solana/sdk/src/account.rs

1141 lines
38 KiB
Rust

use {
crate::{
clock::{Epoch, INITIAL_RENT_EPOCH},
lamports::LamportsError,
pubkey::Pubkey,
},
serde::{
ser::{Serialize, Serializer},
Deserialize,
},
solana_program::{account_info::AccountInfo, debug_account_data::*, sysvar::Sysvar},
std::{
cell::{Ref, RefCell},
fmt, ptr,
rc::Rc,
sync::Arc,
},
};
/// An Account with data that is stored on chain
#[repr(C)]
#[frozen_abi(digest = "HawRVHh7t4d3H3bitWHFt25WhhoDmbJMCfWdESQQoYEy")]
#[derive(Deserialize, PartialEq, Eq, Clone, Default, AbiExample)]
#[serde(rename_all = "camelCase")]
pub struct Account {
/// lamports in the account
pub lamports: u64,
/// data held in this account
#[serde(with = "serde_bytes")]
pub data: Vec<u8>,
/// the program that owns this account. If executable, the program that loads this account.
pub owner: Pubkey,
/// this account's data contains a loaded program (and is now read-only)
pub executable: bool,
/// the epoch at which this account will next owe rent
pub rent_epoch: Epoch,
}
// mod because we need 'Account' below to have the name 'Account' to match expected serialization
mod account_serialize {
use {
crate::{account::ReadableAccount, clock::Epoch, pubkey::Pubkey},
serde::{ser::Serializer, Serialize},
};
#[repr(C)]
#[frozen_abi(digest = "HawRVHh7t4d3H3bitWHFt25WhhoDmbJMCfWdESQQoYEy")]
#[derive(Serialize, AbiExample)]
#[serde(rename_all = "camelCase")]
struct Account<'a> {
lamports: u64,
#[serde(with = "serde_bytes")]
// a slice so we don't have to make a copy just to serialize this
data: &'a [u8],
// can't be &pubkey because abi example doesn't support it
owner: Pubkey,
executable: bool,
rent_epoch: Epoch,
}
/// allows us to implement serialize on AccountSharedData that is equivalent to Account::serialize without making a copy of the Vec<u8>
pub fn serialize_account<S>(
account: &(impl ReadableAccount + Serialize),
serializer: S,
) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let temp = Account {
lamports: account.lamports(),
data: account.data(),
owner: *account.owner(),
executable: account.executable(),
rent_epoch: account.rent_epoch(),
};
temp.serialize(serializer)
}
}
impl Serialize for Account {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
crate::account::account_serialize::serialize_account(self, serializer)
}
}
impl Serialize for AccountSharedData {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
crate::account::account_serialize::serialize_account(self, serializer)
}
}
/// An Account with data that is stored on chain
/// This will be the in-memory representation of the 'Account' struct data.
/// The existing 'Account' structure cannot easily change due to downstream projects.
#[derive(PartialEq, Eq, Clone, Default, AbiExample, Deserialize)]
#[serde(from = "Account")]
pub struct AccountSharedData {
/// lamports in the account
lamports: u64,
/// data held in this account
data: Arc<Vec<u8>>,
/// the program that owns this account. If executable, the program that loads this account.
owner: Pubkey,
/// this account's data contains a loaded program (and is now read-only)
executable: bool,
/// the epoch at which this account will next owe rent
rent_epoch: Epoch,
}
/// Compares two ReadableAccounts
///
/// Returns true if accounts are essentially equivalent as in all fields are equivalent.
