solana/ledger/src/sigverify_shreds.rs

879 lines
31 KiB
Rust

#![allow(clippy::implicit_hasher)]
use {
crate::shred,
itertools::Itertools,
rayon::{prelude::*, ThreadPool},
sha2::{Digest, Sha512},
solana_metrics::inc_new_counter_debug,
solana_perf::{
cuda_runtime::PinnedVec,
packet::{Packet, PacketBatch},
perf_libs,
recycler_cache::RecyclerCache,
sigverify::{self, count_packets_in_batches, TxOffset},
},
solana_rayon_threadlimit::get_thread_count,
solana_sdk::{
clock::Slot,
pubkey::Pubkey,
signature::{Keypair, Signature, Signer},
},
std::{collections::HashMap, fmt::Debug, iter::repeat, mem::size_of, ops::Range, sync::Arc},
};
const SIGN_SHRED_GPU_MIN: usize = 256;
lazy_static! {
static ref SIGVERIFY_THREAD_POOL: ThreadPool = rayon::ThreadPoolBuilder::new()
.num_threads(get_thread_count())
.thread_name(|ix| format!("solSvrfyShred{ix:02}"))
.build()
.unwrap();
}
pub fn verify_shred_cpu(
packet: &Packet,
slot_leaders: &HashMap<Slot, /*pubkey:*/ [u8; 32]>,
) -> bool {
if packet.meta().discard() {
return false;
}
let shred = match shred::layout::get_shred(packet) {
None => return false,
Some(shred) => shred,
};
let slot = match shred::layout::get_slot(shred) {
None => return false,
Some(slot) => slot,
};
trace!("slot {}", slot);
let pubkey = match slot_leaders.get(&slot) {
None => return false,
Some(pubkey) => pubkey,
};
let signature = match shred::layout::get_signature(shred) {
None => return false,
Some(signature) => signature,
};
trace!("signature {}", signature);
let message =
match shred::layout::get_signed_message_range(shred).and_then(|slice| shred.get(slice)) {
None => return false,
Some(message) => message,
};
signature.verify(pubkey, message)
}
fn verify_shreds_cpu(
batches: &[PacketBatch],
slot_leaders: &HashMap<Slot, /*pubkey:*/ [u8; 32]>,
) -> Vec<Vec<u8>> {
let packet_count = count_packets_in_batches(batches);
debug!("CPU SHRED ECDSA for {}", packet_count);
let rv = SIGVERIFY_THREAD_POOL.install(|| {
batches
.into_par_iter()
.map(|batch| {
batch
.par_iter()
.map(|packet| u8::from(verify_shred_cpu(packet, slot_leaders)))
.collect()
})
.collect()
});
inc_new_counter_debug!("ed25519_shred_verify_cpu", packet_count);
rv
}
fn slot_key_data_for_gpu<T>(
offset_start: usize,
batches: &[PacketBatch],
slot_keys: &HashMap<Slot, /*pubkey:*/ T>,
recycler_cache: &RecyclerCache,
) -> (PinnedVec<u8>, TxOffset, usize)
where
T: AsRef<[u8]> + Copy + Debug + Default + Eq + std::hash::Hash + Sync,
{
//TODO: mark Pubkey::default shreds as failed after the GPU returns
assert_eq!(slot_keys.get(&Slot::MAX), Some(&T::default()));
let slots: Vec<Slot> = SIGVERIFY_THREAD_POOL.install(|| {
batches
.into_par_iter()
.flat_map_iter(|batch| {
batch.iter().map(|packet| {
if packet.meta().discard() {
return Slot::MAX;
}
let shred = shred::layout::get_shred(packet);
