solana/local-cluster/tests/local_cluster_slow_1.rs

902 lines
37 KiB
Rust

//! If a test takes over 100s to run on CI, move it here so that it's clear where the
//! biggest improvements to CI times can be found.
#![allow(clippy::integer_arithmetic)]
use {
common::*,
log::*,
serial_test::serial,
solana_core::{
broadcast_stage::{
broadcast_duplicates_run::BroadcastDuplicatesConfig, BroadcastStageType,
},
consensus::SWITCH_FORK_THRESHOLD,
replay_stage::DUPLICATE_THRESHOLD,
validator::ValidatorConfig,
},
solana_gossip::{
crds::Cursor,
gossip_service::{self, discover_cluster},
},
solana_ledger::ancestor_iterator::AncestorIterator,
solana_local_cluster::{
cluster::{Cluster, ClusterValidatorInfo},
cluster_tests,
local_cluster::{ClusterConfig, LocalCluster},
validator_configs::*,
},
solana_runtime::vote_parser,
solana_sdk::{
clock::{Slot, MAX_PROCESSING_AGE},
hash::Hash,
pubkey::Pubkey,
signature::Signer,
vote::state::VoteStateUpdate,
},
solana_streamer::socket::SocketAddrSpace,
solana_vote_program::{vote_state::MAX_LOCKOUT_HISTORY, vote_transaction},
std::{
collections::{BTreeSet, HashSet},
path::Path,
sync::{
atomic::{AtomicBool, Ordering},
Arc,
},
thread::sleep,
time::Duration,
},
};
mod common;
#[test]
#[serial]
#[ignore]
// Steps in this test:
// We want to create a situation like:
/*
1 (2%, killed and restarted) --- 200 (37%, lighter fork)
/
0
\-------- 4 (38%, heavier fork)
*/
// where the 2% that voted on slot 1 don't see their votes land in a block
// due to blockhash expiration, and thus without resigning their votes with
// a newer blockhash, will deem slot 4 the heavier fork and try to switch to
// slot 4, which doesn't pass the switch threshold. This stalls the network.
// We do this by:
// 1) Creating a partition so all three nodes don't see each other
// 2) Kill the validator with 2%
// 3) Wait for longer than blockhash expiration
// 4) Copy in the lighter fork's blocks up, *only* up to the first slot in the lighter fork
// (not all the blocks on the lighter fork!), call this slot `L`
// 5) Restart the validator with 2% so that he votes on `L`, but the vote doesn't land
// due to blockhash expiration
// 6) Resolve the partition so that the 2% repairs the other fork, and tries to switch,
// stalling the network.
fn test_fork_choice_refresh_old_votes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 100 * DEFAULT_NODE_STAKE;
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
// 1% less than the failure stake, where the 2% is allocated to a validator that
// has no leader slots and thus won't be able to vote on its own fork.
let failures_stake = max_failures_stake;
let total_alive_stake = total_stake - failures_stake;
let alive_stake_1 = total_alive_stake / 2 - 1;
let alive_stake_2 = total_alive_stake - alive_stake_1 - 1;
// Heavier fork still doesn't have enough stake to switch. Both branches need
// the vote to land from the validator with `alive_stake_3` to allow the other
// fork to switch.
