OKI
INSTRUCTION MANUAL I‘

MSM66201

CMOS SINGLE CHIP 8/16 BIT
MICROCONTROLLER

FIRST EDITION
ISSUE DATE: SFP 1am

PREFACE

This manual provides an overview of the MSME6201 and explains its instruction set for programming.

The MSM66201 conlaing on-chip VO ports, A’D convertars, serial ports, timers, PWM, and other powertul
hardwars. For indlormation on the functions and conirol of this hardware, please refer to the MSM66201
Ussr's Manual. The explanations presented in this manual assume thal the reader understands the
comtents of the MSME8201 Usars Manual.

Beyond remembering the hardware configuration of the microcontroller, the first problem encountered by
a daesigner trying o create a program wilt be how 1o access the on-chip hardware and memory, and which
instructions o use.

The M5M668201 places internal hardware and its control registers in 2 mapped data memory space.
Therefore, control of the MSME6201°'s on-chip hardware can be considered equivalent to determining how
to access its memory space. The fastest way to understand the MSM66201 instruction set is to
understand how its memory space is addressed.

Chapter 1, "Overview,” explains use and design considerations far the MSM6E6201°s memory
conhguration and for addressing the hardware mapped in its memory space.

Chapter 2, "Addressing Modes,” explains memory space is addressing and its syntax, and provides
examples.

Chapter 3, “Details of Instructions,” provides a chart of the MSM66201 instructions broken down by
function, and it gives delailed explanation of gach instruction in alphabetical order. A list of byte counts
and cyche counts is also provided.

MSM66201 Instruction Manual
Table of Contents

Chapter 1. Overview
1. Key Features of the MSM&6201 Microcontroller............... timeereteraesranssnanans 1-1
2. Momory CONIQUIAtION ... e csnsssiionsssstrinnsossesnsanessnss sessmssanssssssssvons 1-3

21 Program Memory Space.... emrrerr bt re e nanen 1-3
211 Structure of Program Memory Spacs e 13
(V) Vector Table Space ... b e bt nen e e saoran e e eme e e rrerns 1-3
(2} VCAL Table Space... . e 148
{3) Conventional Codang ot Program Spaca 15
21.2 Accessing the Program Memory Space e 17
(1) Access by PC .. -~ 17
{2) Access by lnstructlons et et e s snneetantereemneras 1-7
2.2 Data Memory Space... e b na et et r et 18
221 Struciure of Data Mernory Spaca et eteemant et oemtat et et e et enaae st ran e b e bs s et s 1-8
(1) Concept of Paga ... e rReeEaT e Rrr e SR04 boe e s et ansn e s eeemnaneas 1-8
(2y Contiguration of Page 0. USPPTR, B [
(3) Local Registars ... e e 1413
222 Accessing Data Memory Space - e 1-156
(1) Accessing the General Data Space 1-15
{2) Accessing the System Stack Spaca oo 1217
223 Word Boundary.... ettt 1-17
«Instructions that am Influenced by ‘Word Boundary- cerrriereeen 1-20
224 Data Descriptor (DD) and Stack Flag (SF} PRI, 24 |
{1} Data Descriptor (DD) ... e 121
23 Conceptof SBOMEIMESo . 1-25
«Dascription of Absolute Segments 1-26
~Description of Relocatabla Segrnem- e 1-29
=Panial Segment= SO USSR USVPRTORUI R URRPPORNIOIONS B L |
Chapter 2. Addressing Modes
1. RAM Addressing Modesccccraminisinissicsioniens errrstniseasssarenasneanenan 21

1.1 Register Addressing ... ettt a e v e e e araas 2-1
n Actumulator Mdressrng et eeementevemeesmeeenreerbRRTeEe s s Attt b bnbe s £ebnensesetasans 2-1

{2) Pointing Register Addressmg e 241

{3} Control Register Addressing ... v 2-2

(4) Local Reqister Addrassing... v 2-2

(5} System Stack Pointer Addressrng 5 |

1.2 Page Addressing ... - b e e 2
{n Current Page Addressmg e 2-3

{2) Zaro Page Addrasssing2-4

1.3 Pointing Register Indirect Addressmg s .2-5
{1) Data Pointer Indirect Addressing...... SRR

{2) User Stack Pointer indirect Addresang lwnh 8 bd Dasplacemenl) rireteeereenneeeeee 275

{3) Index Register indirect Addressm (wrth 16-bit Dlsplacsmenl) ..2-8

1.4 Immediate Addrassing............ - -ty
«Advice About RAM Addressmg- . 2-7

2. ROM Addressing Modes............. 2-8
2.1 Direct Addressing 28
2.2 Indirect Addressmg .28
{1 Single Indirect Addressmg .28

{(2) Double Indirect Addressing29

MSM66201 Instruction Manual

Table of Contents

{3 Indirect Addressing with 16-b8 DaS8o....cooeeee oo, 2-10
3. BIt Addressing MOAEeScceeocrrcreecrrerassnrtsssse e eessssnrssrssssmesssssssns 2-12
4. Loglcal Bit ADdrass SPACH.........uiiivimrrieecesessssstsssncsssessssssssrssssssesseses 2-13
Chapter 3. Detalils of Instructions
1. Classification of Instructions............cccoceeerecurvanien. 31
2. Instruction Set.. CEtesiReRIELerriee AR AT ReE RS b et ae s san e e BRO A ben 3-5
3. Summary LIst 0f INSITUCHONScoceerriercerssensemsemanosssssssesssssasssnssmes 3-180

Chapter 1 Overview
MSM66201 Key Features

1. Key Features of the MSM66201 Microcontrolier

The MSME6201 Is a single chip microcontrolier (SCMC) specifically designed for efficient programming
and high speed dala processing.

SCMCs wers originally developed 1o replace control devices for home equipment, particularly electrical
and electronic appliances. The intemal memory capacily of early SCMCs ranged from 2 to 4K byles for
ROM and trom 128 lo 256 bytes for RAM. Inlemnal hardware was limited to ports, timers, counters and
LCD drivers. The instruction sets available with these early SCMCs included some novel bit maniputations
for control, however, the number of arithmetic inslructions and addressing modes as well as the quality of
these SCMCs wers all inferior fo what could be obtainad with microprocessors.

With the recent development of DRAM and general memory based on large-scale IC technology, the
internal memary capacity ol SCMCs has increased tremendously, and the CPU processing speed of
SCMCs has jumped from several microseconds 1o several hundred nanoseconds. Gonsequently Lhe
applications for SCMCs ara expanding and gradually invading many areas praviously occupied by
microprocessors. SCMCs are now used for many devices which require high spaed processing of large
volume of dala such as telephone swilchboards, high-performance printers, and automabile engine
control units.

Such applications lor SCMCs have in tum created new functional requirements beyond the need for
increased internal memory capacity. These lunctional requirements must be salisfied by the architecture
of future SCMCs, and they are listed below.

. Increased paraliel processing capability
2. Added internal hardwara 1o perform such functions as A/D and D/A conversions, improved
communication control, and various display drivers
3. In addition o the hardware development requirements described in item 2, internal bardware
readily applicable to the end products is needed
. Compatibility with iarge data memory space
5. High speed program processing/ow consumption of electrical power

Tha MSM66201 salisfies these requirements with the following architecture.
{1) Based on Concepts of Application Specific ICs (ASICs)}

Fulure SCMCs must be ASIC oriented as stated in lem 3 above. To meel this requirement, the
CPU core of the MSMEE201 Is desighed to be independent of 11O (internal peripharal unils). Cki
Electric industry Co. Lid. intends to develop various VO units which are readily intagrated in the end
products with the standard CPUs. The great advantages of developing such a tamily of YO units are
the tlexibility of archilecture permilted for the product design, and the reuse of the sottware
developed for lhe standard CPU in all products. The MSMB6201 is the vanguard of SCMCs which
are developed based on such a concept.

(2) 4K Byte Program Memory Space

The MSM&6201 provides a program memory space of 64K byles. Any address within the memory
space is accessible directly or indirectly by CALL or JUMP instructions. The memory space can
also store the program constanis.

(3) Hlerarchy of 64M Byte Data Memory Space

The MSM66201 provides a dala memory space ol 64M bytes . The memory spaca consists of three
levels, namely banks, pages, and local regislers.