pub fn accounts_equal<T: ReadableAccount, U: ReadableAccount>(me: &T, other: &U) -> bool {
me.lamports() == other.lamports()
&& me.executable() == other.executable()
&& me.rent_epoch() == other.rent_epoch()
&& me.owner() == other.owner()
&& me.data() == other.data()
}
impl From<AccountSharedData> for Account {
fn from(mut other: AccountSharedData) -> Self {
let account_data = Arc::make_mut(&mut other.data);
Self {
lamports: other.lamports,
data: std::mem::take(account_data),
owner: other.owner,
executable: other.executable,
rent_epoch: other.rent_epoch,
}
}
}
impl From<Account> for AccountSharedData {
fn from(other: Account) -> Self {
Self {
lamports: other.lamports,
data: Arc::new(other.data),
owner: other.owner,
executable: other.executable,
rent_epoch: other.rent_epoch,
}
}
}
pub trait WritableAccount: ReadableAccount {
fn set_lamports(&mut self, lamports: u64);
fn checked_add_lamports(&mut self, lamports: u64) -> Result<(), LamportsError> {
self.set_lamports(
self.lamports()
.checked_add(lamports)
.ok_or(LamportsError::ArithmeticOverflow)?,
);
Ok(())
}
fn checked_sub_lamports(&mut self, lamports: u64) -> Result<(), LamportsError> {
self.set_lamports(
self.lamports()
.checked_sub(lamports)
.ok_or(LamportsError::ArithmeticUnderflow)?,
);
Ok(())
}
fn saturating_add_lamports(&mut self, lamports: u64) {
self.set_lamports(self.lamports().saturating_add(lamports))
}
fn saturating_sub_lamports(&mut self, lamports: u64) {
self.set_lamports(self.lamports().saturating_sub(lamports))
}
fn data_mut(&mut self) -> &mut Vec<u8>;
fn data_as_mut_slice(&mut self) -> &mut [u8];
fn set_owner(&mut self, owner: Pubkey);
fn copy_into_owner_from_slice(&mut self, source: &[u8]);
fn set_executable(&mut self, executable: bool);
fn set_rent_epoch(&mut self, epoch: Epoch);
fn create(
lamports: u64,
data: Vec<u8>,
owner: Pubkey,
executable: bool,
rent_epoch: Epoch,
) -> Self;
}
pub trait ReadableAccount: Sized {
fn lamports(&self) -> u64;
fn data(&self) -> &[u8];
fn owner(&self) -> &Pubkey;
fn executable(&self) -> bool;
fn rent_epoch(&self) -> Epoch;
fn to_account_shared_data(&self) -> AccountSharedData {
AccountSharedData::create(
self.lamports(),
self.data().to_vec(),
*self.owner(),
self.executable(),
self.rent_epoch(),
)
}
}
impl ReadableAccount for Account {
fn lamports(&self) -> u64 {
self.lamports
}
fn data(&self) -> &[u8] {
&self.data
}
fn owner(&self) -> &Pubkey {
&self.owner
}
fn executable(&self) -> bool {
self.executable
}
fn rent_epoch(&self) -> Epoch {
self.rent_epoch
}
}
impl WritableAccount for Account {
fn set_lamports(&mut self, lamports: u64) {
self.lamports = lamports;
}
fn data_mut(&mut self) -> &mut Vec<u8> {
&mut self.data
}
fn data_as_mut_slice(&mut self) -> &mut [u8] {
&mut self.data
}
fn set_owner(&mut self, owner: Pubkey) {
self.owner = owner;
}
fn copy_into_owner_from_slice(&mut self, source: &[u8]) {
self.owner.as_mut().copy_from_slice(source);
}
fn set_executable(&mut self, executable: bool) {
self.executable = executable;
}
fn set_rent_epoch(&mut self, epoch: Epoch) {
self.rent_epoch = epoch;
}
fn create(
lamports: u64,
data: Vec<u8>,
owner: Pubkey,
executable: bool,
rent_epoch: Epoch,
) -> Self {
Account {
lamports,
data,
owner,
executable,
rent_epoch,
}
}
}
impl WritableAccount for AccountSharedData {
fn set_lamports(&mut self, lamports: u64) {
self.lamports = lamports;
}
fn data_mut(&mut self) -> &mut Vec<u8> {
Arc::make_mut(&mut self.data)
}
fn data_as_mut_slice(&mut self) -> &mut [u8] {
&mut self.data_mut()[..]
