solana/perf/src/sigverify.rs

1656 lines
57 KiB
Rust

//! The `sigverify` module provides digital signature verification functions.
//! By default, signatures are verified in parallel using all available CPU
//! cores. When perf-libs are available signature verification is offloaded
//! to the GPU.
//!
use {
crate::{
cuda_runtime::PinnedVec,
packet::{Packet, PacketBatch, PacketFlags, PACKET_DATA_SIZE},
perf_libs,
recycler::Recycler,
},
rayon::{prelude::*, ThreadPool},
solana_metrics::inc_new_counter_debug,
solana_rayon_threadlimit::get_thread_count,
solana_sdk::{
hash::Hash,
message::{MESSAGE_HEADER_LENGTH, MESSAGE_VERSION_PREFIX},
pubkey::Pubkey,
short_vec::decode_shortu16_len,
signature::Signature,
},
std::{convert::TryFrom, mem::size_of},
};
// Representing key tKeYE4wtowRb8yRroZShTipE18YVnqwXjsSAoNsFU6g
const TRACER_KEY_BYTES: [u8; 32] = [
13, 37, 180, 170, 252, 137, 36, 194, 183, 143, 161, 193, 201, 207, 211, 23, 189, 93, 33, 110,
155, 90, 30, 39, 116, 115, 238, 38, 126, 21, 232, 133,
];
const TRACER_KEY: Pubkey = Pubkey::new_from_array(TRACER_KEY_BYTES);
const TRACER_KEY_OFFSET_IN_TRANSACTION: usize = 69;
// Empirically derived to constrain max verify latency to ~8ms at lower packet counts
pub const VERIFY_MIN_PACKETS_PER_THREAD: usize = 128;
lazy_static! {
static ref PAR_THREAD_POOL: ThreadPool = rayon::ThreadPoolBuilder::new()
.num_threads(get_thread_count())
.thread_name(|ix| format!("solSigVerify{ix:02}"))
.build()
.unwrap();
}
pub type TxOffset = PinnedVec<u32>;
type TxOffsets = (TxOffset, TxOffset, TxOffset, TxOffset, Vec<Vec<u32>>);
#[derive(Debug, PartialEq, Eq)]
struct PacketOffsets {
pub sig_len: u32,
pub sig_start: u32,
pub msg_start: u32,
pub pubkey_start: u32,
pub pubkey_len: u32,
}
impl PacketOffsets {
pub fn new(
sig_len: u32,
sig_start: u32,
msg_start: u32,
pubkey_start: u32,
pubkey_len: u32,
) -> Self {
Self {
sig_len,
sig_start,
msg_start,
pubkey_start,
pubkey_len,
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub enum PacketError {
InvalidLen,
InvalidPubkeyLen,
InvalidShortVec,
InvalidSignatureLen,
MismatchSignatureLen,
PayerNotWritable,
InvalidProgramIdIndex,
InvalidProgramLen,
UnsupportedVersion,
}
impl std::convert::From<std::boxed::Box<bincode::ErrorKind>> for PacketError {
fn from(_e: std::boxed::Box<bincode::ErrorKind>) -> PacketError {
PacketError::InvalidShortVec
}
}
impl std::convert::From<std::num::TryFromIntError> for PacketError {
fn from(_e: std::num::TryFromIntError) -> Self {
Self::InvalidLen
}
}
pub fn init() {
if let Some(api) = perf_libs::api() {
unsafe {
(api.ed25519_set_verbose)(true);
assert!((api.ed25519_init)(), "ed25519_init() failed");
(api.ed25519_set_verbose)(false);
}
}
}
/// Returns true if the signatrue on the packet verifies.
/// Caller must do packet.set_discard(true) if this returns false.
#[must_use]
fn verify_packet(packet: &mut Packet, reject_non_vote: bool) -> bool {
// If this packet was already marked as discard, drop it
if packet.meta().discard() {
return false;
}
let packet_offsets = get_packet_offsets(packet, 0, reject_non_vote);
let mut sig_start = packet_offsets.sig_start as usize;
let mut pubkey_start = packet_offsets.pubkey_start as usize;
let msg_start = packet_offsets.msg_start as usize;
if packet_offsets.sig_len == 0 {
return false;
}
if packet.meta().size <= msg_start {
return false;
}
for _ in 0..packet_offsets.sig_len {
let pubkey_end = pubkey_start.saturating_add(size_of::<Pubkey>());
let sig_end = match sig_start.checked_add(size_of::<Signature>()) {
Some(sig_end) => sig_end,
None => return false,
};
let signature = match packet.data(sig_start..sig_end) {
Some(signature) => Signature::new(signature),
None => return false,
};
let pubkey = match packet.data(pubkey_start..pubkey_end) {
Some(pubkey) => pubkey,
None => return false,
};
let message = match packet.data(msg_start..) {
Some(message) => message,
None => return false,
};
if !signature.verify(pubkey, message) {
return false;
}
pubkey_start = pubkey_end;
sig_start = sig_end;
}
true
}
pub fn count_packets_in_batches(batches: &[PacketBatch]) -> usize {
batches.iter().map(|batch| batch.len()).sum()
}
pub fn count_valid_packets(
batches: &[PacketBatch],
mut process_valid_packet: impl FnMut(&Packet),
) -> usize {
batches
.iter()
.map(|batch| {
batch
.iter()
.filter(|p| {
let should_keep = !p.meta().discard();
if should_keep {
process_valid_packet(p);
}
should_keep
})
.count()
})
.sum()
}
pub fn count_discarded_packets(batches: &[PacketBatch]) -> usize {
batches
.iter()
.map(|batch| batch.iter().filter(|p| p.meta().discard()).count())
.sum()
}
// internal function to be unit-tested; should be used only by get_packet_offsets
fn do_get_packet_offsets(
packet: &Packet,
current_offset: usize,
) -> Result<PacketOffsets, PacketError> {
// should have at least 1 signature and sig lengths
let _ = 1usize
.checked_add(size_of::<Signature>())
.filter(|v| *v <= packet.meta().size)
.ok_or(PacketError::InvalidLen)?;
// read the length of Transaction.signatures (serialized with short_vec)
let (sig_len_untrusted, sig_size) = packet
.data(..)
.and_then(|bytes| decode_shortu16_len(bytes).ok())
.ok_or(PacketError::InvalidShortVec)?;
// Using msg_start_offset which is based on sig_len_untrusted introduces uncertainty.