let alive_stake_3 = 2 * DEFAULT_NODE_STAKE;
assert!(alive_stake_1 < alive_stake_2);
assert!(alive_stake_1 + alive_stake_3 > alive_stake_2);
let partitions: &[(usize, usize)] = &[
(alive_stake_1 as usize, 8),
(alive_stake_2 as usize, 8),
(alive_stake_3 as usize, 0),
];
#[derive(Default)]
struct PartitionContext {
alive_stake3_info: Option<ClusterValidatorInfo>,
smallest_validator_key: Pubkey,
lighter_fork_validator_key: Pubkey,
heaviest_validator_key: Pubkey,
}
let on_partition_start = |cluster: &mut LocalCluster,
validator_keys: &[Pubkey],
_: Vec<ClusterValidatorInfo>,
context: &mut PartitionContext| {
// Kill validator with alive_stake_3, second in `partitions` slice
let smallest_validator_key = &validator_keys[3];
let info = cluster.exit_node(smallest_validator_key);
context.alive_stake3_info = Some(info);
context.smallest_validator_key = *smallest_validator_key;
// validator_keys[0] is the validator that will be killed, i.e. the validator with
// stake == `failures_stake`
context.lighter_fork_validator_key = validator_keys[1];
// Third in `partitions` slice
context.heaviest_validator_key = validator_keys[2];
};
let ticks_per_slot = 8;
let on_before_partition_resolved =
|cluster: &mut LocalCluster, context: &mut PartitionContext| {
// Equal to ms_per_slot * MAX_PROCESSING_AGE, rounded up
let sleep_time_ms = ms_for_n_slots(MAX_PROCESSING_AGE as u64, ticks_per_slot);
info!("Wait for blockhashes to expire, {} ms", sleep_time_ms);
// Wait for blockhashes to expire
sleep(Duration::from_millis(sleep_time_ms));
let smallest_ledger_path = context
.alive_stake3_info
.as_ref()
.unwrap()
.info
.ledger_path
.clone();
let lighter_fork_ledger_path = cluster.ledger_path(&context.lighter_fork_validator_key);
let heaviest_ledger_path = cluster.ledger_path(&context.heaviest_validator_key);
// Get latest votes. We make sure to wait until the vote has landed in
// blockstore. This is important because if we were the leader for the block there
// is a possibility of voting before broadcast has inserted in blockstore.
let lighter_fork_latest_vote = wait_for_last_vote_in_tower_to_land_in_ledger(
&lighter_fork_ledger_path,
&context.lighter_fork_validator_key,
);
let heaviest_fork_latest_vote = wait_for_last_vote_in_tower_to_land_in_ledger(
&heaviest_ledger_path,
&context.heaviest_validator_key,
);
// Open ledgers
let smallest_blockstore = open_blockstore(&smallest_ledger_path);
let lighter_fork_blockstore = open_blockstore(&lighter_fork_ledger_path);
let heaviest_blockstore = open_blockstore(&heaviest_ledger_path);
info!("Opened blockstores");
// Find the first slot on the smaller fork
let lighter_ancestors: BTreeSet<Slot> = std::iter::once(lighter_fork_latest_vote)
.chain(AncestorIterator::new(
lighter_fork_latest_vote,
&lighter_fork_blockstore,
))
.collect();
let heavier_ancestors: BTreeSet<Slot> = std::iter::once(heaviest_fork_latest_vote)
.chain(AncestorIterator::new(
heaviest_fork_latest_vote,
&heaviest_blockstore,
))
.collect();
let first_slot_in_lighter_partition = *lighter_ancestors
.iter()
.zip(heavier_ancestors.iter())
.find(|(x, y)| x != y)
.unwrap()
.0;
// Must have been updated in the above loop
assert!(first_slot_in_lighter_partition != 0);
info!(
"First slot in lighter partition is {}",
first_slot_in_lighter_partition
);
// Copy all the blocks from the smaller partition up to `first_slot_in_lighter_partition`
// into the smallest validator's blockstore
copy_blocks(
first_slot_in_lighter_partition,
&lighter_fork_blockstore,
&smallest_blockstore,
);
// Restart the smallest validator that we killed earlier in `on_partition_start()`
drop(smallest_blockstore);
cluster.restart_node(
&context.smallest_validator_key,
context.alive_stake3_info.take().unwrap(),
SocketAddrSpace::Unspecified,
);
loop {
// Wait for node to vote on the first slot on the less heavy fork, so it'll need
// a switch proof to flip to the other fork.
// However, this vote won't land because it's using an expired blockhash. The
// fork structure will look something like this after the vote:
/*
1 (2%, killed and restarted) --- 200 (37%, lighter fork)
/
0
\-------- 4 (38%, heavier fork)
*/
if let Some((last_vote_slot, _last_vote_hash)) =
last_vote_in_tower(&smallest_ledger_path, &context.smallest_validator_key)
{
// Check that the heaviest validator on the other fork doesn't have this slot,
// this must mean we voted on a unique slot on this fork
if last_vote_slot == first_slot_in_lighter_partition {
info!(
"Saw vote on first slot in lighter partition {}",
first_slot_in_lighter_partition
);
break;
} else {
info!(
"Haven't seen vote on first slot in lighter partition, latest vote is: {}",
last_vote_slot
);
}
}
sleep(Duration::from_millis(20));
}
// Now resolve partition, allow validator to see the fork with the heavier validator,
// but the fork it's currently on is the heaviest, if only its own vote landed!