}
fn set_owner(&mut self, owner: Pubkey) {
self.owner = owner;
}
fn copy_into_owner_from_slice(&mut self, source: &[u8]) {
self.owner.as_mut().copy_from_slice(source);
}
fn set_executable(&mut self, executable: bool) {
self.executable = executable;
}
fn set_rent_epoch(&mut self, epoch: Epoch) {
self.rent_epoch = epoch;
}
fn create(
lamports: u64,
data: Vec<u8>,
owner: Pubkey,
executable: bool,
rent_epoch: Epoch,
) -> Self {
AccountSharedData {
lamports,
data: Arc::new(data),
owner,
executable,
rent_epoch,
}
}
}
impl ReadableAccount for AccountSharedData {
fn lamports(&self) -> u64 {
self.lamports
}
fn data(&self) -> &[u8] {
&self.data
}
fn owner(&self) -> &Pubkey {
&self.owner
}
fn executable(&self) -> bool {
self.executable
}
fn rent_epoch(&self) -> Epoch {
self.rent_epoch
}
fn to_account_shared_data(&self) -> AccountSharedData {
// avoid data copy here
self.clone()
}
}
impl ReadableAccount for Ref<'_, AccountSharedData> {
fn lamports(&self) -> u64 {
self.lamports
}
fn data(&self) -> &[u8] {
&self.data
}
fn owner(&self) -> &Pubkey {
&self.owner
}
fn executable(&self) -> bool {
self.executable
}
fn rent_epoch(&self) -> Epoch {
self.rent_epoch
}
fn to_account_shared_data(&self) -> AccountSharedData {
AccountSharedData {
lamports: self.lamports(),
// avoid data copy here
data: Arc::clone(&self.data),
owner: *self.owner(),
executable: self.executable(),
rent_epoch: self.rent_epoch(),
}
}
}
impl ReadableAccount for Ref<'_, Account> {
fn lamports(&self) -> u64 {
self.lamports
}
fn data(&self) -> &[u8] {
&self.data
}
fn owner(&self) -> &Pubkey {
&self.owner
}
fn executable(&self) -> bool {
self.executable
}
fn rent_epoch(&self) -> Epoch {
self.rent_epoch
}
}
fn debug_fmt<T: ReadableAccount>(item: &T, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut f = f.debug_struct("Account");
f.field("lamports", &item.lamports())
.field("data.len", &item.data().len())
.field("owner", &item.owner())
.field("executable", &item.executable())
.field("rent_epoch", &item.rent_epoch());
debug_account_data(item.data(), &mut f);
f.finish()
}
impl fmt::Debug for Account {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
debug_fmt(self, f)
}
}
impl fmt::Debug for AccountSharedData {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
debug_fmt(self, f)
}
}
fn shared_new<T: WritableAccount>(lamports: u64, space: usize, owner: &Pubkey) -> T {
T::create(
lamports,
vec![0u8; space],
*owner,
bool::default(),
Epoch::default(),
)
}
fn shared_new_rent_epoch<T: WritableAccount>(
lamports: u64,
space: usize,
owner: &Pubkey,
rent_epoch: Epoch,
) -> T {
T::create(
lamports,
vec![0u8; space],
*owner,
bool::default(),
rent_epoch,
)
}
fn shared_new_ref<T: WritableAccount>(
lamports: u64,
space: usize,
owner: &Pubkey,
) -> Rc<RefCell<T>> {
Rc::new(RefCell::new(shared_new::<T>(lamports, space, owner)))
}
fn shared_new_data<T: serde::Serialize, U: WritableAccount>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<U, bincode::Error> {
let data = bincode::serialize(state)?;
Ok(U::create(
lamports,
data,
*owner,
bool::default(),
Epoch::default(),
))
}
fn shared_new_ref_data<T: serde::Serialize, U: WritableAccount>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<RefCell<U>, bincode::Error> {
Ok(RefCell::new(shared_new_data::<T, U>(
lamports, state, owner,
)?))
}
fn shared_new_data_with_space<T: serde::Serialize, U: WritableAccount>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<U, bincode::Error> {
let mut account = shared_new::<U>(lamports, space, owner);
shared_serialize_data(&mut account, state)?;
Ok(account)
}
fn shared_new_ref_data_with_space<T: serde::Serialize, U: WritableAccount>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<RefCell<U>, bincode::Error> {
Ok(RefCell::new(shared_new_data_with_space::<T, U>(
lamports, state, space, owner,
)?))