// Ultimately, the actual sigverify will determine the uncertainty.
let msg_start_offset = sig_len_untrusted
.checked_mul(size_of::<Signature>())
.and_then(|v| v.checked_add(sig_size))
.ok_or(PacketError::InvalidLen)?;
// Determine the start of the message header by checking the message prefix bit.
let msg_header_offset = {
// Packet should have data for prefix bit
if msg_start_offset >= packet.meta().size {
return Err(PacketError::InvalidSignatureLen);
}
// next byte indicates if the transaction is versioned. If the top bit
// is set, the remaining bits encode a version number. If the top bit is
// not set, this byte is the first byte of the message header.
let message_prefix = *packet
.data(msg_start_offset)
.ok_or(PacketError::InvalidSignatureLen)?;
if message_prefix & MESSAGE_VERSION_PREFIX != 0 {
let version = message_prefix & !MESSAGE_VERSION_PREFIX;
match version {
0 => {
// header begins immediately after prefix byte
msg_start_offset
.checked_add(1)
.ok_or(PacketError::InvalidLen)?
}
// currently only v0 is supported
_ => return Err(PacketError::UnsupportedVersion),
}
} else {
msg_start_offset
}
};
let msg_header_offset_plus_one = msg_header_offset
.checked_add(1)
.ok_or(PacketError::InvalidLen)?;
// Packet should have data at least for MessageHeader and 1 byte for Message.account_keys.len
let _ = msg_header_offset_plus_one
.checked_add(MESSAGE_HEADER_LENGTH)
.filter(|v| *v <= packet.meta().size)
.ok_or(PacketError::InvalidSignatureLen)?;
// read MessageHeader.num_required_signatures (serialized with u8)
let sig_len_maybe_trusted = *packet
.data(msg_header_offset)
.ok_or(PacketError::InvalidSignatureLen)?;
let message_account_keys_len_offset = msg_header_offset
.checked_add(MESSAGE_HEADER_LENGTH)
.ok_or(PacketError::InvalidSignatureLen)?;
// This reads and compares the MessageHeader num_required_signatures and
// num_readonly_signed_accounts bytes. If num_required_signatures is not larger than
// num_readonly_signed_accounts, the first account is not debitable, and cannot be charged
// required transaction fees.
let readonly_signer_offset = msg_header_offset_plus_one;
if sig_len_maybe_trusted
<= *packet
.data(readonly_signer_offset)
.ok_or(PacketError::InvalidSignatureLen)?
{
return Err(PacketError::PayerNotWritable);
}
if usize::from(sig_len_maybe_trusted) != sig_len_untrusted {
return Err(PacketError::MismatchSignatureLen);
}
// read the length of Message.account_keys (serialized with short_vec)
let (pubkey_len, pubkey_len_size) = packet
.data(message_account_keys_len_offset..)
.and_then(|bytes| decode_shortu16_len(bytes).ok())
.ok_or(PacketError::InvalidShortVec)?;
let pubkey_start = message_account_keys_len_offset
.checked_add(pubkey_len_size)
.ok_or(PacketError::InvalidPubkeyLen)?;
let _ = pubkey_len
.checked_mul(size_of::<Pubkey>())
.and_then(|v| v.checked_add(pubkey_start))
.filter(|v| *v <= packet.meta().size)
.ok_or(PacketError::InvalidPubkeyLen)?;
if pubkey_len < sig_len_untrusted {
return Err(PacketError::InvalidPubkeyLen);
}
let sig_start = current_offset
.checked_add(sig_size)
.ok_or(PacketError::InvalidLen)?;
let msg_start = current_offset
.checked_add(msg_start_offset)
.ok_or(PacketError::InvalidLen)?;
let pubkey_start = current_offset
.checked_add(pubkey_start)
.ok_or(PacketError::InvalidLen)?;
Ok(PacketOffsets::new(
u32::try_from(sig_len_untrusted)?,
u32::try_from(sig_start)?,
u32::try_from(msg_start)?,
u32::try_from(pubkey_start)?,
u32::try_from(pubkey_len)?,
))
}
pub fn check_for_tracer_packet(packet: &mut Packet) -> bool {
let first_pubkey_start: usize = TRACER_KEY_OFFSET_IN_TRANSACTION;
let first_pubkey_end = match first_pubkey_start.checked_add(size_of::<Pubkey>()) {
Some(offset) => offset,
None => return false,
};
// Check for tracer pubkey
match packet.data(first_pubkey_start..first_pubkey_end) {
Some(pubkey) if pubkey == TRACER_KEY.as_ref() => {
packet.meta_mut().set_tracer(true);
true
}
_ => false,
}
}
fn get_packet_offsets(
packet: &mut Packet,
current_offset: usize,
reject_non_vote: bool,
) -> PacketOffsets {
let unsanitized_packet_offsets = do_get_packet_offsets(packet, current_offset);
if let Ok(offsets) = unsanitized_packet_offsets {
check_for_simple_vote_transaction(packet, &offsets, current_offset).ok();
if !reject_non_vote || packet.meta().is_simple_vote_tx() {
return offsets;
}
}
// force sigverify to fail by returning zeros
PacketOffsets::new(0, 0, 0, 0, 0)
}
fn check_for_simple_vote_transaction(
packet: &mut Packet,
packet_offsets: &PacketOffsets,
current_offset: usize,
) -> Result<(), PacketError> {
// vote could have 1 or 2 sigs; zero sig has already been excluded at
// do_get_packet_offsets.
if packet_offsets.sig_len > 2 {
return Err(PacketError::InvalidSignatureLen);
}
let pubkey_start = (packet_offsets.pubkey_start as usize)
.checked_sub(current_offset)
.ok_or(PacketError::InvalidLen)?;
let instructions_len_offset = (packet_offsets.pubkey_len as usize)
.checked_mul(size_of::<Pubkey>())
.and_then(|v| v.checked_add(pubkey_start))
.and_then(|v| v.checked_add(size_of::<Hash>()))
.ok_or(PacketError::InvalidLen)?;
// Packet should have at least 1 more byte for instructions.len
let _ = instructions_len_offset
.checked_add(1usize)
.filter(|v| *v <= packet.meta().size)
.ok_or(PacketError::InvalidLen)?;
let (instruction_len, instruction_len_size) = packet
.data(instructions_len_offset..)
.and_then(|bytes| decode_shortu16_len(bytes).ok())
.ok_or(PacketError::InvalidLen)?;
// skip if has more than 1 instruction
if instruction_len != 1 {
return Err(PacketError::InvalidProgramLen);
}
let instruction_start = instructions_len_offset
.checked_add(instruction_len_size)
.ok_or(PacketError::InvalidLen)?;
// Packet should have at least 1 more byte for one instructions_program_id
let _ = instruction_start
.checked_add(1usize)
.filter(|v| *v <= packet.meta().size)
.ok_or(PacketError::InvalidLen)?;
let instruction_program_id_index: usize = usize::from(
*packet
.data(instruction_start)
.ok_or(PacketError::InvalidLen)?,
);
if instruction_program_id_index >= packet_offsets.pubkey_len as usize {
return Err(PacketError::InvalidProgramIdIndex);
}
let instruction_program_id_start = instruction_program_id_index
.checked_mul(size_of::<Pubkey>())
.and_then(|v| v.checked_add(pubkey_start))
.ok_or(PacketError::InvalidLen)?;
let instruction_program_id_end = instruction_program_id_start
.checked_add(size_of::<Pubkey>())
.ok_or(PacketError::InvalidLen)?;
if packet
.data(instruction_program_id_start..instruction_program_id_end)
.ok_or(PacketError::InvalidLen)?