};
// Check that new roots were set after the partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut PartitionContext| {
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_kill_partition_switch_threshold(
&[(failures_stake as usize - 1, 16)],
partitions,
Some(ticks_per_slot),
PartitionContext::default(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_kill_heaviest_partition() {
// This test:
// 1) Spins up four partitions, the heaviest being the first with more stake
// 2) Schedules the other validators for sufficient slots in the schedule
// so that they will still be locked out of voting for the major partition
// when the partition resolves
// 3) Kills the most staked partition. Validators are locked out, but should all
// eventually choose the major partition
// 4) Check for recovery
let num_slots_per_validator = 8;
let partitions: [usize; 4] = [
11 * DEFAULT_NODE_STAKE as usize,
10 * DEFAULT_NODE_STAKE as usize,
10 * DEFAULT_NODE_STAKE as usize,
10 * DEFAULT_NODE_STAKE as usize,
];
let (leader_schedule, validator_keys) = create_custom_leader_schedule_with_random_keys(&[
num_slots_per_validator * (partitions.len() - 1),
num_slots_per_validator,
num_slots_per_validator,
num_slots_per_validator,
]);
let empty = |_: &mut LocalCluster, _: &mut ()| {};
let validator_to_kill = validator_keys[0].pubkey();
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
info!("Killing validator with id: {}", validator_to_kill);
cluster.exit_node(&validator_to_kill);
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_cluster_partition(
&partitions,
Some((leader_schedule, validator_keys)),
(),
empty,
empty,
on_partition_resolved,
None,
vec![],
)
}
#[test]
#[serial]
fn test_kill_partition_switch_threshold_no_progress() {
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 10_000 * DEFAULT_NODE_STAKE;
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
let failures_stake = max_failures_stake;
let total_alive_stake = total_stake - failures_stake;
let alive_stake_1 = total_alive_stake / 2;
let alive_stake_2 = total_alive_stake - alive_stake_1;
// Check that no new roots were set 400 slots after partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_start =
|_: &mut LocalCluster, _: &[Pubkey], _: Vec<ClusterValidatorInfo>, _: &mut ()| {};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_no_new_roots(400, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
// This kills `max_failures_stake`, so no progress should be made
run_kill_partition_switch_threshold(
&[(failures_stake as usize, 16)],
&[(alive_stake_1 as usize, 8), (alive_stake_2 as usize, 8)],
None,
(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_kill_partition_switch_threshold_progress() {
let max_switch_threshold_failure_pct = 1.0 - 2.0 * SWITCH_FORK_THRESHOLD;
let total_stake = 10_000 * DEFAULT_NODE_STAKE;
// Kill `< max_failures_stake` of the validators
let max_failures_stake = (max_switch_threshold_failure_pct * total_stake as f64) as u64;
let failures_stake = max_failures_stake - 1;
let total_alive_stake = total_stake - failures_stake;
// Partition the remaining alive validators, should still make progress
// once the partition resolves
let alive_stake_1 = total_alive_stake / 2;
let alive_stake_2 = total_alive_stake - alive_stake_1;
let bigger = std::cmp::max(alive_stake_1, alive_stake_2);
let smaller = std::cmp::min(alive_stake_1, alive_stake_2);
// At least one of the forks must have > SWITCH_FORK_THRESHOLD in order
// to guarantee switching proofs can be created. Make sure the other fork
// is <= SWITCH_FORK_THRESHOLD to make sure progress can be made. Caches
// bugs such as liveness issues bank-weighted fork choice, which may stall
// because the fork with less stake could have more weight, but other fork would:
// 1) Not be able to generate a switching proof
// 2) Other more staked fork stops voting, so doesn't catch up in bank weight.
