solana/core/src/unprocessed_packet_batches.rs

592 lines
20 KiB
Rust

use {
crate::immutable_deserialized_packet::{DeserializedPacketError, ImmutableDeserializedPacket},
min_max_heap::MinMaxHeap,
solana_perf::packet::{Packet, PacketBatch},
solana_runtime::transaction_priority_details::TransactionPriorityDetails,
solana_sdk::{hash::Hash, transaction::Transaction},
std::{
cmp::Ordering,
collections::{hash_map::Entry, HashMap},
sync::Arc,
},
};
/// Holds deserialized messages, as well as computed message_hash and other things needed to create
/// SanitizedTransaction
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DeserializedPacket {
immutable_section: Arc<ImmutableDeserializedPacket>,
pub forwarded: bool,
}
impl DeserializedPacket {
pub fn from_immutable_section(immutable_section: ImmutableDeserializedPacket) -> Self {
Self {
immutable_section: Arc::new(immutable_section),
forwarded: false,
}
}
pub fn new(packet: Packet) -> Result<Self, DeserializedPacketError> {
Self::new_internal(packet, None)
}
#[cfg(test)]
pub fn new_with_priority_details(
packet: Packet,
priority_details: TransactionPriorityDetails,
) -> Result<Self, DeserializedPacketError> {
Self::new_internal(packet, Some(priority_details))
}
pub fn new_internal(
packet: Packet,
priority_details: Option<TransactionPriorityDetails>,
) -> Result<Self, DeserializedPacketError> {
let immutable_section = ImmutableDeserializedPacket::new(packet, priority_details)?;
Ok(Self {
immutable_section: Arc::new(immutable_section),
forwarded: false,
})
}
pub fn immutable_section(&self) -> &Arc<ImmutableDeserializedPacket> {
&self.immutable_section
}
}
impl PartialOrd for DeserializedPacket {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for DeserializedPacket {
fn cmp(&self, other: &Self) -> Ordering {
self.immutable_section()
.priority()
.cmp(&other.immutable_section().priority())
}
}
#[derive(Debug)]
pub struct PacketBatchInsertionMetrics {
pub(crate) num_dropped_packets: usize,
pub(crate) num_dropped_tracer_packets: usize,
}
/// Currently each banking_stage thread has a `UnprocessedPacketBatches` buffer to store
/// PacketBatch's received from sigverify. Banking thread continuously scans the buffer
/// to pick proper packets to add to the block.
#[derive(Debug, Default)]
pub struct UnprocessedPacketBatches {
pub packet_priority_queue: MinMaxHeap<Arc<ImmutableDeserializedPacket>>,
pub message_hash_to_transaction: HashMap<Hash, DeserializedPacket>,
batch_limit: usize,
}
impl UnprocessedPacketBatches {
pub fn from_iter<I: IntoIterator<Item = DeserializedPacket>>(iter: I, capacity: usize) -> Self {
let mut unprocessed_packet_batches = Self::with_capacity(capacity);
for deserialized_packet in iter.into_iter() {
unprocessed_packet_batches.push(deserialized_packet);
}
unprocessed_packet_batches
}
pub fn with_capacity(capacity: usize) -> Self {
UnprocessedPacketBatches {
packet_priority_queue: MinMaxHeap::with_capacity(capacity),
message_hash_to_transaction: HashMap::with_capacity(capacity),
batch_limit: capacity,
}
}
pub fn clear(&mut self) {
self.packet_priority_queue.clear();
self.message_hash_to_transaction.clear();
}
/// Insert new `deserialized_packet_batch` into inner `MinMaxHeap<DeserializedPacket>`,
/// ordered by the tx priority.
/// If buffer is at the max limit, the lowest priority packet is dropped
///
/// Returns tuple of number of packets dropped
pub fn insert_batch(
&mut self,
deserialized_packets: impl Iterator<Item = DeserializedPacket>,
) -> PacketBatchInsertionMetrics {
let mut num_dropped_packets = 0;
let mut num_dropped_tracer_packets = 0;
for deserialized_packet in deserialized_packets {
if let Some(dropped_packet) = self.push(deserialized_packet) {
num_dropped_packets += 1;
if dropped_packet
.immutable_section()
.original_packet()
.meta
.is_tracer_packet()
{
num_dropped_tracer_packets += 1;
}
}
}
PacketBatchInsertionMetrics {
num_dropped_packets,
num_dropped_tracer_packets,
}
}
/// Pushes a new `deserialized_packet` into the unprocessed packet batches if it does not already
/// exist.