== solana_sdk::vote::program::id().as_ref()
{
packet.meta_mut().flags |= PacketFlags::SIMPLE_VOTE_TX;
}
Ok(())
}
pub fn generate_offsets(
batches: &mut [PacketBatch],
recycler: &Recycler<TxOffset>,
reject_non_vote: bool,
) -> TxOffsets {
debug!("allocating..");
let mut signature_offsets: PinnedVec<_> = recycler.allocate("sig_offsets");
signature_offsets.set_pinnable();
let mut pubkey_offsets: PinnedVec<_> = recycler.allocate("pubkey_offsets");
pubkey_offsets.set_pinnable();
let mut msg_start_offsets: PinnedVec<_> = recycler.allocate("msg_start_offsets");
msg_start_offsets.set_pinnable();
let mut msg_sizes: PinnedVec<_> = recycler.allocate("msg_size_offsets");
msg_sizes.set_pinnable();
let mut current_offset: usize = 0;
let offsets = batches
.iter_mut()
.map(|batch| {
batch
.iter_mut()
.map(|packet| {
let packet_offsets =
get_packet_offsets(packet, current_offset, reject_non_vote);
trace!("pubkey_offset: {}", packet_offsets.pubkey_start);
let mut pubkey_offset = packet_offsets.pubkey_start;
let mut sig_offset = packet_offsets.sig_start;
let msg_size = current_offset.saturating_add(packet.meta().size) as u32;
for _ in 0..packet_offsets.sig_len {
signature_offsets.push(sig_offset);
sig_offset = sig_offset.saturating_add(size_of::<Signature>() as u32);
pubkey_offsets.push(pubkey_offset);
pubkey_offset = pubkey_offset.saturating_add(size_of::<Pubkey>() as u32);
msg_start_offsets.push(packet_offsets.msg_start);
let msg_size = msg_size.saturating_sub(packet_offsets.msg_start);
msg_sizes.push(msg_size);
}
current_offset = current_offset.saturating_add(size_of::<Packet>());
packet_offsets.sig_len
})
.collect()
})
.collect();
(
signature_offsets,
pubkey_offsets,
msg_start_offsets,
msg_sizes,
offsets,
)
}
//inplace shrink a batch of packets
pub fn shrink_batches(batches: &mut Vec<PacketBatch>) {
let mut valid_batch_ix = 0;
let mut valid_packet_ix = 0;
let mut last_valid_batch = 0;
for batch_ix in 0..batches.len() {
for packet_ix in 0..batches[batch_ix].len() {
if batches[batch_ix][packet_ix].meta().discard() {
continue;
}
last_valid_batch = batch_ix.saturating_add(1);
let mut found_spot = false;
while valid_batch_ix < batch_ix && !found_spot {
while valid_packet_ix < batches[valid_batch_ix].len() {
if batches[valid_batch_ix][valid_packet_ix].meta().discard() {
batches[valid_batch_ix][valid_packet_ix] =
batches[batch_ix][packet_ix].clone();
batches[batch_ix][packet_ix].meta_mut().set_discard(true);
last_valid_batch = valid_batch_ix.saturating_add(1);
found_spot = true;
break;
}
valid_packet_ix = valid_packet_ix.saturating_add(1);
}
if valid_packet_ix >= batches[valid_batch_ix].len() {
valid_packet_ix = 0;
valid_batch_ix = valid_batch_ix.saturating_add(1);
}
}
}
}
batches.truncate(last_valid_batch);
}
pub fn ed25519_verify_cpu(batches: &mut [PacketBatch], reject_non_vote: bool, packet_count: usize) {
debug!("CPU ECDSA for {}", packet_count);
let desired_thread_count = packet_count
.saturating_add(VERIFY_MIN_PACKETS_PER_THREAD)
.saturating_div(VERIFY_MIN_PACKETS_PER_THREAD);
if desired_thread_count <= 1 {
// When using single thread, skip rayon overhead.
batches.iter_mut().for_each(|batch| {
batch.iter_mut().for_each(|packet| {
if !packet.meta().discard() && !verify_packet(packet, reject_non_vote) {
packet.meta_mut().set_discard(true);
}
})
});
} else if desired_thread_count < get_thread_count() {
// Dynamically compute minimum packet length to spread the load while minimizing threads.
let packets_per_thread = packet_count.saturating_div(desired_thread_count);
PAR_THREAD_POOL.install(|| {
batches
.into_par_iter()
.flatten()
.collect::<Vec<&mut Packet>>()
.into_par_iter()
.with_min_len(packets_per_thread)
.for_each(|packet: &mut Packet| {
if !packet.meta().discard() && !verify_packet(packet, reject_non_vote) {
packet.meta_mut().set_discard(true);
}
})
});
} else {
// When using all available threads, skip the overhead of flattening, collecting, etc.