assert!(
bigger as f64 / total_stake as f64 > SWITCH_FORK_THRESHOLD
&& smaller as f64 / total_stake as f64 <= SWITCH_FORK_THRESHOLD
);
let on_partition_start =
|_: &mut LocalCluster, _: &[Pubkey], _: Vec<ClusterValidatorInfo>, _: &mut ()| {};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut ()| {};
let on_partition_resolved = |cluster: &mut LocalCluster, _: &mut ()| {
cluster.check_for_new_roots(16, "PARTITION_TEST", SocketAddrSpace::Unspecified);
};
run_kill_partition_switch_threshold(
&[(failures_stake as usize, 16)],
&[(alive_stake_1 as usize, 8), (alive_stake_2 as usize, 8)],
None,
(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
#[allow(unused_attributes)]
fn test_duplicate_shreds_broadcast_leader() {
// Create 4 nodes:
// 1) Bad leader sending different versions of shreds to both of the other nodes
// 2) 1 node who's voting behavior in gossip
// 3) 1 validator gets the same version as the leader, will see duplicate confirmation
// 4) 1 validator will not get the same version as the leader. For each of these
// duplicate slots `S` either:
// a) The leader's version of `S` gets > DUPLICATE_THRESHOLD of votes in gossip and so this
// node will repair that correct version
// b) A descendant `D` of some version of `S` gets > DUPLICATE_THRESHOLD votes in gossip,
// but no version of `S` does. Then the node will not know to repair the right version
// by just looking at gossip, but will instead have to use EpochSlots repair after
// detecting that a descendant does not chain to its version of `S`, and marks that descendant
// dead.
// Scenarios a) or b) are triggered by our node in 2) who's voting behavior we control.
// Critical that bad_leader_stake + good_node_stake < DUPLICATE_THRESHOLD and that
// bad_leader_stake + good_node_stake + our_node_stake > DUPLICATE_THRESHOLD so that
// our vote is the determining factor
let bad_leader_stake = 10_000_000 * DEFAULT_NODE_STAKE;
// Ensure that the good_node_stake is always on the critical path, and the partition node
// should never be on the critical path. This way, none of the bad shreds sent to the partition
// node corrupt the good node.
let good_node_stake = 500 * DEFAULT_NODE_STAKE;
let our_node_stake = 10_000_000 * DEFAULT_NODE_STAKE;
let partition_node_stake = DEFAULT_NODE_STAKE;
let node_stakes = vec![
bad_leader_stake,
partition_node_stake,
good_node_stake,
// Needs to be last in the vector, so that we can
// find the id of this node. See call to `test_faulty_node`
// below for more details.
our_node_stake,
];
assert_eq!(*node_stakes.last().unwrap(), our_node_stake);
let total_stake: u64 = node_stakes.iter().sum();
assert!(
((bad_leader_stake + good_node_stake) as f64 / total_stake as f64) < DUPLICATE_THRESHOLD
);
assert!(
(bad_leader_stake + good_node_stake + our_node_stake) as f64 / total_stake as f64
> DUPLICATE_THRESHOLD
);
// Important that the partition node stake is the smallest so that it gets selected
// for the partition.
assert!(partition_node_stake < our_node_stake && partition_node_stake < good_node_stake);
// 1) Set up the cluster
let (mut cluster, validator_keys) = test_faulty_node(
BroadcastStageType::BroadcastDuplicates(BroadcastDuplicatesConfig {
stake_partition: partition_node_stake,
}),
node_stakes,
);
// This is why it's important our node was last in `node_stakes`
let our_id = validator_keys.last().unwrap().pubkey();
// 2) Kill our node and start up a thread to simulate votes to control our voting behavior
let our_info = cluster.exit_node(&our_id);
let node_keypair = our_info.info.keypair;
let vote_keypair = our_info.info.voting_keypair;
let bad_leader_id = cluster.entry_point_info.id;
let bad_leader_ledger_path = cluster.validators[&bad_leader_id].info.ledger_path.clone();
info!("our node id: {}", node_keypair.pubkey());
// 3) Start up a spy to listen for votes
let exit = Arc::new(AtomicBool::new(false));
let (gossip_service, _tcp_listener, cluster_info) = gossip_service::make_gossip_node(
// Need to use our validator's keypair to gossip EpochSlots and votes for our
// node later.