}
fn shared_deserialize_data<T: serde::de::DeserializeOwned, U: ReadableAccount>(
account: &U,
) -> Result<T, bincode::Error> {
bincode::deserialize(account.data())
}
fn shared_serialize_data<T: serde::Serialize, U: WritableAccount>(
account: &mut U,
state: &T,
) -> Result<(), bincode::Error> {
if bincode::serialized_size(state)? > account.data().len() as u64 {
return Err(Box::new(bincode::ErrorKind::SizeLimit));
}
bincode::serialize_into(account.data_as_mut_slice(), state)
}
impl Account {
pub fn new(lamports: u64, space: usize, owner: &Pubkey) -> Self {
shared_new(lamports, space, owner)
}
pub fn new_ref(lamports: u64, space: usize, owner: &Pubkey) -> Rc<RefCell<Self>> {
shared_new_ref(lamports, space, owner)
}
pub fn new_data<T: serde::Serialize>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<Self, bincode::Error> {
shared_new_data(lamports, state, owner)
}
pub fn new_ref_data<T: serde::Serialize>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<RefCell<Self>, bincode::Error> {
shared_new_ref_data(lamports, state, owner)
}
pub fn new_data_with_space<T: serde::Serialize>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<Self, bincode::Error> {
shared_new_data_with_space(lamports, state, space, owner)
}
pub fn new_ref_data_with_space<T: serde::Serialize>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<RefCell<Self>, bincode::Error> {
shared_new_ref_data_with_space(lamports, state, space, owner)
}
pub fn new_rent_epoch(lamports: u64, space: usize, owner: &Pubkey, rent_epoch: Epoch) -> Self {
shared_new_rent_epoch(lamports, space, owner, rent_epoch)
}
pub fn deserialize_data<T: serde::de::DeserializeOwned>(&self) -> Result<T, bincode::Error> {
shared_deserialize_data(self)
}
pub fn serialize_data<T: serde::Serialize>(&mut self, state: &T) -> Result<(), bincode::Error> {
shared_serialize_data(self, state)
}
}
impl AccountSharedData {
pub fn set_data_from_slice(&mut self, new_data: &[u8]) {
let data = match Arc::get_mut(&mut self.data) {
// The buffer isn't shared, so we're going to memcpy in place.
Some(data) => data,
// If the buffer is shared, the cheapest thing to do is to clone the
// incoming slice and replace the buffer.
None => return self.set_data(new_data.to_vec()),
};
let new_len = new_data.len();
// Reserve additional capacity if needed. Here we make the assumption
// that growing the current buffer is cheaper than doing a whole new
// allocation to make `new_data` owned.
//
// This assumption holds true during CPI, especially when the account
// size doesn't change but the account is only changed in place. And
// it's also true when the account is grown by a small margin (the
// realloc limit is quite low), in which case the allocator can just
// update the allocation metadata without moving.
//
// Shrinking and copying in place is always faster than making
// `new_data` owned, since shrinking boils down to updating the Vec's
// length.
data.reserve(new_len.saturating_sub(data.len()));
// Safety:
// We just reserved enough capacity. We set data::len to 0 to avoid
// possible UB on panic (dropping uninitialized elements), do the copy,
// finally set the new length once everything is initialized.
#[allow(clippy::uninit_vec)]
// this is a false positive, the lint doesn't currently special case set_len(0)
unsafe {
data.set_len(0);
ptr::copy_nonoverlapping(new_data.as_ptr(), data.as_mut_ptr(), new_len);
data.set_len(new_len);
};
}
pub fn set_data(&mut self, data: Vec<u8>) {
self.data = Arc::new(data);
}
pub fn new(lamports: u64, space: usize, owner: &Pubkey) -> Self {
shared_new(lamports, space, owner)
}
pub fn new_ref(lamports: u64, space: usize, owner: &Pubkey) -> Rc<RefCell<Self>> {
shared_new_ref(lamports, space, owner)
}
pub fn new_data<T: serde::Serialize>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<Self, bincode::Error> {
shared_new_data(lamports, state, owner)
}
pub fn new_ref_data<T: serde::Serialize>(
lamports: u64,
state: &T,
owner: &Pubkey,
) -> Result<RefCell<Self>, bincode::Error> {
shared_new_ref_data(lamports, state, owner)
}
pub fn new_data_with_space<T: serde::Serialize>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<Self, bincode::Error> {
shared_new_data_with_space(lamports, state, space, owner)
}
pub fn new_ref_data_with_space<T: serde::Serialize>(
lamports: u64,
state: &T,
space: usize,
owner: &Pubkey,
) -> Result<RefCell<Self>, bincode::Error> {
shared_new_ref_data_with_space(lamports, state, space, owner)
}
pub fn new_rent_epoch(lamports: u64, space: usize, owner: &Pubkey, rent_epoch: Epoch) -> Self {
shared_new_rent_epoch(lamports, space, owner, rent_epoch)
}
pub fn deserialize_data<T: serde::de::DeserializeOwned>(&self) -> Result<T, bincode::Error> {
shared_deserialize_data(self)
}
pub fn serialize_data<T: serde::Serialize>(&mut self, state: &T) -> Result<(), bincode::Error> {
shared_serialize_data(self, state)
}
}
pub type InheritableAccountFields = (u64, Epoch);
pub const DUMMY_INHERITABLE_ACCOUNT_FIELDS: InheritableAccountFields = (1, INITIAL_RENT_EPOCH);
/// Create an `Account` from a `Sysvar`.