1-1

Chapier 1 Overview
MSM66201 Key Features

4

(5

{6}

)]

The memory spacs Is divided into 256 pages, each holding 256 bytes. The MSM66201 addressing
system is designed to place all of the data required lor a single processing adiion an the same page
to achieve quick and efficient addressing. To make the data processing within a page effective,
each page is divided in 32 areas of 8 bytes, and local registers may be placad in any area.

Complete B Manlpulation Instruction

The MSM66201 permits individual manipulation o any bit in the data memory space. Atso, i is
possible fo manipulale direclly and indirectly any bit in a byte. Transier between the carry flag(C)
and a bit s also possible.

Eease of Array and Pointer Maniputation

The MSME6201 provides 2 index registers of 16 bits and 8 sets of pointing register of 16 bits.
These poinlers make X possible (o access any address of the data memory space. The contents of
the regisiers are automalicaily saved when a program interrupt occurs and the context swilch-over
lakes effect. Crealing data arrays and manipulating pointers is easy on the MSM66201.

Organized Instructions

In the MSME6201 design, the intemal hardware and registers are allocated lo the memory space,
and numercus addressing modes to access data are available; therelore, # is possibie 1o manage
and control all resources of the MSME6201 with a few instructions. The transfer and anithmetic
instruclions are plain and clear, consequently program coding is easy, and programs produced are
easy 1o understand.

Extremety Quick Switching of Program Context

The MSM66201 dasign permils extremely quick swilching of the program context when a program
internupl handlar funclions or a 1ask switching is execuled in a multitasking program.

Memory Mapped VO

in the MSME6201, the internal VO units such as IO ports and timers are allocaled 10 the data
memory space (memory mapped 1V0). Consequently no specitic input and output instructions are
required; these instruclions are replaced by the data addressing instructions. This scheme
produces not only a simple instruction system but also a flexible design that makes adding and
moditying of internal YO hardware easy. The MSM66201 is really developed to meet the ASIC
raquirements of the future, and the memory mapped /0 design enhances the ASIC teatures of the
MSME6201.

Chapter 1 Overview
Memory Configuration

2. Memory Configuration

The memory space of the MSM66201 is divided into the program and dala memory spaces which are
described in subsections 2.1 and 2.2 respactively. In subsection 2.3, the concepl of data segments thal
are allocated to the memory space for assembler operation is described.

[NQTE] The program memory space {or program space) is sometimes catled ROM (Read Only Memary)
space because ROM is usually its main constituent element. Likewise the dala memory space
(or dala space) is sometimes called RAM (Random Access Memory) space because RAM is
usually its main constituent element.

2.1 Program Memory Space

2.1.1 Structure of the Program Memory Space

The program space of the MSMB6201 accommodates 64K byles (00004 to FFFF) maximum; 40 byles
(0000 o 0027) of which forms the vector table space composed of 20x2-byte segments. Another 16
bytes (0028y to 00374} form the VCAL table space of Bx2-byte segments as shown in Figure 1-1,

(1) Vector Table Space

The veclor table space saves the vector addresses when the resel instructions {reset input, BRK
and WDT) are executed or intermupts are caused by the peripharal hardwarae. Each vector address
is saved in 2 bytes (16 bits}; the lower and upper bytes of the vector address are stored respectively
in the lower and upper addresses of the RAM. The vector table is described by the assembler with
pseudo instnuctions. (Sea the following examples)

— Examples of Assembler Coding for Vector Table ———

CSEG AT 00COH

DW START = ——=m—————m F—=- 0000
DW BRK_RESET —————====-] "= 0002,
OW WODT_RESET ~— T " o004y
OW NML_ENTRY |7 0006 4
DW INTO_ENTRY " oooay
DW INTI_ENTRY ‘=—=====——=- -——- 0026

Please nole that at a resel or interrupt, the contents of the concemed vector table (vector
addresses} are sel in the PC; no jump instruction into the vector table spaca is specified. Also, it is
mandalory 1o allocate addrassas 0 through 1 to the veclor addresses lor reset Input, but the
remaining addresses (2 through 274) need not be specilied when no corresponding reset and
interrupt instructions are executed, and the unused area may be used 1o enler programs.

1-3

Chapter 1 Overview
Memory Configuration

Thae allocation of the vector table s shown in Table 1-1.

0000y, h
Veclor Table Space

0027,
0028}

VCAL Table Space

0037,,
ooasH ?' internal ROM Space

3FFF, y
4000,

> External Memory Space

FFFF,, J

Figure 1-1. Structure of Program Memory Space

Chapter 1 Overview
Memoary Configuration

Table 1-1. Allocation of Vector Table

Address Comresponding reset process or interrupt
0000y Reset by RESET input

0002, Reset by BRK instnuction

0004, Reset by WDT / Reset by operation code trap function
0006y Interrupt by NMI pin input

0008, Intarrupt by INTO pin Input

000Ay Interrupt by sevial port readying for raceiving
000Gy Intarrupt by setial port readying for transmit
000E Interrupt by BRG for sarial port receiva
0010y Interrupt by timer 0 overflow

00124 Interrupt by svent occurrance of timer ¢
0014y, interrupt by timer 1 overfiow

0016y interrupt by event occurrence of timer 1
0018y Interrupt by timer 2 overflow

DO1Ay Iterrupt by event occurrenca of timer 2
001Gy Interrupt by timer 3 overfiow

001Ey Intesrupt by event occurrence of timer 3
0020y Interrupt by end of A/D conversion

0022y Interrupt by PWM timar overflow

D024y, Interrupt by BRG for serial port transmit
0026y Internupt by INT1 pin input

[NOTES] 1. The preceding aliocation is applicable only for the MSM66201. The MSM66201 is designed

2)

3

as the basic unit ol a family o microcontrollers (nX8/300 series) that is based on ASIC
concepts, and the MSM66201 is markeled as a standard product. Theretore it is possible to
install customer specitic intemnal I/C units which are different from the standard MSME6201
as long as the CPU remains the same. For such cases, the aliocation of the vector table
may change. Also the number of inferrupts may increase beyond the standard memory
space {0000y, to 0027, capacity; the excess interrupt veclor addrasses must be allocated

behind the VCAL table space{loliowing 0038y).

. When an address of 16-bit length Is slored in data memory, in a register, or is transferred,

the lower byte of the data Is stored In the lower address of the memory or register and the
upper byte is stored in the upper address. This rule is implicitly applicable in the MSM66201
device unless il is stated otherwise.

VCAL Table Space

The MSM&6201 uses a vector call instruction [VCAL) which is one byte long. The addresses of the
VCAL table (00284 through 00374) are entered in the operand of tha VCAL instruction. When the
VCAL instruction is executed, the veclor address of the VCAL table specified by the operand is sat
in the PC after the return address is saved in the syslam slack.

The VCAL table is entered by a DW pseudo instruction ke the vector table. When VCAL
instructions are not used, the VCAL table area can be used for entering programs.

Conventlonal Coding of Program Space

As staled in the articles (1) and (2), the address area from (0004 10 0037 is allocated to the
tables. Also, as stated in (1), the area excluding irom 0000 1o 0001 may be used lor entering

1-5

Chapter 1 Overvisw
Memory Configuration

programs, however I Is recommendad that this be avoided. Enter programs in the addresses
higher than 0038, because later program changes may require the addition of instructions for

interrupts and VCAL.

The following three exarnples are produced using Lhese rules.

Conventional Coding of Program Space

MAIN SEGMENT CODE

CSEG

Dw
Dw

ow

AT O0C00H

(LZITIZTIITI TS LT)

¢ VecurTable =

LLLL LI LI EL AL L Ll L

START ; Resat
BAK_RESET ; Break instruction
H

INT1_ENTRY ; INTT Interrupt

VCALO:
VCALY:
VCALZ:

bs

(I LIS DL L LLED T L]

¢ VCAlLTable =

LLILIT UL Ll L Ll

DwW ERROR_PROCESS

DW PORT_INIT_PROCESS
Dw RAM_INIT_PROCESS
10 : Raserved for future

RSEG

START:

END

(1YY LTl L Ll L)
+ Main Routine =+

PREEPRREORREERREN

MAIN

e W

Coding Vactor Tabla

Coding VCAL Table

Program Body

18

Chapter 1 Overview
Memory Configuration

2.1.2 Accessing Pragram Memary Space

Accassing program memory space is performed in two ways: by PC, or by inslruction.