node_keypair.insecure_clone(),
Some(&cluster.entry_point_info.gossip),
&exit,
None,
0,
false,
SocketAddrSpace::Unspecified,
);
let t_voter = {
let exit = exit.clone();
std::thread::spawn(move || {
let mut cursor = Cursor::default();
let mut max_vote_slot = 0;
let mut gossip_vote_index = 0;
loop {
if exit.load(Ordering::Relaxed) {
return;
}
let (labels, votes) = cluster_info.get_votes_with_labels(&mut cursor);
let mut parsed_vote_iter: Vec<_> = labels
.into_iter()
.zip(votes.into_iter())
.filter_map(|(label, leader_vote_tx)| {
// Filter out votes not from the bad leader
if label.pubkey() == bad_leader_id {
let vote = vote_parser::parse_vote_transaction(&leader_vote_tx)
.map(|(_, vote, ..)| vote)
.unwrap();
// Filter out empty votes
if !vote.is_empty() {
Some((vote, leader_vote_tx))
} else {
None
}
} else {
None
}
})
.collect();
parsed_vote_iter.sort_by(|(vote, _), (vote2, _)| {
vote.last_voted_slot()
.unwrap()
.cmp(&vote2.last_voted_slot().unwrap())
});
for (parsed_vote, leader_vote_tx) in &parsed_vote_iter {
if let Some(latest_vote_slot) = parsed_vote.last_voted_slot() {
info!("received vote for {}", latest_vote_slot);
// Add to EpochSlots. Mark all slots frozen between slot..=max_vote_slot.
if latest_vote_slot > max_vote_slot {
let new_epoch_slots: Vec<Slot> =
(max_vote_slot + 1..latest_vote_slot + 1).collect();
info!(
"Simulating epoch slots from our node: {:?}",
new_epoch_slots
);
cluster_info.push_epoch_slots(&new_epoch_slots);
max_vote_slot = latest_vote_slot;
}
// Only vote on even slots. Note this may violate lockouts if the
// validator started voting on a different fork before we could exit
// it above.
let vote_hash = parsed_vote.hash();
if latest_vote_slot % 2 == 0 {
info!(
"Simulating vote from our node on slot {}, hash {}",
latest_vote_slot, vote_hash
);
// Add all recent vote slots on this fork to allow cluster to pass
// vote threshold checks in replay. Note this will instantly force a
// root by this validator, but we're not concerned with lockout violations
// by this validator so it's fine.
let leader_blockstore = open_blockstore(&bad_leader_ledger_path);
let mut vote_slots: Vec<(Slot, u32)> = AncestorIterator::new_inclusive(
latest_vote_slot,
&leader_blockstore,
)
.take(MAX_LOCKOUT_HISTORY)
.zip(1..)
.collect();
vote_slots.reverse();
let mut vote = VoteStateUpdate::from(vote_slots);
let root = AncestorIterator::new_inclusive(
latest_vote_slot,
&leader_blockstore,
)
.nth(MAX_LOCKOUT_HISTORY);
vote.root = root;
vote.hash = vote_hash;
let vote_tx =
vote_transaction::new_compact_vote_state_update_transaction(
vote,
leader_vote_tx.message.recent_blockhash,
&node_keypair,
&vote_keypair,
&vote_keypair,
None,
);
gossip_vote_index += 1;
gossip_vote_index %= MAX_LOCKOUT_HISTORY;
cluster_info.push_vote_at_index(vote_tx, gossip_vote_index as u8)
}
}
// Give vote some time to propagate
sleep(Duration::from_millis(100));
}
if parsed_vote_iter.is_empty() {
sleep(Duration::from_millis(100));
}
}
})
};
// 4) Check that the cluster is making progress
cluster.check_for_new_roots(
16,
"test_duplicate_shreds_broadcast_leader",
SocketAddrSpace::Unspecified,
);
// Clean up threads
exit.store(true, Ordering::Relaxed);
t_voter.join().unwrap();
gossip_service.join().unwrap();
}
#[test]
#[serial]
#[ignore]
fn test_switch_threshold_uses_gossip_votes() {
solana_logger::setup_with_default(RUST_LOG_FILTER);
let total_stake = 100 * DEFAULT_NODE_STAKE;
// Minimum stake needed to generate a switching proof
let minimum_switch_stake = (SWITCH_FORK_THRESHOLD * total_stake as f64) as u64;
// Make the heavier stake insufficient for switching so tha the lighter validator
// cannot switch without seeing a vote from the dead/failure_stake validator.