PAR_THREAD_POOL.install(|| {
batches.into_par_iter().for_each(|batch: &mut PacketBatch| {
batch.par_iter_mut().for_each(|packet: &mut Packet| {
if !packet.meta().discard() && !verify_packet(packet, reject_non_vote) {
packet.meta_mut().set_discard(true);
}
})
});
});
}
inc_new_counter_debug!("ed25519_verify_cpu", packet_count);
}
pub fn ed25519_verify_disabled(batches: &mut [PacketBatch]) {
let packet_count = count_packets_in_batches(batches);
debug!("disabled ECDSA for {}", packet_count);
batches.into_par_iter().for_each(|batch| {
batch
.par_iter_mut()
.for_each(|p| p.meta_mut().set_discard(false))
});
inc_new_counter_debug!("ed25519_verify_disabled", packet_count);
}
pub fn copy_return_values<I, T>(sig_lens: I, out: &PinnedVec<u8>, rvs: &mut [Vec<u8>])
where
I: IntoIterator<Item = T>,
T: IntoIterator<Item = u32>,
{
debug_assert!(rvs.iter().flatten().all(|&rv| rv == 0u8));
let mut offset = 0usize;
let rvs = rvs.iter_mut().flatten();
for (k, rv) in sig_lens.into_iter().flatten().zip(rvs) {
let out = out[offset..].iter().take(k as usize).all(|&x| x == 1u8);
*rv = u8::from(k != 0u32 && out);
offset = offset.saturating_add(k as usize);
}
}
// return true for success, i.e ge unpacks and !ge.is_small_order()
pub fn check_packed_ge_small_order(ge: &[u8; 32]) -> bool {
if let Some(api) = perf_libs::api() {
unsafe {
// Returns 1 == fail, 0 == success
let res = (api.ed25519_check_packed_ge_small_order)(ge.as_ptr());
return res == 0;
}
}
false
}
pub fn get_checked_scalar(scalar: &[u8; 32]) -> Result<[u8; 32], PacketError> {
let mut out = [0u8; 32];
if let Some(api) = perf_libs::api() {
unsafe {
let res = (api.ed25519_get_checked_scalar)(out.as_mut_ptr(), scalar.as_ptr());
if res == 0 {
return Ok(out);
} else {
return Err(PacketError::InvalidLen);
}
}
}
Ok(out)
}
pub fn mark_disabled(batches: &mut [PacketBatch], r: &[Vec<u8>]) {
for (batch, v) in batches.iter_mut().zip(r) {
for (pkt, f) in batch.iter_mut().zip(v) {
if !pkt.meta().discard() {
pkt.meta_mut().set_discard(*f == 0);
}
}
}
}
pub fn ed25519_verify(
batches: &mut [PacketBatch],
recycler: &Recycler<TxOffset>,
recycler_out: &Recycler<PinnedVec<u8>>,
reject_non_vote: bool,
valid_packet_count: usize,
) {
let api = match perf_libs::api() {
None => return ed25519_verify_cpu(batches, reject_non_vote, valid_packet_count),
Some(api) => api,
};
let total_packet_count = count_packets_in_batches(batches);
// micro-benchmarks show GPU time for smallest batch around 15-20ms
// and CPU speed for 64-128 sigverifies around 10-20ms. 64 is a nice
// power-of-two number around that accounting for the fact that the CPU
// may be busy doing other things while being a real validator
// TODO: dynamically adjust this crossover
if valid_packet_count < 64
|| 100usize
.wrapping_mul(valid_packet_count)
.wrapping_div(total_packet_count)
< 90
{
return ed25519_verify_cpu(batches, reject_non_vote, valid_packet_count);
}
let (signature_offsets, pubkey_offsets, msg_start_offsets, msg_sizes, sig_lens) =
generate_offsets(batches, recycler, reject_non_vote);
debug!("CUDA ECDSA for {}", valid_packet_count);
debug!("allocating out..");
let mut out = recycler_out.allocate("out_buffer");
out.set_pinnable();
let mut elems = Vec::new();
let mut rvs = Vec::new();
let mut num_packets: usize = 0;
for batch in batches.iter() {
elems.push(perf_libs::Elems {
elems: batch.as_ptr().cast::<u8>(),
num: batch.len() as u32,
});
let v = vec![0u8; batch.len()];
rvs.push(v);
num_packets = num_packets.saturating_add(batch.len());
}
out.resize(signature_offsets.len(), 0);
trace!("Starting verify num packets: {}", num_packets);
trace!("elem len: {}", elems.len() as u32);
trace!("packet sizeof: {}", size_of::<Packet>() as u32);
trace!("len offset: {}", PACKET_DATA_SIZE as u32);
const USE_NON_DEFAULT_STREAM: u8 = 1;
unsafe {
let res = (api.ed25519_verify_many)(
elems.as_ptr(),
elems.len() as u32,
size_of::<Packet>() as u32,
num_packets as u32,
signature_offsets.len() as u32,
msg_sizes.as_ptr(),
pubkey_offsets.as_ptr(),
signature_offsets.as_ptr(),
msg_start_offsets.as_ptr(),
out.as_mut_ptr(),
USE_NON_DEFAULT_STREAM,
);
if res != 0 {
trace!("RETURN!!!: {}", res);
}
}
trace!("done verify");
copy_return_values(sig_lens, &out, &mut rvs);
mark_disabled(batches, &rvs);
inc_new_counter_debug!("ed25519_verify_gpu", valid_packet_count);
}
#[cfg(test)]
#[allow(clippy::integer_arithmetic)]
mod tests {
use {
super::*,
crate::{
packet::{to_packet_batches, Packet, PacketBatch, PACKETS_PER_BATCH},
sigverify::{self, PacketOffsets},
test_tx::{new_test_vote_tx, test_multisig_tx, test_tx},
},
bincode::{deserialize, serialize},
curve25519_dalek::{edwards::CompressedEdwardsY, scalar::Scalar},
rand::{thread_rng, Rng},
solana_sdk::{
instruction::CompiledInstruction,
message::{Message, MessageHeader},
signature::{Keypair, Signature, Signer},
transaction::Transaction,
},
std::{
iter::repeat_with,
sync::atomic::{AtomicU64, Ordering},
},
};
const SIG_OFFSET: usize = 1;
pub fn memfind<A: Eq>(a: &[A], b: &[A]) -> Option<usize> {
assert!(a.len() >= b.len());
let end = a.len() - b.len() + 1;
(0..end).find(|&i| a[i..i + b.len()] == b[..])
}
#[test]
fn test_copy_return_values() {
let mut rng = rand::thread_rng();
let sig_lens: Vec<Vec<u32>> = {
let size = rng.gen_range(0, 64);
repeat_with(|| {
let size = rng.gen_range(0, 16);
repeat_with(|| rng.gen_range(0, 5)).take(size).collect()
})
.take(size)
.collect()
};
let out: Vec<Vec<Vec<bool>>> = sig_lens
.iter()
.map(|sig_lens| {
sig_lens
.iter()
.map(|&size| repeat_with(|| rng.gen()).take(size as usize).collect())
.collect()
})
.collect();
let expected: Vec<Vec<u8>> = out
.iter()
.map(|out| {
out.iter()
.map(|out| u8::from(!out.is_empty() && out.iter().all(|&k| k)))
.collect()
})
.collect();
let out =
PinnedVec::<u8>::from_vec(out.into_iter().flatten().flatten().map(u8::from).collect());
let mut rvs: Vec<Vec<u8>> = sig_lens
.iter()
.map(|sig_lens| vec![0u8; sig_lens.len()])
.collect();
copy_return_values(sig_lens, &out, &mut rvs);
assert_eq!(rvs, expected);
}
#[test]
fn test_mark_disabled() {
let batch_size = 1;
let mut batch = PacketBatch::with_capacity(batch_size);
batch.resize(batch_size, Packet::default());
let mut batches: Vec<PacketBatch> = vec![batch];
mark_disabled(&mut batches, &[vec![0]]);
assert!(batches[0][0].meta().discard());
batches[0][0].meta_mut().set_discard(false);
mark_disabled(&mut batches, &[vec![1]]);
assert!(!batches[0][0].meta().discard());
}
#[test]
fn test_layout() {
let tx = test_tx();
let tx_bytes = serialize(&tx).unwrap();
let packet = serialize(&tx).unwrap();
assert_matches!(memfind(&packet, &tx_bytes), Some(0));
assert_matches!(memfind(&packet, &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), None);