match shred.and_then(shred::layout::get_slot) {
Some(slot) if slot_keys.contains_key(&slot) => slot,
_ => Slot::MAX,
}
})
})
.collect()
});
let keys_to_slots: HashMap<T, Vec<Slot>> = slots
.iter()
.map(|slot| (*slot_keys.get(slot).unwrap(), *slot))
.into_group_map();
let mut keyvec = recycler_cache.buffer().allocate("shred_gpu_pubkeys");
keyvec.set_pinnable();
let keyvec_size = keys_to_slots.len() * size_of::<T>();
keyvec.resize(keyvec_size, 0);
let slot_to_key_ix: HashMap<Slot, /*key index:*/ usize> = keys_to_slots
.into_iter()
.enumerate()
.flat_map(|(i, (k, slots))| {
let start = i * size_of::<T>();
let end = start + size_of::<T>();
keyvec[start..end].copy_from_slice(k.as_ref());
slots.into_iter().zip(repeat(i))
})
.collect();
let mut offsets = recycler_cache.offsets().allocate("shred_offsets");
offsets.set_pinnable();
for slot in slots {
let key_offset = slot_to_key_ix.get(&slot).unwrap() * size_of::<T>();
offsets.push((offset_start + key_offset) as u32);
}
let num_in_packets = resize_vec(&mut keyvec);
trace!("keyvec.len: {}", keyvec.len());
trace!("keyvec: {:?}", keyvec);
trace!("offsets: {:?}", offsets);
(keyvec, offsets, num_in_packets)
}
fn vec_size_in_packets(keyvec: &PinnedVec<u8>) -> usize {
(keyvec.len() + (size_of::<Packet>() - 1)) / size_of::<Packet>()
}
fn resize_vec(keyvec: &mut PinnedVec<u8>) -> usize {
//HACK: Pubkeys vector is passed along as a `PacketBatch` buffer to the GPU
//TODO: GPU needs a more opaque interface, which can handle variable sized structures for data
//Pad the Pubkeys buffer such that it is bigger than a buffer of Packet sized elems
let num_in_packets = (keyvec.len() + (size_of::<Packet>() - 1)) / size_of::<Packet>();
keyvec.resize(num_in_packets * size_of::<Packet>(), 0u8);
num_in_packets
}
fn shred_gpu_offsets(
mut pubkeys_end: usize,
batches: &[PacketBatch],
recycler_cache: &RecyclerCache,
) -> (TxOffset, TxOffset, TxOffset, Vec<Vec<u32>>) {
fn add_offset(range: Range<usize>, offset: usize) -> Range<usize> {
range.start + offset..range.end + offset
}
let mut signature_offsets = recycler_cache.offsets().allocate("shred_signatures");
signature_offsets.set_pinnable();
let mut msg_start_offsets = recycler_cache.offsets().allocate("shred_msg_starts");
msg_start_offsets.set_pinnable();
let mut msg_sizes = recycler_cache.offsets().allocate("shred_msg_sizes");
msg_sizes.set_pinnable();
let mut v_sig_lens = vec![];
for batch in batches.iter() {
let mut sig_lens = Vec::new();
for packet in batch.iter() {
let sig = shred::layout::get_signature_range();
let sig = add_offset(sig, pubkeys_end);
debug_assert_eq!(sig.end - sig.start, std::mem::size_of::<Signature>());
let shred = shred::layout::get_shred(packet);
// Signature may verify for an empty message but the packet will be
// discarded during deserialization.