///
/// Returns and drops the lowest priority packet if the buffer is at capacity.
pub fn push(&mut self, deserialized_packet: DeserializedPacket) -> Option<DeserializedPacket> {
if self
.message_hash_to_transaction
.contains_key(deserialized_packet.immutable_section().message_hash())
{
return None;
}
if self.len() == self.batch_limit {
// Optimized to not allocate by calling `MinMaxHeap::push_pop_min()`
Some(self.push_pop_min(deserialized_packet))
} else {
self.push_internal(deserialized_packet);
None
}
}
pub fn iter(&mut self) -> impl Iterator<Item = &DeserializedPacket> {
self.message_hash_to_transaction.values()
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut DeserializedPacket> {
self.message_hash_to_transaction.iter_mut().map(|(_k, v)| v)
}
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&mut DeserializedPacket) -> bool,
{
// TODO: optimize this only when number of packets
// with outdated blockhash is high
let new_packet_priority_queue: MinMaxHeap<Arc<ImmutableDeserializedPacket>> = self
.packet_priority_queue
.drain()
.filter(|immutable_packet| {
match self
.message_hash_to_transaction
.entry(*immutable_packet.message_hash())
{
Entry::Vacant(_vacant_entry) => {
panic!(
"entry {} must exist to be consistent with `packet_priority_queue`",
immutable_packet.message_hash()
);
}
Entry::Occupied(mut occupied_entry) => {
let should_retain = f(occupied_entry.get_mut());
if !should_retain {
occupied_entry.remove_entry();
}
should_retain
}
}
})
.collect();
self.packet_priority_queue = new_packet_priority_queue;
}
pub fn len(&self) -> usize {
self.packet_priority_queue.len()
}
pub fn is_empty(&self) -> bool {
self.packet_priority_queue.is_empty()
}
fn push_internal(&mut self, deserialized_packet: DeserializedPacket) {
// Push into the priority queue
self.packet_priority_queue
.push(deserialized_packet.immutable_section().clone());
// Keep track of the original packet in the tracking hashmap
self.message_hash_to_transaction.insert(
*deserialized_packet.immutable_section().message_hash(),
deserialized_packet,
);
}
/// Returns the popped minimum packet from the priority queue.
fn push_pop_min(&mut self, deserialized_packet: DeserializedPacket) -> DeserializedPacket {
let immutable_packet = deserialized_packet.immutable_section().clone();
// Push into the priority queue
let popped_immutable_packet = self.packet_priority_queue.push_pop_min(immutable_packet);
if popped_immutable_packet.message_hash()
!= deserialized_packet.immutable_section().message_hash()
{
// Remove the popped entry from the tracking hashmap. Unwrap call is safe
// because the priority queue and hashmap are kept consistent at all times.
let removed_min = self
.message_hash_to_transaction
.remove(popped_immutable_packet.message_hash())
.unwrap();
// Keep track of the original packet in the tracking hashmap
self.message_hash_to_transaction.insert(
*deserialized_packet.immutable_section().message_hash(),
deserialized_packet,
);
removed_min
} else {
deserialized_packet
}
}
#[cfg(test)]
fn pop_max(&mut self) -> Option<DeserializedPacket> {
self.packet_priority_queue
.pop_max()
.map(|immutable_packet| {
self.message_hash_to_transaction
.remove(immutable_packet.message_hash())
.unwrap()
})
}
/// Pop up to the next `n` highest priority transactions from the queue.