{1

@

Access by PC

Accessing the program memory by using the PC is usually performed when a program is being
execuled. The PC always contains the address of the memory whare the next instruction 10 be
execuled is stored. The contents of the address indicated by the PC is Lhe instruction. Foliowing the
exaculion of an instruclion, the contents of PC is automatically increased an amourt equal o the
number of bytes of the executed instruction by hardware. When a resel input is given from an
external pin or an interrupt occurs, the PC contents is replaced by the vaiue siored in the vecior
table. These operations are done by the hardware; lhe programmer need not be concemed with
them. However, the PC count can be changed by the programmer it necessary. Forinstance, it is
possibie to replace the PC conlents with the vatue stored in the VCAL table by execuling a VCAL
instruclion. Also, the PC contents can be replaced by the addresses specified by the oparands ol
the following instructions upon their exaculions.

Instructions that Can Aeplace PC Contents

SJ,J, JC, JBS, JBR, JRNZ, SCAL, CAL

Reter 1o Chapter 3 for details of these instructions.
Access by Instruction
The MSM86201 provides instructions that allow accessing the program memory Space.

Instructions 1o Access Program Space

LS, LCB, CMPC, CMPCB

With the use of these instructions, it is possible o transfer the contents of the program memory to
the accumulator or compare the program memory lo the accumulator,

The following addressing modes are availabie for specifying the iocations of memory space when
thess instructions are used.

- Direct Addressing: specify the address in the space of 64K bytes directly using immediate
addressing.

Simple Indirect Addressing: specify the address indirectly according 1o the contents of data
memory such as a local register {er) to er3), pointing register {DP, X1, X2, USP), or system stack
pointar (SSP).

+ Double Indirect Addressing: specify the address indirectly according 1o the conlent of Lhe dala
memory which is addressed indirectly by the contents ol a pointing register {DP, X1, X2, USP).

.

Indirect addressing with a 16-bit base: specily the address by offsetting trom the base address In
the 64K byte memory space; the amount of offset is specified by the contents of a pointing
register (DP, X1, X2, USP) or the contents of another data memory.

For the detalls of the instructions and addressing modes, refer to Chapter 3 and Section 2 of
Chapter 2 respeciively.

1.7

Chapter 1 Overview
Memary Configuration

2.2 Data Memory Space

2.2.1 Structure of Data Memory

tH

Concept of Page
This article explains tha concapt of pages.

Generally, the data memory space used for a program module or unit process is not 5o large. In
other words, the upper bits of the addresses of Ihe data in the space which are addressed during a
unit process hardly change. So, # the data memory space Is divided inio blocks of a appropriate
size for a unit process, and all of the dala involved in a program is stored in one block, addressing
tha data for the process may be achieved by simply offsetting each data from the base address of
the block. Such a configuration of data memory space will shorten the access lime as well as the
machine codes.

Using such concepts, the archileciure of the MSME6201 divides each data memory bark into
gslocks of 255 bytes. This block is called a page. Thus, a bank of 64K bytes consists of 256 pages of
6 bytes.

In Figura 1-2, the configuration of the data memory is shown.

Chapter 1 Overview

Memory Configuration
0000,
Page 0
DOFF
0100,
Page 1
01FFy,
0200y, :
nooy,
Pagen L - 1
nFFy i
: i g fowi on
: : HENERNEEENAREE:
i : 15 12 54 [
Always zero.
FEOOy Cannat be changsd by writing ovar
Page 254
FEFFy,
FFOO0)
Page 255
FFFFy

Figure 1-2. Page Configuration of Data Memory

As shown in Figure 1-2, the pages are numbered progressively, staning at the lowest address, as
Page 0, Page 1, Page 2, up to Page 255. The page numbers used are specified by bits 12 through
5 of LRB, and the page thus specilied is called the cumrenl page.

when only the on-chip data space of the MSMG6201 is used, the comesponding addresses used
are 0000 through 027F), and the only corresponding pages used are Pages 0, 1, and 2.

1-9

Chapter 1 Overview
Memoary Configuration

Furthermore, only 128 bytes are useabls in Page 2. The configuration of the dala mematy space
used for on-chip space only is shown in Figure 1-3.

(0000 A re et
SFR 4
Space :
007F :
\, H H
-ees Pay Q=== H
(0080y - % :
00FF
0100y B USSR ;
RAM < Page 1
Space ;
01FF),
02004 0 T ¥
Page 2

—A

_027Fy . -

LRB oooi ,0—2 i

NESEENNNENENNN
12

15
Figure 1-3. Page Configuration of Data Memory (On-Chlp Space)

Addressing by offsstting within the current page is called current page addressing; its detaiis are
given in Chapter 2. Currenl page addressing is allowed with most insiructions in the MSM66201
Instruction set, and our chip designers made their best effort 1o realize very tast memory access
with currant page addressing. This fits the concept that the dala space for each moduie should be
kcaled within one page. and in that situation current page addressing woukd be used most

trequently.
{2} Configuration of Page 0

All ot the pages (256 total) thus defined are basically similar except for Page 0. Initially, the specia!
function register (SFR) and the pointing register (PR) are allocated to Page 0. {See Figure 1-4)

Secondly, 10 access the contents of Page 0, zero page addressing, which does not depend on LRB,
is available. This is in aogdition 10 the familiar cument page addressing, which is LRB dependent.

These itams are further explained in the following paragraphs.

Chapter 1 Overview
Memory Configuration

The intemal hardware of the MSME6201 wiil be accessed at every stage of a program, therelore # is
desirable 10 allocate the haroware to page 0 in & memory-mapped VO configuration 10 increase the
program efficiancy. The configuration of memory-mapped VO requires fewer instructions to control the
hardware units compared to the YO-mapped 1O condiguralion, and it aiso provides the lexibilily 10 modify
the intarnal hardware while the CPU stays unaliered (one of the beneficial features of ASICs).

0000 h
SFA
s Space
007Fy <
0080
H Peinting
Register
00BFy Space
00C0oy
RAM
0OFF 4 Space

Figure 1-4. Configuration of Page 0

Considering the feregoing factors, the intsmal hardware of the MSM66201 such as timers, counlers, A/D
convertars, and so on, and the registers which control the memory-mapped /0 hardware, are allocated 1o
the addresses from 00004 to 007F of Page 0. The general term jor these hardware units is "Special
Funclion Register or SFR for short; the latler abbrevialion is used in this book.

SFR includes, in addition to timers, A/D converters and so on, the general purpose registers which are
listed in the following lable; these are used for arithmelic and memory management.

General Purpose Registers Included in SFR

SSP System Slack Pointer
LRB Local Regisler Base
PSW Program Status Word
ACC Accumutator

Chapter 1 Overview
Memory Configuration

| Pointing Register (PR) |

The pointing regislers are allocated to addresses 0080y through 00BFy of Page 0. They are 16-bit
registers and function as pointers when addressing lhe program or dala memory.

The pointing register is composed of the following four registers which form 3 set.

X1.eovivrveeneeenn. index Register 1
.. lndex Register 2

. Data Pointer
User Stack Pointer

Eight pointing registers or aight sets of \he loregoing units are aliocated 1o Page 0 and they are named
PRO, PR1, PRZ ... PRY. (See Figure 1-5),

For the delaits of pointing register's function, refer 1o Seclion 3 of this chapler and the descriplion of
addressing modes in Chapter 3.

As shown in Figure 1-5, selecting the register out of eight units is performed by the lower 3 bits ol PSW
whose group name is Sysiem Controi Base (SCB).

p PR P
0080 y—— o088 ! 0090 2 0080 R, 0088
- X1-s - Xt - X1--1 b X1 - X1e
aa xz-- - xz--u e xz--q N x2 (3 -- xa--
a DP-— . DP-- e DP..q e v - DP.- = DP--
- USP- - USP1 “ USPT - USP* " USP-
0087 4 008F 0097 A 0087 00BF 4
U
Selected from

! PRO— PR7 by SCB

isce
PSW i
15

210

Figure 1-5. Polnting Registers

Zam Page Addressing]

As described in {1), the dala memory space of the MSME6201 is divided into pages. each of which
cortains 256 bytes, and the work area of a program module is basically contained within a page. SFR and
the peinting registars are contained within Page 0; however, these units are expecied 1o be referred to
throughout various stages of program execution, resulling in a changing value of LRB. Such a situalion
degrades program efficiency. To avoid this, zero page addressing which does nol depend on LRB Is
provided lor the data within Page 0. This addressing mode is in addition 10 universal current page

1-12

Chapter 1 Overview
Memory Configuration

addressing. The practical application of zero page addressing is described in the Addressing Modes in
Chapter 2.