}
#[test]
fn test_system_transaction_layout() {
let tx = test_tx();
let tx_bytes = serialize(&tx).unwrap();
let message_data = tx.message_data();
let mut packet = Packet::from_data(None, tx.clone()).unwrap();
let packet_offsets = sigverify::get_packet_offsets(&mut packet, 0, false);
assert_eq!(
memfind(&tx_bytes, tx.signatures[0].as_ref()),
Some(SIG_OFFSET)
);
assert_eq!(
memfind(&tx_bytes, tx.message().account_keys[0].as_ref()),
Some(packet_offsets.pubkey_start as usize)
);
assert_eq!(
memfind(&tx_bytes, &message_data),
Some(packet_offsets.msg_start as usize)
);
assert_eq!(
memfind(&tx_bytes, tx.signatures[0].as_ref()),
Some(packet_offsets.sig_start as usize)
);
assert_eq!(packet_offsets.sig_len, 1);
}
fn packet_from_num_sigs(required_num_sigs: u8, actual_num_sigs: usize) -> Packet {
let message = Message {
header: MessageHeader {
num_required_signatures: required_num_sigs,
num_readonly_signed_accounts: 12,
num_readonly_unsigned_accounts: 11,
},
account_keys: vec![],
recent_blockhash: Hash::default(),
instructions: vec![],
};
let mut tx = Transaction::new_unsigned(message);
tx.signatures = vec![Signature::default(); actual_num_sigs];
Packet::from_data(None, tx).unwrap()
}
#[test]
fn test_untrustworthy_sigs() {
let required_num_sigs = 14;
let actual_num_sigs = 5;
let packet = packet_from_num_sigs(required_num_sigs, actual_num_sigs);
let unsanitized_packet_offsets = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(
unsanitized_packet_offsets,
Err(PacketError::MismatchSignatureLen)
);
}
#[test]
fn test_small_packet() {
let tx = test_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
packet.buffer_mut()[0] = 0xff;
packet.buffer_mut()[1] = 0xff;
packet.meta_mut().size = 2;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidLen));
}
#[test]
fn test_pubkey_too_small() {
solana_logger::setup();
let mut tx = test_tx();
let sig = tx.signatures[0];
const NUM_SIG: usize = 18;
tx.signatures = vec![sig; NUM_SIG];
tx.message.account_keys = vec![];
tx.message.header.num_required_signatures = NUM_SIG as u8;
let mut packet = Packet::from_data(None, tx).unwrap();
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidPubkeyLen));
assert!(!verify_packet(&mut packet, false));
packet.meta_mut().set_discard(false);
let mut batches = generate_packet_batches(&packet, 1, 1);
ed25519_verify(&mut batches);
assert!(batches[0][0].meta().discard());
}
#[test]
fn test_pubkey_len() {
// See that the verify cannot walk off the end of the packet
// trying to index into the account_keys to access pubkey.
solana_logger::setup();
const NUM_SIG: usize = 17;
let keypair1 = Keypair::new();
let pubkey1 = keypair1.pubkey();
let mut message = Message::new(&[], Some(&pubkey1));
message.account_keys.push(pubkey1);
message.account_keys.push(pubkey1);
message.header.num_required_signatures = NUM_SIG as u8;
message.recent_blockhash = Hash::new_from_array(pubkey1.to_bytes());
let mut tx = Transaction::new_unsigned(message);
info!("message: {:?}", tx.message_data());
info!("tx: {:?}", tx);
let sig = keypair1.try_sign_message(&tx.message_data()).unwrap();
tx.signatures = vec![sig; NUM_SIG];
let mut packet = Packet::from_data(None, tx).unwrap();
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidPubkeyLen));
assert!(!verify_packet(&mut packet, false));
packet.meta_mut().set_discard(false);
let mut batches = generate_packet_batches(&packet, 1, 1);
ed25519_verify(&mut batches);
assert!(batches[0][0].meta().discard());
}
#[test]
fn test_large_sig_len() {
let tx = test_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
// Make the signatures len huge
packet.buffer_mut()[0] = 0x7f;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidSignatureLen));
}
#[test]
fn test_really_large_sig_len() {
let tx = test_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
// Make the signatures len huge
packet.buffer_mut()[0] = 0xff;
packet.buffer_mut()[1] = 0xff;
packet.buffer_mut()[2] = 0xff;
packet.buffer_mut()[3] = 0xff;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidShortVec));
}
#[test]
fn test_invalid_pubkey_len() {
let tx = test_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
let res = sigverify::do_get_packet_offsets(&packet, 0);
// make pubkey len huge
packet.buffer_mut()[res.unwrap().pubkey_start as usize - 1] = 0x7f;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::InvalidPubkeyLen));
}
#[test]
fn test_fee_payer_is_debitable() {
let message = Message {
header: MessageHeader {
num_required_signatures: 1,
num_readonly_signed_accounts: 1,
num_readonly_unsigned_accounts: 1,
},
account_keys: vec![],
recent_blockhash: Hash::default(),
instructions: vec![],
};
let mut tx = Transaction::new_unsigned(message);
tx.signatures = vec![Signature::default()];
let packet = Packet::from_data(None, tx).unwrap();
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::PayerNotWritable));
}
#[test]
fn test_unsupported_version() {
let tx = test_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
let res = sigverify::do_get_packet_offsets(&packet, 0);
// set message version to 1
packet.buffer_mut()[res.unwrap().msg_start as usize] = MESSAGE_VERSION_PREFIX + 1;
let res = sigverify::do_get_packet_offsets(&packet, 0);
assert_eq!(res, Err(PacketError::UnsupportedVersion));
}
#[test]
fn test_versioned_message() {
let tx = test_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
let mut legacy_offsets = sigverify::do_get_packet_offsets(&packet, 0).unwrap();
// set message version to 0
let msg_start = legacy_offsets.msg_start as usize;
let msg_bytes = packet.data(msg_start..).unwrap().to_vec();
packet.buffer_mut()[msg_start] = MESSAGE_VERSION_PREFIX;
packet.meta_mut().size += 1;
let msg_end = packet.meta().size;
packet.buffer_mut()[msg_start + 1..msg_end].copy_from_slice(&msg_bytes);
let offsets = sigverify::do_get_packet_offsets(&packet, 0).unwrap();
let expected_offsets = {
legacy_offsets.pubkey_start += 1;
legacy_offsets
};
assert_eq!(expected_offsets, offsets);
}
#[test]
fn test_system_transaction_data_layout() {
let mut tx0 = test_tx();
tx0.message.instructions[0].data = vec![1, 2, 3];
let message0a = tx0.message_data();
let tx_bytes = serialize(&tx0).unwrap();
assert!(tx_bytes.len() <= PACKET_DATA_SIZE);
assert_eq!(
memfind(&tx_bytes, tx0.signatures[0].as_ref()),
Some(SIG_OFFSET)
);
let tx1 = deserialize(&tx_bytes).unwrap();
assert_eq!(tx0, tx1);
assert_eq!(tx1.message().instructions[0].data, vec![1, 2, 3]);
tx0.message.instructions[0].data = vec![1, 2, 4];
let message0b = tx0.message_data();
assert_ne!(message0a, message0b);
}
// Just like get_packet_offsets, but not returning redundant information.