let msg = shred.and_then(shred::layout::get_signed_message_range);
let msg = add_offset(msg.unwrap_or_default(), pubkeys_end);
signature_offsets.push(sig.start as u32);
msg_start_offsets.push(msg.start as u32);
let msg_size = msg.end.saturating_sub(msg.start);
msg_sizes.push(msg_size as u32);
sig_lens.push(1);
pubkeys_end += size_of::<Packet>();
}
v_sig_lens.push(sig_lens);
}
(signature_offsets, msg_start_offsets, msg_sizes, v_sig_lens)
}
pub fn verify_shreds_gpu(
batches: &[PacketBatch],
slot_leaders: &HashMap<Slot, /*pubkey:*/ [u8; 32]>,
recycler_cache: &RecyclerCache,
) -> Vec<Vec<u8>> {
let api = match perf_libs::api() {
None => return verify_shreds_cpu(batches, slot_leaders),
Some(api) => api,
};
let mut elems = Vec::new();
let mut rvs = Vec::new();
let packet_count = count_packets_in_batches(batches);
let (pubkeys, pubkey_offsets, mut num_packets) =
slot_key_data_for_gpu(0, batches, slot_leaders, recycler_cache);
//HACK: Pubkeys vector is passed along as a `PacketBatch` buffer to the GPU
//TODO: GPU needs a more opaque interface, which can handle variable sized structures for data
let pubkeys_len = num_packets * size_of::<Packet>();
trace!("num_packets: {}", num_packets);
trace!("pubkeys_len: {}", pubkeys_len);
let (signature_offsets, msg_start_offsets, msg_sizes, v_sig_lens) =
shred_gpu_offsets(pubkeys_len, batches, recycler_cache);
let mut out = recycler_cache.buffer().allocate("out_buffer");
out.set_pinnable();
elems.push(perf_libs::Elems {
elems: pubkeys.as_ptr().cast::<u8>(),
num: num_packets as u32,
});
for batch in batches {
elems.push(perf_libs::Elems {
elems: batch.as_ptr().cast::<u8>(),
num: batch.len() as u32,
});
let mut v = Vec::new();
v.resize(batch.len(), 0);
rvs.push(v);
num_packets += batch.len();
}
out.resize(signature_offsets.len(), 0);
trace!("Starting verify num packets: {}", num_packets);
trace!("elem len: {}", elems.len() as u32);
trace!("packet sizeof: {}", size_of::<Packet>() as u32);
const USE_NON_DEFAULT_STREAM: u8 = 1;
unsafe {
let res = (api.ed25519_verify_many)(
elems.as_ptr(),
elems.len() as u32,
size_of::<Packet>() as u32,
num_packets as u32,
signature_offsets.len() as u32,
msg_sizes.as_ptr(),
pubkey_offsets.as_ptr(),
signature_offsets.as_ptr(),
msg_start_offsets.as_ptr(),
out.as_mut_ptr(),
USE_NON_DEFAULT_STREAM,
);
if res != 0 {
trace!("RETURN!!!: {}", res);
}
}
trace!("done verify");
trace!("out buf {:?}", out);
sigverify::copy_return_values(&v_sig_lens, &out, &mut rvs);
inc_new_counter_debug!("ed25519_shred_verify_gpu", packet_count);
rvs
}
fn sign_shred_cpu(keypair: &Keypair, packet: &mut Packet) {
let sig = shred::layout::get_signature_range();
let msg = shred::layout::get_shred(packet)
.and_then(shred::layout::get_signed_message_range)
.unwrap();
assert!(
packet.meta().size >= sig.end,
"packet is not large enough for a signature"
);
let signature = keypair.sign_message(packet.data(msg).unwrap());
trace!("signature {:?}", signature);
packet.buffer_mut()[sig].copy_from_slice(signature.as_ref());
}
pub fn sign_shreds_cpu(keypair: &Keypair, batches: &mut [PacketBatch]) {
let packet_count = count_packets_in_batches(batches);
debug!("CPU SHRED ECDSA for {}", packet_count);
SIGVERIFY_THREAD_POOL.install(|| {
batches.par_iter_mut().for_each(|batch| {
batch[..]