As shown in Figure 1-8, addresses 0000y through 00FF of Page 0 are HAM. When these addresses are
used lor space lo slore global variables like the external variables of a C compiler, zero page addressing
can be employed 10 enhance program efticiency.

{3)

Local Registers

As described in the articies (1) through (2), the data memory space is stralified in 256 pages. The
upper eleven bils, lrom 12 10 §, of LRB are used to identify the banks and pages, and tha
remaining lower fiva bits of the 13-bil register are used to set the base for kocal registers.

As described in (1), the data memory spacae is divided into 256-byte pages. Each page provides
register space in 8-byle units. The architeciure of the MSM&6201 parmils the allocation of registers
lo any convenient addresses within the current page rather than specific lixed addresses. Such
registers are called local registers and their base addressas are specified by the lowest five bits of
LRB. {See Figure 1-6)

The local registers are used to store the data when transter or arithmetic instructions are exacuted.
The unit of the register can be either byte or word. For byte unit operations, each register forms 8
bits x 8 register sets, and the data is entered slarting al the lowest, as 0, r1,r2 ... ¢7. Tha
correspanding configuration lor word operations is 16 bils x 4 register sels with dala entry starting
at the lowest, as erQ, er1, er2, erd.

Chapter 1 Overview

Memory Con_ﬁgunation
0000 H 1
XX00 -----A----.-..--..-"l
Current
nx & byles Pags

) D N B S -
B | i
000 : P ooan
LRB : H
AN IEEREEENA!
15 43210

[~ Local Register
Space

G| e HAR J

b eerree e

FFFF,

Figure 1-6. Local Reglstar Space

Chapter 1 Overview
Memory Configuration

2.2.2 Accessing Data Memeory Space

Thare are three Kinds of dala memaory accessing;

(1) Addressing the general data space
{2) Addressing the system stack space

Delailed descriptions follow,

(n

Accessing the General Data Space

The ganeral dala space is all data space other than the spaces which are allocated o the system
and user stacks. (Note that the general space includes SFRS, which include ACC, PSW, LRB, etc)

All addressing of the general data space is performed by the instructions. More than haff of the
instructions used by the MSM56201 are for addressing the general data space. Thay are listed
below. The details of these instructions are described in Chapter 3, Details of instructions.

Instructions for Addressing the General Data Space

« Data transfer {Load} L.18 {Store) ST, STB
instructions {Move) MOV, MOVB {Clear) CLR, CLRB
{Exchange) XCHG, XCHGB, XNBL
» Rolata/Shift {Rolate) ROL, ROLB, ROR, RORB
instructions {Shif) SLL, SLLB, SAL, SRLB, SRA, SRAB

« IncrementVDecrement instruclions INC, INCB, DEC, DECB

« Arithmetic operation (Multiply) MUL, MULB {Divide} DIV, DIVB
instructions (Add) ADD, ADDB, ADC, ADCB (Subtract) SUB, SUBB, SBC, SBCB
* Logic operation (Logical AND) AND, ANDB {Logical OR) OH, ORB
instructions (Exciusive OR) XOR, XORB

- Compare instructions CMP, CMPB

+ Bit manipulation {Set bit) SB, SBR {Reset bt} RB, RBR

instruclions {Test bit) TBR {Move bif) MBR

Almost all of the addressing instructions may operate in word length {16-bit length) or byte iength
(8-bit length} modes. Each instrucion accommodates these operations with two distinctive codes
like MOV and MOVB, or ADD and ADDB. In Chapter 3, the delails of the Instructions are given.

In some instructions primarily for the accumulator, the same machine codes, depending on the flag
called data descripter (DD), perferm both byte and word operations. This flag is allocaled in PSW,
and constitute the most notable features of the MSM66201 conirol system with their ability to
provide multiple instructions. The functions of these two flags are detailed in 2.2.4.

This section provides addilional information about addressing modes for the general data memory.
Although the previously described instruclions perform the addressing, the programmer must enter
the mnemonic codes {MOV, ADD, CMP, etc.) in the assembler source program. Thess mnemonic
codes define the operations, and the objects of the operations are the addresses of the data space
specified by the operands following the mnemonic codes.

Chapter 1 Overview
Memary Configuration

For exampie, transfer instruction MOV is enlered as

MOV operand_1, operand_2

This instruction orders the transler of the contenis of operand_2 inlo operand_1 using word units.
Operand_1 and operand_2 spacity the addresses that are the objects of the operation. Thers are
various ways 10 speciy or nole the addresses of lhe objects. Addressing notation defines how to
access the data space, of in other words, defines the addressing mode.

Two of the addressing modes for the general data space have been described in 2.2.1. They are
listed below, and further detailed in Chapter 2.

1. Cumment page addressing
2. Zaro page addressing

In zaro page addressing, the address or symbol which is the object of an operation is enlered as [
is. In current page addrassing, a descriplive word off lor addressing is placed preceding the

acddress or symbol which is the object. For sxampla, to transfer in word length units the data space
which is labelled WORK_1 in the current page 1o the address ADy of Page 0, the toliowing code is

used.

MOV 0AOH, off WORK_1

Current page and zero page addressing modes are the basic modes; however, the lollowing
additional addressing modes are available to enhance program efliciency as listed balow.

3. Regisiar addressing
4, Pointing register indirect addressing

The register addressing is specifically used lo access the general purpose registers within Page 0.
The registers include SSP, LRB,PSW, ACC, X1, X2, DP and USP and the local registers in the
current page (c0, r1, r2, r3, r4, 18, 16, 17 or er0, erl, ere, erd). The name of the specitic register is
enterad in the statement axcept for ACC which changes o A. For exampla, the lollowing entry will
transter er0 to ACC.

MOV A, er0

Pointing ragister indirect addressing is used for programs that require accessing arrays allocated in
the dala space with the use of pointers, or for accessing data that can be stored indirectly with
polnters 1o improve averakl program efficiency. There are three variations to this addressing mode.

The first variation Is indireci addressing with a base using X1 and X2. Aray-type data are
conveniantly handled with this access scheme in which the amount of oliset trom the base Is
processed by X1 and X2. For exampie, the foliowing entry will transfer the 10th array slemant,
SEG_DATA|10}, in the amay SEG_DATA to the accumulator after X1issetto 10.

MOV A, SEG_DATA[X1}

The second variation is indirect addressing by the data pointer (OP) that used as a pointer for
general indirect addressing. For axample, the following sniry will move lhe data of a byte jength
pointed to by DP to local register 10.

Chapter 1 Qverview
Memory Configuration

MOVE rd, [DP]

The third variation is indirect addressing by USP. The effective address is generated by USP and
the signed () displacement.

MOVB A, +2[USP]

The access modes for the general data memory space have been outlined in the preceding
sections; however, ihe lunclional details of the instructions and the thorough descriptions of the
addressing modes are not given. Reler 1o Chapter Il for functional details of each instruction.
Refar to Chapter il for details on addressing.

There is one more addressing mode for the general data space which is termed bit addressing. Bit
addressing, as well as the bit segment, will be described in 2.3, "Concept of Segmenls”.

(2) Accessing the System Stack Space

The system stack is The stack space that is indirectly accessed by systam stack pointer {SSP).
Accessing the syslem stack space Is parformed in the following cases.

1. SCAL, CAL and VCAL instructions are executed
2. Interrupts occur

3. PUSHS instruction is executed

4. AT and AT! instruclions are executed

5. POPS instruction is executed

The system stack space is generally called stack space, and It is used 1o save lhe return address
when call instructions are executed (case 1). it is also used to save the return addrass and the
contents of ACC, LRB and PSW when interupis occur (case 2). The system stack space can be
used 1o stack PR, ACC and LRB directly using the PUSHS instruction (case 3). The RT instruction
returns the relum address to PC which is saved in the syslem stack space by CALL inslructions
(case 4). ATl instruction is used 1o retum from interrupts and 10 retum PSW, LRB, ACC and the
return address from the system stack. The POPS instruction is used to pop the data in the system
stack which has been put in by PUSHS instruction (case 5).