#[deprecated(
since = "1.5.17",
note = "Please use `create_account_for_test` instead"
)]
pub fn create_account<S: Sysvar>(sysvar: &S, lamports: u64) -> Account {
create_account_with_fields(sysvar, (lamports, INITIAL_RENT_EPOCH))
}
pub fn create_account_with_fields<S: Sysvar>(
sysvar: &S,
(lamports, rent_epoch): InheritableAccountFields,
) -> Account {
let data_len = S::size_of().max(bincode::serialized_size(sysvar).unwrap() as usize);
let mut account = Account::new(lamports, data_len, &solana_program::sysvar::id());
to_account::<S, Account>(sysvar, &mut account).unwrap();
account.rent_epoch = rent_epoch;
account
}
pub fn create_account_for_test<S: Sysvar>(sysvar: &S) -> Account {
create_account_with_fields(sysvar, DUMMY_INHERITABLE_ACCOUNT_FIELDS)
}
/// Create an `Account` from a `Sysvar`.
#[deprecated(
since = "1.5.17",
note = "Please use `create_account_shared_data_for_test` instead"
)]
pub fn create_account_shared_data<S: Sysvar>(sysvar: &S, lamports: u64) -> AccountSharedData {
AccountSharedData::from(create_account_with_fields(
sysvar,
(lamports, INITIAL_RENT_EPOCH),
))
}
pub fn create_account_shared_data_with_fields<S: Sysvar>(
sysvar: &S,
fields: InheritableAccountFields,
) -> AccountSharedData {
AccountSharedData::from(create_account_with_fields(sysvar, fields))
}
pub fn create_account_shared_data_for_test<S: Sysvar>(sysvar: &S) -> AccountSharedData {
AccountSharedData::from(create_account_with_fields(
sysvar,
DUMMY_INHERITABLE_ACCOUNT_FIELDS,
))
}
/// Create a `Sysvar` from an `Account`'s data.
pub fn from_account<S: Sysvar, T: ReadableAccount>(account: &T) -> Option<S> {
bincode::deserialize(account.data()).ok()
}
/// Serialize a `Sysvar` into an `Account`'s data.
pub fn to_account<S: Sysvar, T: WritableAccount>(sysvar: &S, account: &mut T) -> Option<()> {
bincode::serialize_into(account.data_as_mut_slice(), sysvar).ok()
}
/// Return the information required to construct an `AccountInfo`. Used by the
/// `AccountInfo` conversion implementations.