/// Returns `None` if the queue is empty
#[cfg(test)]
fn pop_max_n(&mut self, n: usize) -> Option<Vec<DeserializedPacket>> {
let current_len = self.len();
if self.is_empty() {
None
} else {
let num_to_pop = std::cmp::min(current_len, n);
Some(
std::iter::from_fn(|| Some(self.pop_max().unwrap()))
.take(num_to_pop)
.collect::<Vec<DeserializedPacket>>(),
)
}
}
pub fn capacity(&self) -> usize {
self.packet_priority_queue.capacity()
}
pub fn is_forwarded(&self, immutable_packet: &ImmutableDeserializedPacket) -> bool {
self.message_hash_to_transaction
.get(immutable_packet.message_hash())
.map_or(true, |p| p.forwarded)
}
pub fn mark_accepted_packets_as_forwarded(
&mut self,
packets_to_process: &[Arc<ImmutableDeserializedPacket>],
accepted_packet_indexes: &[usize],
) {
accepted_packet_indexes
.iter()
.for_each(|accepted_packet_index| {
let accepted_packet = packets_to_process[*accepted_packet_index].clone();
if let Some(deserialized_packet) = self
.message_hash_to_transaction
.get_mut(accepted_packet.message_hash())
{
deserialized_packet.forwarded = true;
}
});
}
}
pub fn deserialize_packets<'a>(
packet_batch: &'a PacketBatch,
packet_indexes: &'a [usize],
) -> impl Iterator<Item = DeserializedPacket> + 'a {
packet_indexes.iter().filter_map(move |packet_index| {
DeserializedPacket::new(packet_batch[*packet_index].clone()).ok()
})
}
pub fn transactions_to_deserialized_packets(
transactions: &[Transaction],
) -> Result<Vec<DeserializedPacket>, DeserializedPacketError> {
transactions
.iter()
.map(|transaction| {
let packet = Packet::from_data(None, transaction)?;
DeserializedPacket::new(packet)
})
.collect()
}
#[cfg(test)]
mod tests {
use {
super::*,
solana_perf::packet::PacketFlags,
solana_sdk::{
signature::{Keypair, Signer},
system_transaction,
transaction::{SimpleAddressLoader, Transaction},
},
solana_vote_program::vote_transaction,
std::sync::Arc,
};
fn simple_deserialized_packet() -> DeserializedPacket {
let tx = system_transaction::transfer(
&Keypair::new(),
&solana_sdk::pubkey::new_rand(),
1,
Hash::new_unique(),
);
let packet = Packet::from_data(None, tx).unwrap();
DeserializedPacket::new(packet).unwrap()
}
fn packet_with_priority_details(priority: u64, compute_unit_limit: u64) -> DeserializedPacket {
let tx = system_transaction::transfer(
&Keypair::new(),
&solana_sdk::pubkey::new_rand(),
1,
Hash::new_unique(),
);
let packet = Packet::from_data(None, tx).unwrap();
DeserializedPacket::new_with_priority_details(
packet,
TransactionPriorityDetails {
priority,
compute_unit_limit,
},
)
.unwrap()
}
#[test]
fn test_unprocessed_packet_batches_insert_pop_same_packet() {
let packet = simple_deserialized_packet();
let mut unprocessed_packet_batches = UnprocessedPacketBatches::with_capacity(2);
unprocessed_packet_batches.push(packet.clone());
unprocessed_packet_batches.push(packet.clone());
// There was only one unique packet, so that one should be the
// only packet returned
assert_eq!(
unprocessed_packet_batches.pop_max_n(2).unwrap(),
vec![packet]
);
}
#[test]
fn test_unprocessed_packet_batches_insert_minimum_packet_over_capacity() {
let heavier_packet_weight = 2;
let heavier_packet = packet_with_priority_details(heavier_packet_weight, 200_000);
let lesser_packet_weight = heavier_packet_weight - 1;
let lesser_packet = packet_with_priority_details(lesser_packet_weight, 200_000);
// Test that the heavier packet is actually heavier
let mut unprocessed_packet_batches = UnprocessedPacketBatches::with_capacity(2);
unprocessed_packet_batches.push(heavier_packet.clone());
unprocessed_packet_batches.push(lesser_packet.clone());
assert_eq!(
unprocessed_packet_batches.pop_max().unwrap(),
heavier_packet
);
let mut unprocessed_packet_batches = UnprocessedPacketBatches::with_capacity(1);
unprocessed_packet_batches.push(heavier_packet);
// Buffer is now at capacity, pushing the smaller weighted
// packet should immediately pop it
assert_eq!(
unprocessed_packet_batches
.push(lesser_packet.clone())
.unwrap(),
lesser_packet
);
}
#[test]
fn test_unprocessed_packet_batches_pop_max_n() {
let num_packets = 10;