2.2.3 Word Boundary

In2.2.2, threa calegories of accessing the dala space are aslablished:
1. Accassing the general data space
2. Accessing the system stack

In category 1, it has been said that accessing the general data space can be entered in word unit or in
byte unil. When the word unit is used, the existence of the word boundary must be cbserved.

The word boundary is the borderine between word units, and i lollows behind every odd-numbered
address. As shown in Figure 1-7, there is no wort boundary between addresses O and 1, hence a word
that consists of addresses 0 and 1 is permissible. On the ather hand, there is a word boundary behind
address 3 because it is an odd-numbered address. Therefore, a word thal consists of addresses 3 and 4
crossas the word boundary, and such a word is not usable for the accessing operation. in short, each
word must stan at an even-numbered address.

Chapter 1 Overview
Memory Configuration

Using the transfer instruction, MOV as an example, the operation of the CPU core is explained. When the
contenis of addresses in the data memory space are transterred 1o the accumuiator by zero page
addressing, the following entry will transter the contents of the addresses COy and C1y 1o the
accumulator,

MOV A, 0COH

The corresponding machine code is givan as:
B C0 99

The CO in the second byle correspords to the address of tha second operand. When these codas are
execuled by CPU, the conlents of the two bytes which slarts at addrass COy will be transferred.

it the COy of the example addressis:eplacedwﬂhcm.theeruryismangedasshown.

MOV A, OC1H

As mentionad previously, the words used in the accass operalion must start at an even-numbered
address and be 2 bytas wide. However tha 0C 1 of the last entry is an odd-numbered address which
creates a logical inconsistency, and consequertly the assembler issues a waming. Tha assembler,
howsvar proceeds lo change the address code as shown.

BS C1 99

Whan the CPU exacules thase codas, lhe process is identical 1o the original ona where the two bytes of
data in addresses 0COy and 0C1y are transtared to the accumulator, Thus the combination ol 0C 1y
and 0C2y is ineffactive, because the CPU torces the LSB (lowest bit) of the effective address to beldin
the accessing process.

Chapter 1 Overview
Memory Configuration

Word-length
accesses must
not cross word
boundaries.

Word-lenglh
accessas thal
inciude a word
boundary will not
be periormed.

0000y

0001

0002y
0003},

0004

0006

00074

FFFCy

FFFDy

FFFEW]

FFFFy

Figure 1-7. Word Boundary

L CPYTTPTTIN ITTISTS

L -

oo

tearanananne

- erannncann

----- Word Boundary

......... Word Boundary

--------- Word Boundary

--------- Word Boundary

--------- Word Boundary

--------- Word Boundary

‘hapter 1 Overview
lemory Configuration

Mnamonic

Second byte of machine
code

Under zero page addres-
sing, the uppar 8 bits are 0
whaen an sffective address
is generated.

Elteclive address

When an access
instruction of word langth is
sxecuted, the CPU
convarts tha L.SB of the
eitective address 10 O prior
10 the memary access.

The first byte of the
address of Ihe memory
which is to be accessed

MOV A, 0COH

MOV A, OC1H

1100 0000

coy 1100 0001

0000 0000

1100 0060

1100 0001

00CoH 0000 0000

cesssvmpanapanas

0000 00040

1100 0000

00COH

Figure 1-8. Address Generation Process in Accassing Word Long Data Space

Jnstructions that are Influenced by Ward Boundary=

Cig

00C1YH

‘he instructions that are influenced by word boundarias are specified hers, Word boundaries exisls for
imost all the insiructions that access the general data space in word length units, and for all insinuctions
ised to access the system stack space. These instructions are listed in Table 1-3-1 and Table 1-3-2.

Table 1-3-1. Instructions Influenced by Ward Boundary

- Data transter instructions

« RotatesShift instructions

+ Increment’Decrement instruclions
« Arithmetic operation instructions
« Logic operation instructions

« Compare instructions

L, ST, MOV, CLR, XCHG
ROL. ROR, SLL, SRL, SRA
INC, DEC

ADD, ADC, 5UB, SBC
AND, OR, XOR

CMP

Table 1-3-2. Instructlons Influenced by Word Boundary

« Call instructions

« Return instructions

SCAL, CAL, VCAL

« Push/Pop for system stack
- Save inlo system stack at interrup

RT, RTI

PUSHS, POPS

e instructions unattecled by the word boundary are the instructions for accessing the user stack
PUSHU, POPU), and ROM addressing.

1-20

Chapter 1 Qverview
Memory Configuration

Thus, i is possible to push tha data in the user slack without regard lo their order; the data may be in byte
or word length. Also, i is possible to refer to the ROM table stanling at an odd-numbered address.

When a programmer codes a source program, the addresses referred to are seldom entared in numbers
such as shown below.

MOV A, 0COH

The addresses displayad in the operands are usually symbols which are defined in the data segment as
iahels or defined by DATA pseudo instructions. The dala segment is the 1erminclogy used for assembler,
and its concept is described in detail in 2.3. For the time being, # may be considered to be synonymous 1o
the data memory space.

when the dala space of a word unit is enlered in a program, the data segmenis become meaninghul. The
data sagments that contain the work space accessed by word-unit Instructions must meet the requirement
that the starting bytes {addresses) be even-numbered. In other words, labels for dala segments used for
tha operand of an access instruction that uses word unils must be assigned to even-numbered
addresses.

when an odd-numbered address is entered for the operand of an access instruction that operales with
words In the genaral data space, the assembler issues an waming massage for emors only when the
operand is evaluated as an absciute vale.

When the operand s evalualed as a relocalable value, the symbol for the operand has the attribute of a
relocatable data segment, and the real value of Lhe relocalable value or symbol can not be known until the
memory allocation is completed by the finker. This means that the assembler tself is unable to check the
value. The currantly available linker (RLE6K) lacks the capability to perform such a checking function.
{Linker improvement is is planned.)

The starting byte of the data segment that is accessed by the Instructions which operata on wards musl
be able to instruct the assembler to allocate an even-numbered addrass. Therelfore, Lhe relocatable
assembier (RASGEK) interprets the pseudo instruclion segment lo define segments with the added
requirernents lor word attribules (no crossing of word boundaries). The segment with word atlribules is
assigned so thal the starting address is always an even number.

This checking of word boundaries is performed only for cases in which the addressing entry in the
operand indicates directly the accessing object as is done in page addressing. Addressing the general
dala space can aiso be done by other methods such as indirect addressing by pointing register, where the
operand is entered with an indirect address. For such a case, the assembler is unabie to chack the word
boundary becausa the assembier needs to know tha contents of the register usad lor indirect addressing
prior 1o checking the word boundary. For the assembler 1o know the conlents of a register it is necassary
to check the entire program flow, and this is tar bayond the assembler’s function. Therafora, managing
the word boundary in indired! addressing is entirely the responsibility of the programmer.

2.2.4 Data Descriptor (DD)
MSM6E6201 provides a special flag called data descriptor {DD)

DD is associated with manipulation and transfer instructions for the accumulator of the MSM66201. DD
atfects the length of data accessed.

DD llag is describad in tha following anicles.
() DD atlocation
DD is aliocated 1o bit 12 ol the program status word (PSW).

1-21

Chapter 1 Overview

Mamory Configuration
PSW ipo!
I I P N T N S S TR N N
75 14 13 1211 160 9 8 7 6 & 4 3 2 1 0O
(i} Function of DD

Prior 1o the description of the function of DD, the mnemonic used for the MSME6201 will be explained.
The instructions lor the MSMB6201 are generally classified in two groups: the instructions ihat operate on
almost ali of the resources in word length units, and the remaining Insiruclions that operate in byle units.
The mnemonic expressions for the latter group of instructions are distinguished from the former with sutlix
B as shown in the lollowing examples.

Word long MOVE instruction : MOV
Byte long MOVE instruction : MOVB

Word long ADD instruction : ADD
Byle long ADD instruction : ADDB

word long logical AND : AND
Byte long logical AND @ ANDB

The comesponding machine codes for the word based and byte based instructions are generally ditferent.
The exception to this is the instructions which operate on the accumulator where tha same machine code
is used for both instructions of word and byte unit in conjunction with the use of DD. With DD=1, the
instructions operate in word length, and with DD=0, they operate in byte length. Such instructions
influenced by DD are Lsted in (ill).