let heavier_stake = minimum_switch_stake;
let lighter_stake = heavier_stake - 1;
let failures_stake = total_stake - heavier_stake - lighter_stake;
let partitions: &[(usize, usize)] = &[(heavier_stake as usize, 8), (lighter_stake as usize, 8)];
#[derive(Default)]
struct PartitionContext {
heaviest_validator_key: Pubkey,
lighter_validator_key: Pubkey,
dead_validator_info: Option<ClusterValidatorInfo>,
}
let on_partition_start = |_cluster: &mut LocalCluster,
validator_keys: &[Pubkey],
mut dead_validator_infos: Vec<ClusterValidatorInfo>,
context: &mut PartitionContext| {
assert_eq!(dead_validator_infos.len(), 1);
context.dead_validator_info = Some(dead_validator_infos.pop().unwrap());
// validator_keys[0] is the validator that will be killed, i.e. the validator with
// stake == `failures_stake`
context.heaviest_validator_key = validator_keys[1];
context.lighter_validator_key = validator_keys[2];
};
let on_before_partition_resolved = |_: &mut LocalCluster, _: &mut PartitionContext| {};
// Check that new roots were set after the partition resolves (gives time
// for lockouts built during partition to resolve and gives validators an opportunity
// to try and switch forks)
let on_partition_resolved = |cluster: &mut LocalCluster, context: &mut PartitionContext| {
let lighter_validator_ledger_path = cluster.ledger_path(&context.lighter_validator_key);
let heavier_validator_ledger_path = cluster.ledger_path(&context.heaviest_validator_key);
let (lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
info!(
"Lighter validator's latest vote is for slot {}",
lighter_validator_latest_vote
);
// Lighter partition should stop voting after detecting the heavier partition and try
// to switch. Loop until we see a greater vote by the heavier validator than the last
// vote made by the lighter validator on the lighter fork.
let mut heavier_validator_latest_vote;
let mut heavier_validator_latest_vote_hash;
let heavier_blockstore = open_blockstore(&heavier_validator_ledger_path);
loop {
let (sanity_check_lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
// Lighter validator should stop voting, because `on_partition_resolved` is only
// called after a propagation time where blocks from the other fork should have
// finished propagating
assert_eq!(
sanity_check_lighter_validator_latest_vote,
lighter_validator_latest_vote
);
let (new_heavier_validator_latest_vote, new_heavier_validator_latest_vote_hash) =
last_vote_in_tower(
&heavier_validator_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
heavier_validator_latest_vote = new_heavier_validator_latest_vote;
heavier_validator_latest_vote_hash = new_heavier_validator_latest_vote_hash;
// Latest vote for each validator should be on different forks
assert_ne!(lighter_validator_latest_vote, heavier_validator_latest_vote);
if heavier_validator_latest_vote > lighter_validator_latest_vote {
let heavier_ancestors: HashSet<Slot> =
AncestorIterator::new(heavier_validator_latest_vote, &heavier_blockstore)
.collect();
assert!(!heavier_ancestors.contains(&lighter_validator_latest_vote));
break;
}
}
info!("Checking to make sure lighter validator doesn't switch");
let mut latest_slot = lighter_validator_latest_vote;
// Number of chances the validator had to switch votes but didn't
let mut total_voting_opportunities = 0;
while total_voting_opportunities <= 5 {
let (new_latest_slot, latest_slot_ancestors) =
find_latest_replayed_slot_from_ledger(&lighter_validator_ledger_path, latest_slot);
latest_slot = new_latest_slot;
// Ensure `latest_slot` is on the other fork
if latest_slot_ancestors.contains(&heavier_validator_latest_vote) {
let tower = restore_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
// Check that there was an opportunity to vote
if !tower.is_locked_out(latest_slot, &latest_slot_ancestors) {
// Ensure the lighter blockstore has not voted again
let new_lighter_validator_latest_vote = tower.last_voted_slot().unwrap();
assert_eq!(
new_lighter_validator_latest_vote,
lighter_validator_latest_vote
);
info!(
"Incrementing voting opportunities: {}",
total_voting_opportunities
);
total_voting_opportunities += 1;
} else {
info!(
