mut packet);
packet
});
let packets: Vec<_> = repeat_with(|| {
let size = rng.gen_range(0, 16);
let packets = packets.by_ref().take(size).collect();
let batch = PacketBatch::new(packets);
(size == 0 || !batch.is_empty()).then_some(batch)
})
.while_some()
.collect();
assert_eq!(
shreds.len(),
packets.iter().map(PacketBatch::len).sum::<usize>()
);
assert!(count_packets_in_batches(&packets) > SIGN_SHRED_GPU_MIN);
packets
}
#[test]
fn test_verify_shreds_fuzz() {
let mut rng = rand::thread_rng();
let recycler_cache = RecyclerCache::default();
let keypairs = repeat_with(|| rng.gen_range(169_367_809, 169_906_789))
.map(|slot| (slot, Keypair::new()))
.take(3)
.collect();
let shreds = make_shreds(&mut rng, &keypairs);
let pubkeys: HashMap<Slot, [u8; 32]> = keypairs
.iter()
.map(|(&slot, keypair)| (slot, keypair.pubkey().to_bytes()))
.chain(once((Slot::MAX, Pubkey::default().to_bytes())))
.collect();
let mut packets = make_packets(&mut rng, &shreds);
assert_eq!(
verify_shreds_gpu(&packets, &pubkeys, &recycler_cache),
packets
.iter()
.map(|batch| vec![1u8; batch.len()])
.collect::<Vec<_>>()
);
// Invalidate signatures for a random number of packets.
let out: Vec<_> = packets
.iter_mut()
.map(|packets| {
packets
.iter_mut()
.map(|packet| {
let coin_flip: bool = rng.gen();
if !coin_flip {
shred::layout::corrupt_packet(&mut rng, packet, &keypairs);
}
u8::from(coin_flip)
})
.collect::<Vec<_>>()
})
.collect();
assert_eq!(verify_shreds_gpu(&packets, &pubkeys, &recycler_cache), out);
}
#[test]
fn test_sign_shreds_gpu() {
let mut rng = rand::thread_rng();
let recycler_cache = RecyclerCache::default();
let shreds = {
let keypairs = repeat_with(|| rng.gen_range(169_367_809, 169_906_789))
.map(|slot| (slot, Keypair::new()))
.take(3)
.collect();
make_shreds(&mut rng, &keypairs)
};
let keypair = Keypair::new();
let pubkeys: HashMap<Slot, [u8; 32]> = {
let pubkey = keypair.pubkey().to_bytes();
shreds
.iter()
.map(Shred::slot)
.map(|slot| (slot, pubkey))
.chain(once((Slot::MAX, Pubkey::default().to_bytes())))
.collect()
};
let mut packets = make_packets(&mut rng, &shreds);
// Assert that initially all signatrues are invalid.
assert_eq!(
verify_shreds_gpu(&packets, &pubkeys, &recycler_cache),
packets
.iter()
.map(|batch| vec![0u8; batch.len()])
.collect::<Vec<_>>()
);
let pinned_keypair = sign_shreds_gpu_pinned_keypair(&keypair, &recycler_cache);
let pinned_keypair = Some(Arc::new(pinned_keypair));
// Sign and verify shreds signatures.
sign_shreds_gpu(&keypair, &pinned_keypair, &mut packets, &recycler_cache);
assert_eq!(
verify_shreds_gpu(&packets, &pubkeys, &recycler_cache),
packets
.iter()
.map(|batch| vec![1u8; batch.len()])
.collect::<Vec<_>>()
);
}
}