fn get_packet_offsets_from_tx(tx: Transaction, current_offset: u32) -> PacketOffsets {
let mut packet = Packet::from_data(None, tx).unwrap();
let packet_offsets =
sigverify::get_packet_offsets(&mut packet, current_offset as usize, false);
PacketOffsets::new(
packet_offsets.sig_len,
packet_offsets.sig_start - current_offset,
packet_offsets.msg_start - packet_offsets.sig_start,
packet_offsets.pubkey_start - packet_offsets.msg_start,
packet_offsets.pubkey_len,
)
}
#[test]
fn test_get_packet_offsets() {
assert_eq!(
get_packet_offsets_from_tx(test_tx(), 0),
PacketOffsets::new(1, 1, 64, 4, 2)
);
assert_eq!(
get_packet_offsets_from_tx(test_tx(), 100),
PacketOffsets::new(1, 1, 64, 4, 2)
);
// Ensure we're not indexing packet by the `current_offset` parameter.
assert_eq!(
get_packet_offsets_from_tx(test_tx(), 1_000_000),
PacketOffsets::new(1, 1, 64, 4, 2)
);
// Ensure we're returning sig_len, not sig_size.
assert_eq!(
get_packet_offsets_from_tx(test_multisig_tx(), 0),
PacketOffsets::new(2, 1, 128, 4, 4)
);
}
fn generate_packet_batches_random_size(
packet: &Packet,
max_packets_per_batch: usize,
num_batches: usize,
) -> Vec<PacketBatch> {
// generate packet vector
let batches: Vec<_> = (0..num_batches)
.map(|_| {
let num_packets_per_batch = thread_rng().gen_range(1, max_packets_per_batch);
let mut packet_batch = PacketBatch::with_capacity(num_packets_per_batch);
for _ in 0..num_packets_per_batch {
packet_batch.push(packet.clone());
}
assert_eq!(packet_batch.len(), num_packets_per_batch);
packet_batch
})
.collect();
assert_eq!(batches.len(), num_batches);
batches
}
fn generate_packet_batches(
packet: &Packet,
num_packets_per_batch: usize,
num_batches: usize,
) -> Vec<PacketBatch> {
// generate packet vector
let batches: Vec<_> = (0..num_batches)
.map(|_| {
let mut packet_batch = PacketBatch::with_capacity(num_packets_per_batch);
for _ in 0..num_packets_per_batch {
packet_batch.push(packet.clone());
}
assert_eq!(packet_batch.len(), num_packets_per_batch);
packet_batch
})
.collect();
assert_eq!(batches.len(), num_batches);
batches
}
fn test_verify_n(n: usize, modify_data: bool) {
let tx = test_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
// jumble some data to test failure
if modify_data {
packet.buffer_mut()[20] = packet.data(20).unwrap().wrapping_add(10);
}
let mut batches = generate_packet_batches(&packet, n, 2);
// verify packets
ed25519_verify(&mut batches);
// check result
let should_discard = modify_data;
assert!(batches
.iter()
.flat_map(|batch| batch.iter())
.all(|p| p.meta().discard() == should_discard));
}
fn ed25519_verify(batches: &mut [PacketBatch]) {
let recycler = Recycler::default();
let recycler_out = Recycler::default();
let packet_count = sigverify::count_packets_in_batches(batches);
sigverify::ed25519_verify(batches, &recycler, &recycler_out, false, packet_count);
}
#[test]
fn test_verify_tampered_sig_len() {
let mut tx = test_tx();
// pretend malicious leader dropped a signature...
tx.signatures.pop();
let packet = Packet::from_data(None, tx).unwrap();
let mut batches = generate_packet_batches(&packet, 1, 1);
// verify packets
ed25519_verify(&mut batches);
assert!(batches
.iter()
.flat_map(|batch| batch.iter())
.all(|p| p.meta().discard()));
}
#[test]
fn test_verify_zero() {
test_verify_n(0, false);
}
#[test]
fn test_verify_one() {
test_verify_n(1, false);
}
#[test]
fn test_verify_seventy_one() {
test_verify_n(71, false);
}
#[test]
fn test_verify_medium_pass() {
test_verify_n(VERIFY_MIN_PACKETS_PER_THREAD, false);
}
#[test]
fn test_verify_large_pass() {
test_verify_n(VERIFY_MIN_PACKETS_PER_THREAD * get_thread_count(), false);
}
#[test]
fn test_verify_medium_fail() {
test_verify_n(VERIFY_MIN_PACKETS_PER_THREAD, true);
}
#[test]
fn test_verify_large_fail() {
test_verify_n(VERIFY_MIN_PACKETS_PER_THREAD * get_thread_count(), true);
}
#[test]
fn test_verify_multisig() {
solana_logger::setup();
let tx = test_multisig_tx();
let mut packet = Packet::from_data(None, tx).unwrap();
let n = 4;
let num_batches = 3;
let mut batches = generate_packet_batches(&packet, n, num_batches);
packet.buffer_mut()[40] = packet.data(40).unwrap().wrapping_add(8);
batches[0].push(packet);
// verify packets
ed25519_verify(&mut batches);
// check result
let ref_ans = 1u8;
let mut ref_vec = vec![vec![ref_ans; n]; num_batches];
ref_vec[0].push(0u8);
assert!(batches
.iter()
.flat_map(|batch| batch.iter())
.zip(ref_vec.into_iter().flatten())
.all(|(p, discard)| {
if discard == 0 {
p.meta().discard()
} else {
!p.meta().discard()
}
}));
}
#[test]
fn test_verify_fuzz() {
solana_logger::setup();
let tx = test_multisig_tx();
let packet = Packet::from_data(None, tx).unwrap();
let recycler = Recycler::default();
let recycler_out = Recycler::default();
for _ in 0..50 {
let num_batches = thread_rng().gen_range(2, 30);
let mut batches = generate_packet_batches_random_size(&packet, 128, num_batches);
let num_modifications = thread_rng().gen_range(0, 5);
for _ in 0..num_modifications {
let batch = thread_rng().gen_range(0, batches.len());
let packet = thread_rng().gen_range(0, batches[batch].len());
let offset = thread_rng().gen_range(0, batches[batch][packet].meta().size);
let add = thread_rng().gen_range(0, 255);
batches[batch][packet].buffer_mut()[offset] = batches[batch][packet]
.data(offset)
.unwrap()
.wrapping_add(add);
}
let batch_to_disable = thread_rng().gen_range(0, batches.len());
for p in batches[batch_to_disable].iter_mut() {
p.meta_mut().set_discard(true);
}
// verify from GPU verification pipeline (when GPU verification is enabled) are
// equivalent to the CPU verification pipeline.