.par_iter_mut()
.for_each(|p| sign_shred_cpu(keypair, p));
});
});
inc_new_counter_debug!("ed25519_shred_sign_cpu", packet_count);
}
pub fn sign_shreds_gpu_pinned_keypair(keypair: &Keypair, cache: &RecyclerCache) -> PinnedVec<u8> {
let mut vec = cache.buffer().allocate("pinned_keypair");
let pubkey = keypair.pubkey().to_bytes();
let secret = keypair.secret().to_bytes();
let mut hasher = Sha512::default();
hasher.update(secret);
let mut result = hasher.finalize();
result[0] &= 248;
result[31] &= 63;
result[31] |= 64;
vec.resize(pubkey.len() + result.len(), 0);
vec[0..pubkey.len()].copy_from_slice(&pubkey);
vec[pubkey.len()..].copy_from_slice(&result);
resize_vec(&mut vec);
vec
}
pub fn sign_shreds_gpu(
keypair: &Keypair,
pinned_keypair: &Option<Arc<PinnedVec<u8>>>,
batches: &mut [PacketBatch],
recycler_cache: &RecyclerCache,
) {
let sig_size = size_of::<Signature>();
let pubkey_size = size_of::<Pubkey>();
let packet_count = count_packets_in_batches(batches);
if packet_count < SIGN_SHRED_GPU_MIN || pinned_keypair.is_none() {
return sign_shreds_cpu(keypair, batches);
}
let api = match perf_libs::api() {
None => return sign_shreds_cpu(keypair, batches),
Some(api) => api,
};
let pinned_keypair = pinned_keypair.as_ref().unwrap();
let mut elems = Vec::new();
let offset: usize = pinned_keypair.len();
let num_keypair_packets = vec_size_in_packets(pinned_keypair);
let mut num_packets = num_keypair_packets;
//should be zero
let mut pubkey_offsets = recycler_cache.offsets().allocate("pubkey offsets");
pubkey_offsets.resize(packet_count, 0);
let mut secret_offsets = recycler_cache.offsets().allocate("secret_offsets");
secret_offsets.resize(packet_count, pubkey_size as u32);
trace!("offset: {}", offset);
let (signature_offsets, msg_start_offsets, msg_sizes, _v_sig_lens) =
shred_gpu_offsets(offset, batches, recycler_cache);
let total_sigs = signature_offsets.len();
let mut signatures_out = recycler_cache.buffer().allocate("ed25519 signatures");
signatures_out.set_pinnable();
signatures_out.resize(total_sigs * sig_size, 0);
elems.push(perf_libs::Elems {
elems: pinned_keypair.as_ptr().cast::<u8>(),
num: num_keypair_packets as u32,
});
for batch in batches.iter() {
elems.push(perf_libs::Elems {
elems: batch.as_ptr().cast::<u8>(),
num: batch.len() as u32,
});
let mut v = Vec::new();
v.resize(batch.len(), 0);
num_packets += batch.len();
}
trace!("Starting verify num packets: {}", num_packets);
trace!("elem len: {}", elems.len() as u32);
trace!("packet sizeof: {}", size_of::<Packet>() as u32);
const USE_NON_DEFAULT_STREAM: u8 = 1;
unsafe {
let res = (api.ed25519_sign_many)(
elems.as_mut_ptr(),
elems.len() as u32,
size_of::<Packet>() as u32,
num_packets as u32,
total_sigs as u32,
msg_sizes.as_ptr(),
pubkey_offsets.as_ptr(),
secret_offsets.as_ptr(),
msg_start_offsets.as_ptr(),
signatures_out.as_mut_ptr(),
USE_NON_DEFAULT_STREAM,
);
if res != 0 {
trace!("RETURN!!!: {}", res);
}
}
trace!("done sign");
let mut sizes: Vec<usize> = vec![0];
sizes.extend(batches.iter().map(|b| b.len()));
for i in 0..sizes.len() {
if i == 0 {
continue;
}
sizes[i] += sizes[i - 1];
}
SIGVERIFY_THREAD_POOL.install(|| {
batches
.par_iter_mut()
.enumerate()
.for_each(|(batch_ix, batch)| {
let num_packets = sizes[batch_ix];
batch[..]