let packets_iter = std::iter::repeat_with(simple_deserialized_packet).take(num_packets);
let mut unprocessed_packet_batches =
UnprocessedPacketBatches::from_iter(packets_iter.clone(), num_packets);
// Test with small step size
let step_size = 1;
for _ in 0..num_packets {
assert_eq!(
unprocessed_packet_batches
.pop_max_n(step_size)
.unwrap()
.len(),
step_size
);
}
assert!(unprocessed_packet_batches.is_empty());
assert!(unprocessed_packet_batches.pop_max_n(0).is_none());
assert!(unprocessed_packet_batches.pop_max_n(1).is_none());
// Test with step size larger than `num_packets`
let step_size = num_packets + 1;
let mut unprocessed_packet_batches =
UnprocessedPacketBatches::from_iter(packets_iter.clone(), num_packets);
assert_eq!(
unprocessed_packet_batches
.pop_max_n(step_size)
.unwrap()
.len(),
num_packets
);
assert!(unprocessed_packet_batches.is_empty());
assert!(unprocessed_packet_batches.pop_max_n(0).is_none());
// Test with step size equal to `num_packets`
let step_size = num_packets;
let mut unprocessed_packet_batches =
UnprocessedPacketBatches::from_iter(packets_iter, num_packets);
assert_eq!(
unprocessed_packet_batches
.pop_max_n(step_size)
.unwrap()
.len(),
step_size
);
assert!(unprocessed_packet_batches.is_empty());
assert!(unprocessed_packet_batches.pop_max_n(0).is_none());
}
#[cfg(test)]
fn make_test_packets(
transactions: Vec<Transaction>,
vote_indexes: Vec<usize>,
) -> Vec<DeserializedPacket> {
let capacity = transactions.len();
let mut packet_vector = Vec::with_capacity(capacity);
for tx in transactions.iter() {
packet_vector.push(Packet::from_data(None, tx).unwrap());
}
for index in vote_indexes.iter() {
packet_vector[*index].meta.flags |= PacketFlags::SIMPLE_VOTE_TX;
}
packet_vector
.into_iter()
.map(|p| DeserializedPacket::new(p).unwrap())
.collect()
}
#[test]
fn test_transaction_from_deserialized_packet() {
use solana_sdk::feature_set::FeatureSet;
let keypair = Keypair::new();
let transfer_tx =
system_transaction::transfer(&keypair, &keypair.pubkey(), 1, Hash::default());
let vote_tx = vote_transaction::new_vote_transaction(
vec![42],
Hash::default(),
Hash::default(),
&keypair,
&keypair,
&keypair,
None,
);
// packets with no votes
{
let vote_indexes = vec![];
let packet_vector =
make_test_packets(vec![transfer_tx.clone(), transfer_tx.clone()], vote_indexes);
let mut votes_only = false;
let txs = packet_vector.iter().filter_map(|tx| {
tx.immutable_section().build_sanitized_transaction(
&Arc::new(FeatureSet::default()),
votes_only,
SimpleAddressLoader::Disabled,
)
});
assert_eq!(2, txs.count());
votes_only = true;
let txs = packet_vector.iter().filter_map(|tx| {
tx.immutable_section().build_sanitized_transaction(
&Arc::new(FeatureSet::default()),
votes_only,
SimpleAddressLoader::Disabled,
)
});
assert_eq!(0, txs.count());
}
// packets with some votes
{
let vote_indexes = vec![0, 2];
let packet_vector = make_test_packets(
vec![vote_tx.clone(), transfer_tx, vote_tx.clone()],
vote_indexes,
);
let mut votes_only = false;
let txs = packet_vector.iter().filter_map(|tx| {
tx.immutable_section().build_sanitized_transaction(
&Arc::new(FeatureSet::default()),
votes_only,
SimpleAddressLoader::Disabled,
)
});
assert_eq!(3, txs.count());
votes_only = true;
let txs = packet_vector.iter().filter_map(|tx| {
tx.immutable_section().build_sanitized_transaction(
&Arc::new(FeatureSet::default()),
votes_only,
SimpleAddressLoader::Disabled,
)
});
assert_eq!(2, txs.count());
}
// packets with all votes
{
let vote_indexes = vec![0, 1, 2];
let packet_vector = make_test_packets(
vec![vote_tx.clone(), vote_tx.clone(), vote_tx],
vote_indexes,
);
let mut votes_only = false;
let txs = packet_vector.iter().filter_map(|tx| {
tx.immutable_section().build_sanitized_transaction(
&Arc::new(FeatureSet::default()),
votes_only,
SimpleAddressLoader::Disabled,
)
});
assert_eq!(3, txs.count());
votes_only = true;
let txs = packet_vector.iter().filter_map(|tx| {
tx.immutable_section().build_sanitized_transaction(
&Arc::new(FeatureSet::default()),
votes_only,
SimpleAddressLoader::Disabled,
)
});
assert_eq!(3, txs.count());
}
}
}