impl solana_program::account_info::Account for Account {
fn get(&mut self) -> (&mut u64, &mut [u8], &Pubkey, bool, Epoch) {
(
&mut self.lamports,
&mut self.data,
&self.owner,
self.executable,
self.rent_epoch,
)
}
}
/// Create `AccountInfo`s
pub fn create_is_signer_account_infos<'a>(
accounts: &'a mut [(&'a Pubkey, bool, &'a mut Account)],
) -> Vec<AccountInfo<'a>> {
accounts
.iter_mut()
.map(|(key, is_signer, account)| {
AccountInfo::new(
key,
*is_signer,
false,
&mut account.lamports,
&mut account.data,
&account.owner,
account.executable,
account.rent_epoch,
)
})
.collect()
}
#[cfg(test)]
pub mod tests {
use super::*;
fn make_two_accounts(key: &Pubkey) -> (Account, AccountSharedData) {
let mut account1 = Account::new(1, 2, key);
account1.executable = true;
account1.rent_epoch = 4;
let mut account2 = AccountSharedData::new(1, 2, key);
account2.executable = true;
account2.rent_epoch = 4;
assert!(accounts_equal(&account1, &account2));
(account1, account2)
}
#[test]
fn test_account_data_copy_as_slice() {
let key = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let (mut account1, mut account2) = make_two_accounts(&key);
account1.copy_into_owner_from_slice(key2.as_ref());
account2.copy_into_owner_from_slice(key2.as_ref());
assert!(accounts_equal(&account1, &account2));
assert_eq!(account1.owner(), &key2);
}
#[test]
fn test_account_set_data_from_slice() {
let key = Pubkey::new_unique();
let (_, mut account) = make_two_accounts(&key);
assert_eq!(account.data(), &vec![0, 0]);
account.set_data_from_slice(&[1, 2]);
assert_eq!(account.data(), &vec![1, 2]);
account.set_data_from_slice(&[1, 2, 3]);
assert_eq!(account.data(), &vec![1, 2, 3]);
account.set_data_from_slice(&[4, 5, 6]);
assert_eq!(account.data(), &vec![4, 5, 6]);
account.set_data_from_slice(&[4, 5, 6, 0]);
assert_eq!(account.data(), &vec![4, 5, 6, 0]);
account.set_data_from_slice(&[]);
assert_eq!(account.data().len(), 0);
account.set_data_from_slice(&[44]);
assert_eq!(account.data(), &vec![44]);
account.set_data_from_slice(&[44]);
assert_eq!(account.data(), &vec![44]);
}
#[test]
fn test_account_data_set_data() {
let key = Pubkey::new_unique();
let (_, mut account) = make_two_accounts(&key);
assert_eq!(account.data(), &vec![0, 0]);
account.set_data(vec![1, 2]);
assert_eq!(account.data(), &vec![1, 2]);
account.set_data(vec![]);
assert_eq!(account.data().len(), 0);
}
#[test]
#[should_panic(
expected = "called `Result::unwrap()` on an `Err` value: Io(Kind(UnexpectedEof))"
)]
fn test_account_deserialize() {
let key = Pubkey::new_unique();
let (account1, _account2) = make_two_accounts(&key);
account1.deserialize_data::<String>().unwrap();
}
#[test]
#[should_panic(expected = "called `Result::unwrap()` on an `Err` value: SizeLimit")]
fn test_account_serialize() {
let key = Pubkey::new_unique();
let (mut account1, _account2) = make_two_accounts(&key);
account1.serialize_data(&"hello world").unwrap();
}
#[test]
#[should_panic(
expected = "called `Result::unwrap()` on an `Err` value: Io(Kind(UnexpectedEof))"
)]
fn test_account_shared_data_deserialize() {
let key = Pubkey::new_unique();
let (_account1, account2) = make_two_accounts(&key);
account2.deserialize_data::<String>().unwrap();
}
#[test]
#[should_panic(expected = "called `Result::unwrap()` on an `Err` value: SizeLimit")]
fn test_account_shared_data_serialize() {
let key = Pubkey::new_unique();
let (_account1, mut account2) = make_two_accounts(&key);
account2.serialize_data(&"hello world").unwrap();
}
#[test]
fn test_to_account_shared_data() {
let key = Pubkey::new_unique();
let (account1, account2) = make_two_accounts(&key);
assert!(accounts_equal(&account1, &account2));
let account3 = account1.to_account_shared_data();
let account4 = account2.to_account_shared_data();
assert!(accounts_equal(&account1, &account3));
assert!(accounts_equal(&account1, &account4));
}
#[test]
fn test_account_shared_data() {
let key = Pubkey::new_unique();