.par_iter_mut()
.enumerate()
.for_each(|(packet_ix, packet)| {
let sig_ix = packet_ix + num_packets;
let sig_start = sig_ix * sig_size;
let sig_end = sig_start + sig_size;
packet.buffer_mut()[..sig_size]
.copy_from_slice(&signatures_out[sig_start..sig_end]);
});
});
});
inc_new_counter_debug!("ed25519_shred_sign_gpu", packet_count);
}
#[cfg(test)]
mod tests {
use {
super::*,
crate::{
shred::{ProcessShredsStats, Shred, ShredFlags, LEGACY_SHRED_DATA_CAPACITY},
shredder::{ReedSolomonCache, Shredder},
},
matches::assert_matches,
rand::{seq::SliceRandom, Rng},
solana_entry::entry::Entry,
solana_sdk::{
hash,
hash::Hash,
signature::{Keypair, Signer, SIGNATURE_BYTES},
system_transaction,
transaction::Transaction,
},
std::iter::{once, repeat_with},
};
fn run_test_sigverify_shred_cpu(slot: Slot) {
solana_logger::setup();
let mut packet = Packet::default();
let mut shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
assert_eq!(shred.slot(), slot);
let keypair = Keypair::new();
shred.sign(&keypair);
trace!("signature {}", shred.signature());
packet.buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
packet.meta_mut().size = shred.payload().len();
let leader_slots = [(slot, keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
assert!(verify_shred_cpu(&packet, &leader_slots));
let wrong_keypair = Keypair::new();
let leader_slots = [(slot, wrong_keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
assert!(!verify_shred_cpu(&packet, &leader_slots));
let leader_slots = HashMap::new();
assert!(!verify_shred_cpu(&packet, &leader_slots));
}
#[test]
fn test_sigverify_shred_cpu() {
run_test_sigverify_shred_cpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_cpu(slot: Slot) {
solana_logger::setup();
let mut batches = [PacketBatch::default()];
let mut shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
let keypair = Keypair::new();
shred.sign(&keypair);
batches[0].resize(1, Packet::default());
batches[0][0].buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
batches[0][0].meta_mut().size = shred.payload().len();
let leader_slots = [(slot, keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![1]]);
let wrong_keypair = Keypair::new();
let leader_slots = [(slot, wrong_keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![0]]);
let leader_slots = HashMap::new();
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![0]]);
let leader_slots = [(slot, keypair.pubkey().to_bytes())]
.iter()
.cloned()
.collect();
batches[0][0].meta_mut().size = 0;
let rv = verify_shreds_cpu(&batches, &leader_slots);
assert_eq!(rv, vec![vec![0]]);
}
#[test]
fn test_sigverify_shreds_cpu() {
run_test_sigverify_shreds_cpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_gpu(slot: Slot) {
solana_logger::setup();
let recycler_cache = RecyclerCache::default();
let mut batches = [PacketBatch::default()];
let mut shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
let keypair = Keypair::new();
shred.sign(&keypair);
batches[0].resize(1, Packet::default());
batches[0][0].buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
batches[0][0].meta_mut().size = shred.payload().len();
let leader_slots = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![1]]);
let wrong_keypair = Keypair::new();
let leader_slots = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, wrong_keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![0]]);
let leader_slots = [(std::u64::MAX, [0u8; 32])].iter().cloned().collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![0]]);
batches[0][0].meta_mut().size = 0;
let leader_slots = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
let rv = verify_shreds_gpu(&batches, &leader_slots, &recycler_cache);
assert_eq!(rv, vec![vec![0]]);
}
#[test]
fn test_sigverify_shreds_gpu() {
run_test_sigverify_shreds_gpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_sign_gpu(slot: Slot) {
solana_logger::setup();
let recycler_cache = RecyclerCache::default();
let num_packets = 32;
let num_batches = 100;
let mut packet_batch = PacketBatch::with_capacity(num_packets);
packet_batch.resize(num_packets, Packet::default());
for (i, p) in packet_batch.iter_mut().enumerate() {
let shred = Shred::new_from_data(
slot,
0xc0de,
i as u16,
&[5; LEGACY_SHRED_DATA_CAPACITY],
ShredFlags::LAST_SHRED_IN_SLOT,
1,
2,
0xc0de,
);