(k) instnuctions influenced by DD

(st A.obj siors In accumulator instruction

| sB A, obj

rSWAP swap instruction for accumuiator
SWAPB

.

<
ROL A jeft rotation instruction for accumalator
ROLB A

.

fFlOR A right rotation instruction for accumulator
RORE A

N

(SRA A right arilhmetic shitt instruction for accumulator
SRAB A

“

En A left logical shift instruction for accumuiator

(sus A

(" SAL A right logical shit Instruction for accumutator

G

1.92

Chapter 1 Overview
Memory Configuration

The term obj above represents the addressing enry (like r, erg, [DP], 100H and off 0C0H) which is
legally used as the operand of the instruction. Note that all instructions are for operations thal use the
accumulator,

The machine code for each pair of the instructions lisied above is the same. Basicalty, for an instruction,
the mnemonic and the machine code form a one to oné cormespondence. The assembier of the
MSM66201, however, allows two minemonic lerms for a machine code.

For exampie, the machine code 88 causes the contents of the accumulator to be stored in local register 0.
With DD=1, the instruction operates in word units; the contents of the accumulator are extended to 16 bits
and transferrad to the local register er0. With DD=0, the operation is in byte units, and the lower 8 bits
{AU) are transterred to the local register r0. The mnemonic statements for these instniclions joliow.

ST A e word length operation
STB A byte length operation

Providing two mnemoni: terms for one machine code has two advantages. The first advantage is that the
programmer can transmit his intention fo the assembler: "the operalion should be in word or byte length.”
The second advantage is thal when the programmer or a third person reviews the sourca program, the
unit of the oparation is Basy (o see.

Even il the assembler underslands the programmer's intention, the assembler must have some capabiity
1o varily the unit of operalion. For instance, the programmer intends to use byte units in the siore
instruction and enters in the source program as shown. However, if 0D=1 at the time of

5TB A0

program execution, the CPU will exscute the instruction in word unit contrary 10 the programmer's
interttion. it is desirable for the assembler to provide same security means 1o verify the consistency
berwesn the programmers intertion and the DD value. However, the assembler cannot oblain the DD
vahue bacause DD is specified by the program as explained later in detail.

As a supplementary checking means, the assembler provides the USING DATA pseudo instruction by
which the programmer indicales lo the assembler the value o DD to be used. To implement this process,
Lhe programmer enters

“USING DATA WORD"

in the source program which is equivalent lo the message "Following this statement, DD=1 in this
program” by the programmar. Simitarly, the entry of

"USING DATA BYTE"

is equal to the message “Following this statement, DD=0 in this program™. When DD is given by the
USING DATA instruction, the assembler verifies the DD dependent instructions for consistency between
the dtata unit of the instruction and DD; an emor wamning is issued ¥ Inconsistencies are found,

If no such veriticalion of DD consistency is required, the statemeant "USING DATA ANY' is entered in the
program. The USING DATA statement provides some degree ol verification of consistency regarding the
data iangth. However, it does not guaraniee that the program is execuled with the DD value specified by
the USING DATA pseudo instruction. Please note that no error messages from the assembier does not
guaramee consistency. Final responsibility rests with the programmer.

{iv) Changing the DD's valus

The DD's value can be reentered in three ways. Initially, the DD's valua is reset directly by PSW access
instructions when they are executed. Altemalively, DD is reentered automatically by the specilic
instructions that influance DD. DD can aiso be initialized by reset processing.

1. Directly Accessing PSW

Since DD is allocated 1o bit 12 of the PSW, it can be changed directly by PSW access instructions, the
following are some of the practical examplas.

Chapter 1 Overview

Memory Configuration
ANDB PSWH, 1110111iB........... DD is reset, remaining bits unaffectad
ORE PSWH, 00010000B DD is set, remaining bits unaffected
XORB PSWH, 000100008 DD Is inveried, remaining bits unaffected

sB PSWH.4 (orSB DD).... DDis set
ARB PSWH.4 (or RB DD) ... DD Is resel
2, Specific Instructions Which Atfect DD
When the following instructions are executed, DD is set aulomatically.

Commankis that Set DD
L A, obj load instruction of word length for accumulator
MOV A, obj move instruction of word length ior accumulator
CLR A clear instruction of word length for accumulator
POPS A pop (from system stack) instruction of word length for accumulator
EXTND A extend code instruction for accumuiator

When the following instructions are executed, DD Is reset automatically.

Commands that Reset DD
LB A, ob} load instruction of byle length for accumulator
MOVB A obt move inslruction of byle length for accumulator
CLAB A clear instruction of byte length for accurmulator

As shown in the above lists, the instructions that atfect DD all transport the data from somewhere to the
accumutator except for EXTND. When the concemied data is word long, DD is set, and DD is resel when
the data is byte long. The instructions that are infiuenced by DD have been described in (ii). Each
instruction in the group somehow operates on the accumulalor. To operale on 1he accumulator, it is
necessary 1o transfer the dala trom some place to the accumuiator prior 1o the operation. For data which
is transtemmad in word length, the accumulator will operate in word length. Similarly for data which is
transierred in byte lengths, the accumulalor will alsc operate in byte lengihs. Thus, the matching of DD
and the unit of the data is maintained.

3. Initialization by Reset Processing
DD is initialized or set 10 0 by the reset processing. The reset processing is executed for the lollowing
1. A proper reset pulse is applied to the RESET pin.
2. A BRK instruction is executed.
3. Overllow exists in WDT (walch dog timer).
«Caution: Setting DD at Program Interupts»
The intemupt procedure daes not set or reset DD. DD is unrelaled 10 the processes occuring following an

intarupl, hence the value of DD cannot ba preddicted. Whan the inlernupt procedure inchidas instruclions
that are affected by DD, it becomes necessary lo initialize the flag. Bt the contents of the flag {namely

1-24

Chapter 1 Overview
Memary Conﬁguration

PSW) nead not be saved, because they are savad automalically at the time of interrupt and retumed by
ATI (retum from inlerrupt) instruction.

2.3 Concept of Segments

The concept of segments is used for managing the data of the assembier and the linker. As mentioned
previously, the MSMEB201 provides two memory spaces, the program and dala memory spaces. When
the programmer codes the assembler source program, he must iell the assembler in which memory space
the entry is allocated. Then, the assembler employs segments that correspond 1o the physical memory
space. Segments may be considered as logical spaces. The code segmeant of the assembler corrasponds
to the program space, while the data and bit segments correspond to the data space. For sxample, the
program statemant "Now, the lollowing enlry is fo be saved in the program memory” becomes the
assembler statement “Now the loliowing entry is to be saved in the code segment*, Thus the code
segment is almost synonymous (o the program memoary.

The situation for ihe data memory is slightly ditterent. The data memory is usually accessed using word or
byte units, and occasionally a bit unit is used such as for setting flags. Such flag may be identified as "nth
bit of address q" or “bit address n” which is more efficienl in managing data (in the view of some
programmers).

In the bit segment, bit 0 of byte 0 in the data memory is simply called the bit 0 address and the following
bits are numerically sequenced in bit units as shown in Figura 1-9.

In the data segment, the dala space is addressed in byte units, so the bit segment may seem to be
created only fo define the flags in an extreme sense.

The absolute segment is used for the entry of the data space of lixed address such as the vector table
and VCAL table; it is also used when a certain data space is allocated {o specific addresses for program
convenience. The relocatable segment is used jor the entry of the codes and the space that do not
require specific addresses. The use of relocatable segment is recommendad for programs in which many
programmers are involved simultaneously, or for programs intended 10 be a submodule of a Iuture

program.