let mut batches_cpu = batches.clone();
let packet_count = sigverify::count_packets_in_batches(&batches);
sigverify::ed25519_verify(&mut batches, &recycler, &recycler_out, false, packet_count);
ed25519_verify_cpu(&mut batches_cpu, false, packet_count);
// check result
batches
.iter()
.flat_map(|batch| batch.iter())
.zip(batches_cpu.iter().flat_map(|batch| batch.iter()))
.for_each(|(p1, p2)| assert_eq!(p1, p2));
}
}
#[test]
fn test_verify_fail() {
test_verify_n(5, true);
}
#[test]
fn test_get_checked_scalar() {
solana_logger::setup();
if perf_libs::api().is_none() {
return;
}
let passed_g = AtomicU64::new(0);
let failed_g = AtomicU64::new(0);
(0..4).into_par_iter().for_each(|_| {
let mut input = [0u8; 32];
let mut passed = 0;
let mut failed = 0;
for _ in 0..1_000_000 {
thread_rng().fill(&mut input);
let ans = get_checked_scalar(&input);
let ref_ans = Scalar::from_canonical_bytes(input);
if let Some(ref_ans) = ref_ans {
passed += 1;
assert_eq!(ans.unwrap(), ref_ans.to_bytes());
} else {
failed += 1;
assert!(ans.is_err());
}
}
passed_g.fetch_add(passed, Ordering::Relaxed);
failed_g.fetch_add(failed, Ordering::Relaxed);
});
info!(
"passed: {} failed: {}",
passed_g.load(Ordering::Relaxed),
failed_g.load(Ordering::Relaxed)
);
}
#[test]
fn test_ge_small_order() {
solana_logger::setup();
if perf_libs::api().is_none() {
return;
}
let passed_g = AtomicU64::new(0);
let failed_g = AtomicU64::new(0);
(0..4).into_par_iter().for_each(|_| {
let mut input = [0u8; 32];
let mut passed = 0;
let mut failed = 0;
for _ in 0..1_000_000 {
thread_rng().fill(&mut input);
let ans = check_packed_ge_small_order(&input);
let ref_ge = CompressedEdwardsY::from_slice(&input);
if let Some(ref_element) = ref_ge.decompress() {
if ref_element.is_small_order() {
assert!(!ans);
} else {
assert!(ans);
}
} else {
assert!(!ans);
}
if ans {
passed += 1;
} else {
failed += 1;
}
}
passed_g.fetch_add(passed, Ordering::Relaxed);
failed_g.fetch_add(failed, Ordering::Relaxed);
});
info!(
"passed: {} failed: {}",
passed_g.load(Ordering::Relaxed),
failed_g.load(Ordering::Relaxed)
);
}
#[test]
fn test_is_simple_vote_transaction() {
solana_logger::setup();
let mut rng = rand::thread_rng();
// tansfer tx is not
{
let mut tx = test_tx();
tx.message.instructions[0].data = vec![1, 2, 3];
let mut packet = Packet::from_data(None, tx).unwrap();
let packet_offsets = do_get_packet_offsets(&packet, 0).unwrap();
check_for_simple_vote_transaction(&mut packet, &packet_offsets, 0).ok();
assert!(!packet.meta().is_simple_vote_tx());
}
// single vote tx is
{
let mut tx = new_test_vote_tx(&mut rng);
tx.message.instructions[0].data = vec![1, 2, 3];
let mut packet = Packet::from_data(None, tx).unwrap();
let packet_offsets = do_get_packet_offsets(&packet, 0).unwrap();
check_for_simple_vote_transaction(&mut packet, &packet_offsets, 0).ok();
assert!(packet.meta().is_simple_vote_tx());
}
// multiple mixed tx is not
{
let key = Keypair::new();
let key1 = Pubkey::new_unique();
let key2 = Pubkey::new_unique();
let tx = Transaction::new_with_compiled_instructions(
&[&key],
&[key1, key2],
Hash::default(),
vec![solana_vote_program::id(), Pubkey::new_unique()],
vec![
CompiledInstruction::new(3, &(), vec![0, 1]),
CompiledInstruction::new(4, &(), vec![0, 2]),
],
);
let mut packet = Packet::from_data(None, tx).unwrap();
let packet_offsets = do_get_packet_offsets(&packet, 0).unwrap();
check_for_simple_vote_transaction(&mut packet, &packet_offsets, 0).ok();
assert!(!packet.meta().is_simple_vote_tx());
}
}
#[test]
fn test_is_simple_vote_transaction_with_offsets() {
solana_logger::setup();
let mut rng = rand::thread_rng();
let mut current_offset = 0usize;
let mut batch = PacketBatch::default();
batch.push(Packet::from_data(None, test_tx()).unwrap());
let tx = new_test_vote_tx(&mut rng);
batch.push(Packet::from_data(None, tx).unwrap());
batch.iter_mut().enumerate().for_each(|(index, packet)| {
let packet_offsets = do_get_packet_offsets(packet, current_offset).unwrap();
check_for_simple_vote_transaction(packet, &packet_offsets, current_offset).ok();
if index == 1 {
assert!(packet.meta().is_simple_vote_tx());
} else {
assert!(!packet.meta().is_simple_vote_tx());
}
current_offset = current_offset.saturating_add(size_of::<Packet>());
});
}
#[test]
fn test_shrink_fuzz() {
for _ in 0..5 {
let mut batches = to_packet_batches(
&(0..PACKETS_PER_BATCH * 3)
.map(|_| test_tx())
.collect::<Vec<_>>(),
PACKETS_PER_BATCH,
);
batches.iter_mut().for_each(|b| {
b.iter_mut()
.for_each(|p| p.meta_mut().set_discard(thread_rng().gen()))
});
//find all the non discarded packets
let mut start = vec![];
batches.iter_mut().for_each(|b| {
b.iter_mut()
.filter(|p| !p.meta().discard())
.for_each(|p| start.push(p.clone()))
});
start.sort_by(|a, b| a.data(..).cmp(&b.data(..)));
let packet_count = count_valid_packets(&batches, |_| ());
shrink_batches(&mut batches);
//make sure all the non discarded packets are the same
let mut end = vec![];
batches.iter_mut().for_each(|b| {
b.iter_mut()
.filter(|p| !p.meta().discard())
.for_each(|p| end.push(p.clone()))
});
end.sort_by(|a, b| a.data(..).cmp(&b.data(..)));
let packet_count2 = count_valid_packets(&batches, |_| ());
assert_eq!(packet_count, packet_count2);