let (account1, account2) = make_two_accounts(&key);
assert!(accounts_equal(&account1, &account2));
let account = account1;
assert_eq!(account.lamports, 1);
assert_eq!(account.lamports(), 1);
assert_eq!(account.data.len(), 2);
assert_eq!(account.data().len(), 2);
assert_eq!(account.owner, key);
assert_eq!(account.owner(), &key);
assert!(account.executable);
assert!(account.executable());
assert_eq!(account.rent_epoch, 4);
assert_eq!(account.rent_epoch(), 4);
let account = account2;
assert_eq!(account.lamports, 1);
assert_eq!(account.lamports(), 1);
assert_eq!(account.data.len(), 2);
assert_eq!(account.data().len(), 2);
assert_eq!(account.owner, key);
assert_eq!(account.owner(), &key);
assert!(account.executable);
assert!(account.executable());
assert_eq!(account.rent_epoch, 4);
assert_eq!(account.rent_epoch(), 4);
}
// test clone and from for both types against expected
fn test_equal(
should_be_equal: bool,
account1: &Account,
account2: &AccountSharedData,
account_expected: &Account,
) {
assert_eq!(should_be_equal, accounts_equal(account1, account2));
if should_be_equal {
assert!(accounts_equal(account_expected, account2));
}
assert_eq!(
accounts_equal(account_expected, account1),
accounts_equal(account_expected, &account1.clone())
);
assert_eq!(
accounts_equal(account_expected, account2),
accounts_equal(account_expected, &account2.clone())
);
assert_eq!(
accounts_equal(account_expected, account1),
accounts_equal(account_expected, &AccountSharedData::from(account1.clone()))
);
assert_eq!(
accounts_equal(account_expected, account2),
accounts_equal(account_expected, &Account::from(account2.clone()))
);
}
#[test]
fn test_account_add_sub_lamports() {
let key = Pubkey::new_unique();
let (mut account1, mut account2) = make_two_accounts(&key);
assert!(accounts_equal(&account1, &account2));
account1.checked_add_lamports(1).unwrap();
account2.checked_add_lamports(1).unwrap();
assert!(accounts_equal(&account1, &account2));
assert_eq!(account1.lamports(), 2);
account1.checked_sub_lamports(2).unwrap();
account2.checked_sub_lamports(2).unwrap();
assert!(accounts_equal(&account1, &account2));
assert_eq!(account1.lamports(), 0);
}
#[test]
#[should_panic(expected = "Overflow")]
fn test_account_checked_add_lamports_overflow() {
let key = Pubkey::new_unique();
let (mut account1, _account2) = make_two_accounts(&key);
account1.checked_add_lamports(u64::MAX).unwrap();
}
#[test]
#[should_panic(expected = "Underflow")]
fn test_account_checked_sub_lamports_underflow() {
let key = Pubkey::new_unique();
let (mut account1, _account2) = make_two_accounts(&key);
account1.checked_sub_lamports(u64::MAX).unwrap();
}
#[test]
#[should_panic(expected = "Overflow")]
fn test_account_checked_add_lamports_overflow2() {
let key = Pubkey::new_unique();
let (_account1, mut account2) = make_two_accounts(&key);
account2.checked_add_lamports(u64::MAX).unwrap();
}
#[test]
#[should_panic(expected = "Underflow")]
fn test_account_checked_sub_lamports_underflow2() {
let key = Pubkey::new_unique();
let (_account1, mut account2) = make_two_accounts(&key);
account2.checked_sub_lamports(u64::MAX).unwrap();
}
#[test]
fn test_account_saturating_add_lamports() {
let key = Pubkey::new_unique();
let (mut account, _) = make_two_accounts(&key);
let remaining = 22;
account.set_lamports(u64::MAX - remaining);
account.saturating_add_lamports(remaining * 2);
assert_eq!(account.lamports(), u64::MAX);
}
#[test]
fn test_account_saturating_sub_lamports() {
let key = Pubkey::new_unique();
let (mut account, _) = make_two_accounts(&key);
let remaining = 33;
account.set_lamports(remaining);
account.saturating_sub_lamports(remaining * 2);
assert_eq!(account.lamports(), 0);
}
#[test]
#[allow(clippy::redundant_clone)]
fn test_account_shared_data_all_fields() {
let key = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let key3 = Pubkey::new_unique();
let (mut account1, mut account2) = make_two_accounts(&key);
assert!(accounts_equal(&account1, &account2));