shred.copy_to_packet(p);
}
let mut batches = vec![packet_batch; num_batches];
let keypair = Keypair::new();
let pinned_keypair = sign_shreds_gpu_pinned_keypair(&keypair, &recycler_cache);
let pinned_keypair = Some(Arc::new(pinned_keypair));
let pubkeys = [
(std::u64::MAX, Pubkey::default().to_bytes()),
(slot, keypair.pubkey().to_bytes()),
]
.iter()
.cloned()
.collect();
//unsigned
let rv = verify_shreds_gpu(&batches, &pubkeys, &recycler_cache);
assert_eq!(rv, vec![vec![0; num_packets]; num_batches]);
//signed
sign_shreds_gpu(&keypair, &pinned_keypair, &mut batches, &recycler_cache);
let rv = verify_shreds_cpu(&batches, &pubkeys);
assert_eq!(rv, vec![vec![1; num_packets]; num_batches]);
let rv = verify_shreds_gpu(&batches, &pubkeys, &recycler_cache);
assert_eq!(rv, vec![vec![1; num_packets]; num_batches]);
}
#[test]
fn test_sigverify_shreds_sign_gpu() {
run_test_sigverify_shreds_sign_gpu(0xdead_c0de);
}
fn run_test_sigverify_shreds_sign_cpu(slot: Slot) {
solana_logger::setup();
let mut batches = [PacketBatch::default()];
let keypair = Keypair::new();
let shred = Shred::new_from_data(
slot,
0xc0de,
0xdead,
&[1, 2, 3, 4],
ShredFlags::LAST_SHRED_IN_SLOT,
0,
0,
0xc0de,
);
batches[0].resize(1, Packet::default());
batches[0][0].buffer_mut()[..shred.payload().len()].copy_from_slice(shred.payload());
batches[0][0].meta_mut().size = shred.payload().len();
let pubkeys = [
(slot, keypair.pubkey().to_bytes()),
(std::u64::MAX, Pubkey::default().to_bytes()),
]
.iter()
.cloned()
.collect();
//unsigned
let rv = verify_shreds_cpu(&batches, &pubkeys);
assert_eq!(rv, vec![vec![0]]);
//signed
sign_shreds_cpu(&keypair, &mut batches);
let rv = verify_shreds_cpu(&batches, &pubkeys);
assert_eq!(rv, vec![vec![1]]);
}
#[test]
fn test_sigverify_shreds_sign_cpu() {
run_test_sigverify_shreds_sign_cpu(0xdead_c0de);
}
fn make_transaction<R: Rng>(rng: &mut R) -> Transaction {
let block = rng.gen::<[u8; 32]>();
let recent_blockhash = hash::hashv(&[&block]);
system_transaction::transfer(
&Keypair::new(), // from
&Pubkey::new_unique(), // to
rng.gen(), // lamports
recent_blockhash,
)
}
fn make_entry<R: Rng>(rng: &mut R, prev_hash: &Hash) -> Entry {
let size = rng.gen_range(16, 32);
let txs = repeat_with(|| make_transaction(rng)).take(size).collect();
Entry::new(
prev_hash,
rng.gen_range(1, 64), // num_hashes
txs,
)
}
// Minimally corrupts the packet so that the signature no longer verifies.
fn corrupt_packet<R: Rng>(rng: &mut R, packet: &mut Packet, keypairs: &HashMap<Slot, Keypair>) {
let coin_flip: bool = rng.gen();
if coin_flip {
// Corrupt one byte within the signature offsets.
let k = rng.gen_range(0, SIGNATURE_BYTES);
let buffer = packet.buffer_mut();
buffer[k] = buffer[k].wrapping_add(1u8);
} else {
// Corrupt one byte within the signed message offsets.
let shred = shred::layout::get_shred(packet).unwrap();
let offsets: Range<usize> = shred::layout::get_signed_message_range(shred).unwrap();
let k = rng.gen_range(offsets.start, offsets.end);
let buffer = packet.buffer_mut();
buffer[k] = buffer[k].wrapping_add(1u8);
}
// Assert that the signature no longer verifies.
let shred = shred::layout::get_shred(packet).unwrap();
let slot = shred::layout::get_slot(shred).unwrap();
let signature = shred::layout::get_signature(shred).unwrap();
if coin_flip {
let pubkey = keypairs[&slot].pubkey();
let offsets = shred::layout::get_signed_message_range(shred).unwrap();
assert!(!signature.verify(pubkey.as_ref(), &shred[offsets]));
} else {
// Slot may have been corrupted and no longer mapping to a keypair.
let pubkey = keypairs.get(&slot).map(Keypair::pubkey).unwrap_or_default();
let offsets = shred::layout::get_signed_message_range(shred).unwrap_or_default();
assert!(!signature.verify(pubkey.as_ref(), &shred[offsets]));
};
}
#[test]
fn test_fuzz_sigverify_shreds() {
let mut rng = rand::thread_rng();
let recycler_cache = RecyclerCache::default();
let reed_solomon_cache = ReedSolomonCache::default();
let entries: Vec<_> = {
let prev_hash = hash::hashv(&[&rng.gen::<[u8; 32]>()]);
let entry = make_entry(&mut rng, &prev_hash);
let num_entries = rng.gen_range(64, 128);
std::iter::successors(Some(entry), |entry| Some(make_entry(&mut rng, &entry.hash)))
.take(num_entries)
.collect()
};
let mut keypairs = HashMap::<Slot, Keypair>::new();
// Legacy shreds.