assert_eq!(start, end);
}
}
#[test]
fn test_shrink_empty() {
const PACKET_COUNT: usize = 1024;
const BATCH_COUNT: usize = PACKET_COUNT / PACKETS_PER_BATCH;
// No batches
// truncate of 1 on len 0 is a noop
shrink_batches(&mut Vec::new());
// One empty batch
{
let mut batches = vec![PacketBatch::with_capacity(0)];
shrink_batches(&mut batches);
assert_eq!(batches.len(), 0);
}
// Many empty batches
{
let mut batches = (0..BATCH_COUNT)
.map(|_| PacketBatch::with_capacity(0))
.collect::<Vec<_>>();
shrink_batches(&mut batches);
assert_eq!(batches.len(), 0);
}
}
#[test]
fn test_shrink_vectors() {
const PACKET_COUNT: usize = 1024;
const BATCH_COUNT: usize = PACKET_COUNT / PACKETS_PER_BATCH;
let set_discards = [
// contiguous
// 0
// No discards
|_, _| false,
// All discards
|_, _| true,
// single partitions
// discard last half of packets
|b, p| ((b * PACKETS_PER_BATCH) + p) >= (PACKET_COUNT / 2),
// discard first half of packets
|b, p| ((b * PACKETS_PER_BATCH) + p) < (PACKET_COUNT / 2),
// discard last half of each batch
|_, p| p >= (PACKETS_PER_BATCH / 2),
// 5
// discard first half of each batch
|_, p| p < (PACKETS_PER_BATCH / 2),
// uniform sparse
// discard even packets
|b, p| ((b * PACKETS_PER_BATCH) + p) % 2 == 0,
// discard odd packets
|b, p| ((b * PACKETS_PER_BATCH) + p) % 2 == 1,
// discard even batches
|b, _| b % 2 == 0,
// discard odd batches
|b, _| b % 2 == 1,
// edges
// 10
// discard first batch
|b, _| b == 0,
// discard last batch
|b, _| b == BATCH_COUNT - 1,
// discard first and last batches
|b, _| b == 0 || b == BATCH_COUNT - 1,
// discard all but first and last batches
|b, _| b != 0 && b != BATCH_COUNT - 1,
// discard first packet
|b, p| ((b * PACKETS_PER_BATCH) + p) == 0,
// 15
// discard all but first packet
|b, p| ((b * PACKETS_PER_BATCH) + p) != 0,
// discard last packet
|b, p| ((b * PACKETS_PER_BATCH) + p) == PACKET_COUNT - 1,
// discard all but last packet
|b, p| ((b * PACKETS_PER_BATCH) + p) != PACKET_COUNT - 1,
// discard first packet of each batch
|_, p| p == 0,
// discard all but first packet of each batch
|_, p| p != 0,
// 20
// discard last packet of each batch
|_, p| p == PACKETS_PER_BATCH - 1,
// discard all but last packet of each batch
|_, p| p != PACKETS_PER_BATCH - 1,
// discard first and last packet of each batch
|_, p| p == 0 || p == PACKETS_PER_BATCH - 1,
// discard all but first and last packet of each batch
|_, p| p != 0 && p != PACKETS_PER_BATCH - 1,
// discard all after first packet in second to last batch
|b, p| (b == BATCH_COUNT - 2 && p > 0) || b == BATCH_COUNT - 1,
// 25
];
let expect_valids = [
// (expected_batches, expected_valid_packets)
//
// contiguous
// 0
(BATCH_COUNT, PACKET_COUNT),
(0, 0),
// single partitions
(BATCH_COUNT / 2, PACKET_COUNT / 2),
(BATCH_COUNT / 2, PACKET_COUNT / 2),
(BATCH_COUNT / 2, PACKET_COUNT / 2),
// 5
(BATCH_COUNT / 2, PACKET_COUNT / 2),
// uniform sparse
(BATCH_COUNT / 2, PACKET_COUNT / 2),
(BATCH_COUNT / 2, PACKET_COUNT / 2),
(BATCH_COUNT / 2, PACKET_COUNT / 2),
(BATCH_COUNT / 2, PACKET_COUNT / 2),
// edges
// 10
(BATCH_COUNT - 1, PACKET_COUNT - PACKETS_PER_BATCH),
(BATCH_COUNT - 1, PACKET_COUNT - PACKETS_PER_BATCH),
(BATCH_COUNT - 2, PACKET_COUNT - 2 * PACKETS_PER_BATCH),
(2, 2 * PACKETS_PER_BATCH),
(BATCH_COUNT, PACKET_COUNT - 1),
// 15
(1, 1),
(BATCH_COUNT, PACKET_COUNT - 1),
(1, 1),
(
(BATCH_COUNT * (PACKETS_PER_BATCH - 1) + PACKETS_PER_BATCH) / PACKETS_PER_BATCH,
(PACKETS_PER_BATCH - 1) * BATCH_COUNT,
),
(
(BATCH_COUNT + PACKETS_PER_BATCH) / PACKETS_PER_BATCH,
BATCH_COUNT,
),
// 20
(
(BATCH_COUNT * (PACKETS_PER_BATCH - 1) + PACKETS_PER_BATCH) / PACKETS_PER_BATCH,
(PACKETS_PER_BATCH - 1) * BATCH_COUNT,
),
(
(BATCH_COUNT + PACKETS_PER_BATCH) / PACKETS_PER_BATCH,
BATCH_COUNT,
),
(
(BATCH_COUNT * (PACKETS_PER_BATCH - 2) + PACKETS_PER_BATCH) / PACKETS_PER_BATCH,
(PACKETS_PER_BATCH - 2) * BATCH_COUNT,
),
(
(2 * BATCH_COUNT + PACKETS_PER_BATCH) / PACKETS_PER_BATCH,
PACKET_COUNT - (PACKETS_PER_BATCH - 2) * BATCH_COUNT,
),
(BATCH_COUNT - 1, PACKET_COUNT - 2 * PACKETS_PER_BATCH + 1),
// 25
];
let test_cases = set_discards.iter().zip(&expect_valids).enumerate();
for (i, (set_discard, (expect_batch_count, expect_valid_packets))) in test_cases {
debug!("test_shrink case: {}", i);
let mut batches = to_packet_batches(
&(0..PACKET_COUNT).map(|_| test_tx()).collect::<Vec<_>>(),
PACKETS_PER_BATCH,
);
assert_eq!(batches.len(), BATCH_COUNT);
assert_eq!(count_valid_packets(&batches, |_| ()), PACKET_COUNT);
batches.iter_mut().enumerate().for_each(|(i, b)| {
b.iter_mut()
.enumerate()
.for_each(|(j, p)| p.meta_mut().set_discard(set_discard(i, j)))
});
assert_eq!(count_valid_packets(&batches, |_| ()), *expect_valid_packets);
debug!("show valid packets for case {}", i);
batches.iter_mut().enumerate().for_each(|(i, b)| {
b.iter_mut().enumerate().for_each(|(j, p)| {
if !p.meta().discard() {
trace!("{} {}", i, j)
}
})
});
debug!("done show valid packets for case {}", i);
shrink_batches(&mut batches);
let shrunken_batch_count = batches.len();
debug!("shrunk batch test {} count: {}", i, shrunken_batch_count);
assert_eq!(shrunken_batch_count, *expect_batch_count);
assert_eq!(count_valid_packets(&batches, |_| ()), *expect_valid_packets);
}
}
}