Byte
location
D 7 [5 4 3 2 0 0
A c A 9 a 1
T 17 18 15 14 13 12 1 10 2
A iF 1E 1D 1c 1B 1A 19 18 3
a7 26 25 24 23 22 21 20 4
M
E
M
o]
R 7FFF7| 7FFF&| 7FFFS| TFFF4| 7FFF3] 7FFF2| 7FFF1| 7FFFO FFFE
Y 7FFFF | 7FFFE| 7FFFD | 7FFFC{ 7FFFB| 7FFFAY 7FFF9{ 7FFF8 FFFF
Bit 7 3 5 4 3 2 1 0
location

Figure 1-8. Bit Addresses

1.28

I

Chapter 1 Overview

Memory Configuration
s Segment Absolute code sagment |
3 allocated to Code segment :
. program space Relocatable code segment |
M ‘Absolute data segment |
Data segment
E Segment Retocalable data segment |
N aliocated 1o
T data space Absokile bt sagmeni |
Bit sagment
- Relocatablo bk segmert_|

Figure 1-10 Segment Classification

The concept and outline of segments have been described so far. The following section describes the
entry of segments 1o a real source program.
=Description of Absolute Sepments»

For the assembler, three pseudo instructions are available to specily the segment type. Prior to the
sagment entry, these pseudo instructions: (CESG, DSEG, and BSEG) are entered to declare the segment

type.

CSEG This pseudo instruction daciares that the following entries are o be located in the absolute
code segment.

DSEG This pseudo instruction declares that the tollowing entries are 1o be located in the absohite
data segment.

BSEG This pseudo instruction declares that the 1oliowing entries are to be tocaled in the absohute bit
segment

CSEG
DSEG [AT starting address]
BSEG

The absolute code segment is used 10 erter the vecior 1abla, the VICAL table, and the ROM table, which
is accessed by ROM relerence instructions. The real stalemenis enterad will be labels, pseudo
instructions which specify the data of word length (DW) and the data of byle length (DB), and the slorage
detining pseudo insiruction (DS).

Refer 10 2.1.1 for aciual entry of statements.

When the relocatable assembiar is used, the program main body (the instruction mnemonics of the
MSME6201) is almost abways enlared in ihe rejocatable code segment.

The aciual entry of abschute data segment is explained here. The absolute data segment is entered to
assign the data space fo a specilicaddrasses-iorexamplo.to ssimtmuataspacalorgbbalusa 1o
Page 0, or to allocate the stack space 1o cenain fixed addresses. The entry of ihe absokte data segment
is usually performed by the label and storage defining pseudo instruction {DS).

tn Figure 1-11, the exampie enlry assigns data of word length to WK_0, WK_1, WK_2, WK_3, and data
of byts length 1o BUF_0, BUF_1, BUF_2, BUF_3 slarting al the address 00COy. When cnly the label
vales of the preceding example are desired 1o be defined, the DATA pseudo instruction may be used.
The corresponding entry is shown in Figure 1-12. The laiter enlry ditfers from the former endry in that data
space allocation is not possible 1or the lattes. When the relocatable assambier is used with the lattar eniry,
another relocatable segment might be allocated lo the space behind 00C0y. This may be a concem,

- o~

Chapter 1 Overview
Memory Configuration

while no such concern exists for the absolute assembler. DATA pseudo instruction is used for

suballocation of the general dala space or renaming of the label. An exampie of subaliocation is shown in
Figure 1-13. By placing the entry in Figure 1-13 atter the entry in Figure 1-11, a data space of word length
is subaliocated 10 the low and high byte spaces.

DSEG AT 0OCOH
WK_O: DS 2 ; Space for word long data
WK_1: DS 2
WK_2: DS 2
WK_3: DS 2
BUF_o: DS 1 ; Space tor byta long data
BUF_1: Ds 1
BUF 2: 0s 1
BUF_3 DS 3

H

Figure 1-11. Absolute Data Segment
WK_0: DATA OOCOH
WIK_1: DATA WK_0+2
WIK_2: DATA WK_Oed
WiK_3: DATA WK_0+6
BUF_0: DATA 0CO8H
BUF_1: DATA BUF_D+1
BUF_2: DATA BUF_0+2
BUF_3: "DATA BUF_0+3

}

Figure 1-12. Specifying by DATA Pseudo Instruction

WK_oL
WH_OH
WK_IL
WK_1H
WK 2L
WK_2H
WK 3L
WK_3H

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

WK_0
WK_Ds1
WK_1
WK_1+1
WK_2
WK_2+1
WiK_2

WK_3+1

; Low byte of WK_0
: High byte of WK_0
; Low byte of WK_1

; High byte of WK_1
; Low byte of Wi{_2
; High byie of WK_2
:Low byte of WIK_3

; High byte of WK_4

Figure 1-13. Specifying by DATA Psaudo Instruction

Chapter 1 Overview
Memory Configuration

As the last kem described in this discussion on absolute segments, an example of a real program entry of
bit segments is introduced.

The entry of a bil segment Is performed by the label and bit long space defining pseudo instruction
(DBIT), just as the entry of the data segment is done. The exacl address arrangement of the bil segment
is as shown in Figure 1-8. i is rather unwieldy 10 enter the address behind the AT portion of the BSEG
pseudo instruction or the operand of the ORG pseudo instruction that controls the location counter directly
with the bit addresses. For instance, bit 2 of byte address 1 is bit address 10. It Is coded as 0001H .2,
hence the following relationship exists.

| address bit = address byte. n = addressbytex8+n |

An exampie of the entry of bit segments is described here. The loliowing entry specifies the value of the
four flags FLG_0, FLG_1, FL.G_2, and FLG_3 staning at bit 0 of byle address DOy.

BSEG AT 00DOH.0

FLG_O: DBIT
FLG_t: DBIT
FLG.2 DBIT
FLG3: OBIT

[T Y

Figure 1-14. Entry of Absolute Bit Segment

in Figure 1-14, the first line statement "DSEG AT 00DOH.0" may be subslituted by the statement "BSEG
AT 0104" .

The absolute bit segment may overlap partially or fully the absolute data segmenl. For example, the word
long data space WK_0 is defined as the data segment; this is shown in Figure 1-13. For convenience, it
became necessary for the lower four bits starting al WK_0 to be accessed using bl unils, and the four bits
are identified in the bit unit as WK_00, WK_01, WK_02 and WK_03. The new anlry is easily made as
shown in Figure 1-17 where the bit segment starts at WKX_0.0. The assembier does not issue a waming
for the overiapping condition.

There are two ways 10 specify the symbol which has the attribute of a bit segment. One way Is 10 specdy
the abel within the bit segmeni as shown in Figura 1-15, and the clher way is 1o specify the label directly
using a BIT pseudo instruction. The BIT pseudo instruction imparts values and the bil segmenl attribute to
the symbol as shown in Figure 1-16.

BSEG AT WK 0.0
WK_oo: DBIT
WK_01: DBIT
wK_02: DAaIT
WK_03: DBIT

P Y

Figure 1-15. Bit Segment i$ Overlalid on Data Segment of Figure 1-12

1-28

Chapter 1 Overview
Memory Configuration

WK 00: BIT WK_0.0
WK _01: BIT WK_0.1
WK 02: BIT WK_0.2
WK 03: BIT WKo.3

Figurs 1-16. Equivalent Result (to Figure 1-15) Obtained by
BIT Pseudo Instruction

[NOTE] The description of the coding formats and the lunctions of the assembler pseudo instructions
given here is not complete because the main objective is o explain tha concept of segmeants.
For the detalls of the coding formats and the functions of the assembler pseudo instructions,
refer 1o the assembler manual.

«Dascription of Relocatable Segmentss

The entry of relocatable segmaents is dascribed here, and i is more complex than the eniry of the absolute
segment. For the absolute segment, the entry is staned by simply stating the pseudo instruction such as
CSEG, DSEG or BSEG. Forihe relocatable sagment, the name and type of segment are declared by the
SEGMENT pseudo instruction, and even the type of relocation is declared if necessary. The sniry format
of tha SEGMENT pseudo instruction is shown balow.

segment name SEGMENT segment type [relocation type) {

The square brackel, [], for the relocation type implies that this entry in the statement is oplional. This
segmaent delining statement can be placed anywhere in the program as long as it precedes the RSEG
pseudo instruction. However, it is usually placed at the head of program with other symbotl defining
slatements.

The segment type specilies the segment to be delined: elither code, dala, or bit segment. The refocation
lype means the restricting factors when the linker allocates the segment to the memoary addresses. The
segment and relocation types are shown below.