let (mut shreds, coding_shreds) = {
let slot = 169_367_809;
let parent_slot = slot - rng.gen::<u16>() as Slot;
keypairs.insert(slot, Keypair::new());
Shredder::new(
slot,
parent_slot,
rng.gen_range(0, 0x3F), // reference_tick
rng.gen(), // version
)
.unwrap()
.entries_to_shreds(
&keypairs[&slot],
&entries,
true, // is_last_in_slot
rng.gen_range(0, 671), // next_shred_index
rng.gen_range(0, 781), // next_code_index
false, // merkle_variant
&reed_solomon_cache,
&mut ProcessShredsStats::default(),
)
};
shreds.extend(coding_shreds);
// Merkle shreds.
let (data_shreds, coding_shreds) = {
let slot = 169_376_655;
let parent_slot = slot - rng.gen::<u16>() as Slot;
keypairs.insert(slot, Keypair::new());
Shredder::new(
slot,
parent_slot,
rng.gen_range(0, 0x3F), // reference_tick
rng.gen(), // version
)
.unwrap()
.entries_to_shreds(
&keypairs[&slot],
&entries,
true, // is_last_in_slot
rng.gen_range(0, 671), // next_shred_index
rng.gen_range(0, 781), // next_code_index
true, // merkle_variant
&reed_solomon_cache,
&mut ProcessShredsStats::default(),
)
};
shreds.extend(data_shreds);
shreds.extend(coding_shreds);
shreds.shuffle(&mut rng);
// Assert that all shreds verfiy and sanitize.
for shred in &shreds {
let pubkey = keypairs[&shred.slot()].pubkey();
assert!(shred.verify(&pubkey));
assert_matches!(shred.sanitize(), Ok(()));
}
// Verfiy using layout api.
for shred in &shreds {
let shred = shred.payload();
let slot = shred::layout::get_slot(shred).unwrap();
let signature = shred::layout::get_signature(shred).unwrap();
let offsets = shred::layout::get_signed_message_range(shred).unwrap();
let pubkey = keypairs[&slot].pubkey();
assert!(signature.verify(pubkey.as_ref(), &shred[offsets]));
}
let num_shreds = shreds.len();
let slot_leaders: HashMap<Slot, [u8; 32]> = keypairs
.iter()
.map(|(&slot, keypair)| (slot, keypair.pubkey().to_bytes()))
.chain(once((Slot::MAX, Pubkey::default().to_bytes())))
.collect();
let mut packets = shreds.into_iter().map(|shred| {
let mut packet = Packet::default();
shred.copy_to_packet(&mut packet);
packet
});
let mut packets: Vec<_> = repeat_with(|| {
let size = rng.gen_range(0, 16);
let packets: Vec<_> = repeat_with(|| packets.next())
.while_some()
.take(size)
.collect();
if size != 0 && packets.is_empty() {
None
} else {
Some(PacketBatch::new(packets))
}
})
.while_some()
.collect();
assert_eq!(
num_shreds,
packets.iter().map(PacketBatch::len).sum::<usize>()
);
assert_eq!(
verify_shreds_gpu(&packets, &slot_leaders, &recycler_cache),
packets
.iter()
.map(PacketBatch::len)
.map(|size| vec![1u8; size])
.collect::<Vec<_>>()
);
// Invalidate signatures for a random number of packets.
let out: Vec<_> = packets
.iter_mut()
.map(|packets| {
packets
.iter_mut()
.map(|packet| {
let coin_flip: bool = rng.gen();
if !coin_flip {
corrupt_packet(&mut rng, packet, &keypairs);
}
u8::from(coin_flip)
})
.collect::<Vec<_>>()
})
.collect();
assert_eq!(
verify_shreds_gpu(&packets, &slot_leaders, &recycler_cache),
out
);
}
}