let mut account_expected = account1.clone();
assert!(accounts_equal(&account1, &account_expected));
assert!(accounts_equal(&account1, &account2.clone())); // test the clone here
for field_index in 0..5 {
for pass in 0..4 {
if field_index == 0 {
if pass == 0 {
account1.checked_add_lamports(1).unwrap();
} else if pass == 1 {
account_expected.checked_add_lamports(1).unwrap();
account2.set_lamports(account2.lamports + 1);
} else if pass == 2 {
account1.set_lamports(account1.lamports + 1);
} else if pass == 3 {
account_expected.checked_add_lamports(1).unwrap();
account2.checked_add_lamports(1).unwrap();
}
} else if field_index == 1 {
if pass == 0 {
account1.data[0] += 1;
} else if pass == 1 {
account_expected.data[0] += 1;
account2.data_as_mut_slice()[0] = account2.data[0] + 1;
} else if pass == 2 {
account1.data_as_mut_slice()[0] = account1.data[0] + 1;
} else if pass == 3 {
account_expected.data[0] += 1;
account2.data_as_mut_slice()[0] += 1;
}
} else if field_index == 2 {
if pass == 0 {
account1.owner = key2;
} else if pass == 1 {
account_expected.owner = key2;
account2.set_owner(key2);
} else if pass == 2 {
account1.set_owner(key3);
} else if pass == 3 {
account_expected.owner = key3;
account2.owner = key3;
}
} else if field_index == 3 {
if pass == 0 {
account1.executable = !account1.executable;
} else if pass == 1 {
account_expected.executable = !account_expected.executable;
account2.set_executable(!account2.executable);
} else if pass == 2 {
account1.set_executable(!account1.executable);
} else if pass == 3 {
account_expected.executable = !account_expected.executable;
account2.executable = !account2.executable;
}
} else if field_index == 4 {
if pass == 0 {
account1.rent_epoch += 1;
} else if pass == 1 {
account_expected.rent_epoch += 1;
account2.set_rent_epoch(account2.rent_epoch + 1);
} else if pass == 2 {
account1.set_rent_epoch(account1.rent_epoch + 1);
} else if pass == 3 {
account_expected.rent_epoch += 1;
account2.rent_epoch += 1;
}
}
let should_be_equal = pass == 1 || pass == 3;
test_equal(should_be_equal, &account1, &account2, &account_expected);
// test new_ref
if should_be_equal {
assert!(accounts_equal(
&Account::new_ref(
account_expected.lamports(),
account_expected.data().len(),
account_expected.owner()
)
.borrow(),
&AccountSharedData::new_ref(
account_expected.lamports(),
account_expected.data().len(),
account_expected.owner()
)
.borrow()
));
{
// test new_data
let account1_with_data = Account::new_data(
account_expected.lamports(),
&account_expected.data()[0],
account_expected.owner(),
)
.unwrap();
let account2_with_data = AccountSharedData::new_data(
account_expected.lamports(),
&account_expected.data()[0],
account_expected.owner(),
)
.unwrap();
assert!(accounts_equal(&account1_with_data, &account2_with_data));
assert_eq!(
account1_with_data.deserialize_data::<u8>().unwrap(),
account2_with_data.deserialize_data::<u8>().unwrap()
);
}
// test new_data_with_space
assert!(accounts_equal(
&Account::new_data_with_space(
account_expected.lamports(),
&account_expected.data()[0],
1,
account_expected.owner()
)
.unwrap(),
&AccountSharedData::new_data_with_space(
account_expected.lamports(),
&account_expected.data()[0],
1,
account_expected.owner()
)
.unwrap()
));
// test new_ref_data
assert!(accounts_equal(
&Account::new_ref_data(
account_expected.lamports(),
&account_expected.data()[0],
account_expected.owner()
)
.unwrap()
.borrow(),
&AccountSharedData::new_ref_data(
account_expected.lamports(),
&account_expected.data()[0],
account_expected.owner()
)
.unwrap()
.borrow()
));
//new_ref_data_with_space
assert!(accounts_equal(
&Account::new_ref_data_with_space(
account_expected.lamports(),
&account_expected.data()[0],
1,
account_expected.owner()
)
.unwrap()
.borrow(),
&AccountSharedData::new_ref_data_with_space(
account_expected.lamports(),
&account_expected.data()[0],
1,
account_expected.owner()
)
.unwrap()
.borrow()
));
}
}
}
}
}