"Tower still locked out, can't vote for slot: {}",
latest_slot
);
}
} else if latest_slot > heavier_validator_latest_vote {
warn!(
"validator is still generating blocks on its own fork, last processed slot: {}",
latest_slot
);
}
sleep(Duration::from_millis(50));
}
// Make a vote from the killed validator for slot `heavier_validator_latest_vote` in gossip
info!(
"Simulate vote for slot: {} from dead validator",
heavier_validator_latest_vote
);
let vote_keypair = &context
.dead_validator_info
.as_ref()
.unwrap()
.info
.voting_keypair
.clone();
let node_keypair = &context
.dead_validator_info
.as_ref()
.unwrap()
.info
.keypair
.clone();
cluster_tests::submit_vote_to_cluster_gossip(
node_keypair,
vote_keypair,
heavier_validator_latest_vote,
heavier_validator_latest_vote_hash,
// Make the vote transaction with a random blockhash. Thus, the vote only lives in gossip but
// never makes it into a block
Hash::new_unique(),
cluster
.get_contact_info(&context.heaviest_validator_key)
.unwrap()
.gossip,
&SocketAddrSpace::Unspecified,
)
.unwrap();
loop {
// Wait for the lighter validator to switch to the heavier fork
let (new_lighter_validator_latest_vote, _) = last_vote_in_tower(
&lighter_validator_ledger_path,
&context.lighter_validator_key,
)
.unwrap();
if new_lighter_validator_latest_vote != lighter_validator_latest_vote {
info!(
"Lighter validator switched forks at slot: {}",
new_lighter_validator_latest_vote
);
let (heavier_validator_latest_vote, _) = last_vote_in_tower(
&heavier_validator_ledger_path,
&context.heaviest_validator_key,
)
.unwrap();
let (smaller, larger) =
if new_lighter_validator_latest_vote > heavier_validator_latest_vote {
(
heavier_validator_latest_vote,
new_lighter_validator_latest_vote,
)
} else {
(
new_lighter_validator_latest_vote,
heavier_validator_latest_vote,
)
};
// Check the new vote is on the same fork as the heaviest fork
let heavier_blockstore = open_blockstore(&heavier_validator_ledger_path);
let larger_slot_ancestors: HashSet<Slot> =
AncestorIterator::new(larger, &heavier_blockstore)
.chain(std::iter::once(larger))
.collect();
assert!(larger_slot_ancestors.contains(&smaller));
break;
} else {
sleep(Duration::from_millis(50));
}
}
};
let ticks_per_slot = 8;
run_kill_partition_switch_threshold(
&[(failures_stake as usize, 0)],
partitions,
Some(ticks_per_slot),
PartitionContext::default(),
on_partition_start,
on_before_partition_resolved,
on_partition_resolved,
);
}
#[test]
#[serial]
fn test_listener_startup() {
let mut config = ClusterConfig {
node_stakes: vec![DEFAULT_NODE_STAKE],
cluster_lamports: DEFAULT_CLUSTER_LAMPORTS,
num_listeners: 3,
validator_configs: make_identical_validator_configs(
&ValidatorConfig::default_for_test(),
1,
),
..ClusterConfig::default()
};
let cluster = LocalCluster::new(&mut config, SocketAddrSpace::Unspecified);
let cluster_nodes = discover_cluster(
&cluster.entry_point_info.gossip,
4,
SocketAddrSpace::Unspecified,
)
.unwrap();
assert_eq!(cluster_nodes.len(), 4);
}
fn find_latest_replayed_slot_from_ledger(
ledger_path: &Path,
mut latest_slot: Slot,
) -> (Slot, HashSet<Slot>) {
loop {
let mut blockstore = open_blockstore(ledger_path);
// This is kind of a hack because we can't query for new frozen blocks over RPC
// since the validator is not voting.
let new_latest_slots: Vec<Slot> = blockstore
.slot_meta_iterator(latest_slot)
.unwrap()
.filter_map(|(s, _)| if s > latest_slot { Some(s) } else { None })
.collect();
for new_latest_slot in new_latest_slots {
latest_slot = new_latest_slot;
info!("Checking latest_slot {}", latest_slot);
// Wait for the slot to be fully received by the validator
loop {
info!("Waiting for slot {} to be full", latest_slot);
if blockstore.is_full(latest_slot) {
break;
} else {
sleep(Duration::from_millis(50));
blockstore = open_blockstore(ledger_path);
}
}
// Wait for the slot to be replayed
loop {
info!("Waiting for slot {} to be replayed", latest_slot);
if blockstore.get_bank_hash(latest_slot).is_some() {
return (
latest_slot,
AncestorIterator::new(latest_slot, &blockstore).collect(),
);
} else {
sleep(Duration::from_millis(50));
blockstore = open_blockstore(ledger_path);
}
}
}
sleep(Duration::from_millis(50));
}
}