Segment Type
CODE defined segment is code segmemn
DATA defined segment is data segment
BIT defined sagment is bit segment

Relocation Type

UNIT maich segment head with unit boundary
WORD match segment head with word boundary
oCT match segment head with 8-byte boundary
PAGE match segment head with page head

NUMBERR match segrnent head with boundary of n units where net, 2,
4,8,...2048 (power of 2)

INPAGE match segment head within page

In the foliowing description, the unit means Lhe smallesl unit of segment used In the accessing oparation
invoived; hence the unit for the code and data segments is a byte, while # is a bit for the bit segment.

1-29

Chapter 1 Overview
Memory Configuration

The UNIT in the relocalion type above means “allocate any place®. Without declaration of the relocation
type listed in the above table, the assembler assumes that the segment possasses the UNIT afiributes
and processes the segment accordingly. Therefore, UNIT is not usually used unless its explicit
understanding Is raquired. As il is easily undersiood trom the preceding discussions, the attributes of
WORD and OCT concemn the word boundary and the local register accordingly.

PAGE and INPAGE obviously take inlo account the page structure of the data space. NUMBER n pertnits
the specification and aliocation of boundaries which can not be defined by WORD, OCT and PAGE.
Number, in this case, means 50 many units, and the uni is byte lor code and data segments and bit for
tha bit segment. The attributes of UNIT, WORD, OCT and PAGE are inclusive in ascending order. For
example, specilying OCT (its atiributes) necessarily specifies all of tha attributes of UNIT and WORD, and
specilying PAGE satisties all of the aftributes of UNIT, WORD and OCT.

To enter the retocatable sagment statement, the RSEG pseudo instruction whose format is shown below
is usad. This stars the eniry of the segment indicated in the format.

| RSEG segmentname |

Foliowing the entry of ASEG pseudo instruction, each segment is entered in the same manner as tor the
absolute segment, 80 no further descriplion is given. #t should be noted that cveriapping the data and bit
segments is nol allowed for relocatable segments, while a similar overlapping for absolute segments is
permissible.

For reference, an example entry is given in the following pages for an actual case whare the absolute and
rolocatable segments coexists. Following this exampie, another important concept for the relocalable
segment, “partial segment”, will be explained.

1.%Nn

Chapter 1 Overview
Memory Configuration

{Examgple of Segment Eniry)

MAIN SEGMENT CODE

MAIN_BUF SEGMENT DATA WORD :
; Flag Area for Main Routine

MAIN FIG SEGMENT BIT
STACK_SIZE EQU 256

eeess Dalinition of Stack Space eesses
DSEG AT 0280H-STACK_SIZE

; Main Routine

; Stack Size

Bufter Area for Main Routine

Raserve a stack space with a size of

Ds STACK_SUIZE-1 ; STACK_SIZE siarting at address 0280H
STACK_BTM DS 1
; weese Vactor Tabla sssss
i CSEG AT 00COH.0

Dw START ; Resat vector

DS 38 ; Raserved for future
; sesss VOAL Tablg +eeee

CSEG AT 0028H

Ds 1€ ; Reserved for future
; seess Flag Dafinition #sees

BSEG AT 00COH.0
FLGO: DB 1
FLG1: DBIT 1
FLG2: DBIT 1
FLG3: DBIT 1

DBIT 4 i Reservad for luture
; weses AOM Table wenes

CSEG AT 3CO0H
TBL_1: DW S56DCH, 0013H, 9FA4H, DA3TH
TBL_2 DB O3H, 05H, 5FH, 87H, 0C4H, 0A1H
: snnss WORK seesn

DSEG AT 00CIH
WIK_0: ps 2
Wi _1: Ds 2
WK_2: DS 2
WK_3: DS 2

(Continued on next pags)

1-21

Chapter 1 Overview
Memory Configuration

LIEL]

» MAIN ROUTINE «

ey *h

RASEG MAIN

{START:

Main Routine Program Saction

RSEG MAIN_BUF

Main Routine Data Sectian

RSEG MAIN_FLG

Main Routine Flag Saection

END

Chapter 1 Overview
Memory Configuration

«Panial Segmentss

Sometimes, when creating program code, ralocatable segments are referred o as partial segments.

Hera is an example. Imagine the situation in which three programmaers, A, B, and C, are in the process of
designing a program as a team. Assume that a moduie in the program cails six subroutings which are
named SUB1, SUB2, SUB3, SUB4, SUB5 and SUBS, respectively. Programmer A Is assigned to SUB1
and SUB2, Programmer B 1o SUB3J and SUB 4, and Programmer C is assigned to SUB5 and SUBS.
Each programmer works on his assigned subroutines independently using three ditferent files. The
completed files are assembied independently and the resulting relocatable objects are linked by the linker.
The six subroutines, SUB1 through SUBS, are lumped in the code segment named SUBROOT that wili be
allocated lo a continuous area ol the memory space. Then, 1o implemeant the preceding plan, the
programmers enter their slatements in the source programs in the following manner.

1. Define ihe relocatable code segment named SUBROOT by SEGMENT pseudo instruction.
2. Each programmer enters RSEG SUBROOQT prior 1o entering SUB1 through SUBS.

Programmaer A's File Programmer B's File Programmar C's Fila
SEGMENT SUBROOT SEGMENT SUBROOT SEGMENT SUBROOT
CODE E E
{
RSEG SUBROCT RSEG SUBROOT RSEG SUBROOT
sSuBt: SUB3: suBs:
Swaternents of SUB1 Statements of SUB2 Statamants of SUBS
subrouting subrouting subroutine
RSEG SUBROOT RSEG SUBROOT RSEG SUBROOT
suB2: SUB4: SuBs:
Statements of SUB2 Statements of SUB4] fSlatornonla of SUBG
subroutina subroutine subroutine
i

Flgure 1-17. Example of Partlal Segment Coding

Tha filgs, some of which are in shown in Figure 1-17, are assembied by the assembler RASG66K, and
each of the resulting three object files contain two of the relocatable segments named SUBROOT. When
the three object files are iinked, the linker will fing six relocatable segments of the identical name;
however, the linker will consider them as one entity of SUBROOT, and allocate the six segments 1o a
continuous memory space. Each of the six segments prior (o the last allocation by the linker is called a
padial segmert. Each panial sagment;

+ is a relocatable segment

= has an identical segment name

* has identical segment attributes

= has identical relocation afiributes

+ implies the existence of plural segments

Amang relocation attributes, the UNIT attribute shoulkd agree with all other atiributes.

The linker regards the partial segmenis as the subdivisions of one larger segmenl whenever they are
found, and aliocates them Io a cortinuous space.

1-33

Chapter 2. Addressing Modes

1. RAM Addressing MOAesrrvecerrresssrsiscsscssesessensmmessssmssssesessansres - 21
1.1 Register Addressing ... s 201
(1) Accumutator Mdressmg 241
{2) Pointing Register Addrassmg e 2-1
{3) Control Regisler Addressing22
{4) Local Registar Addressing.... e 822
{5) System Slack Pointer Addressmg 2-3
1.2 Page Adressing ...t re e et e ea et eeaene b e srrene e e neneme e 2-3
m Curreni Page Addresslng et teatfeemea e eae et emrnt e reeeee b ettt e eben 2-3
{2) Zoro Page Addresssing 24
1.3 Pointing Register INGirecd AQAraSSINGg st eee s e sermenae s sranees 25
) Data Pointer indirect Addressing....... v 25
(2) User Stack Pointer Indirect Addressmg (wnh 8-bil Displacemenl) FOTR 2.5
{(3) index Register Indirect Addressmg (wrm 16-bit Dssplacemem) e ennenentererras 2-6
1.4 Immediate Addressing.... e ranenr e baas 27
« Advice About RAM Mdressmg- e eteue b arnee et s rae st e nemaat st mranaan et mrname s enemervnrerrrna e sarens @ T
2. ROM Addressing Modes GEhabeertotiserien e sea s R PR e a Sua At s s mmnmnn e st mnarnery 28
2.1 Direct Addrassing 28
22 Indirect Addrassmg .. 28
() Single Indsrect Addressmg 28
(2) Double Indirect Addressing29
(3) Indirect Addressing with 16-bit base .. SO NSSRPUNE-2% |
3. Bit Addressing Modes............... Lheesstesasseatsesnsseseesanst ranmessanas smteinmasesensensannnsernrs 212

4. Logical Blt ADAress SPacevurireceeeecen e cer e e e e resereasensennns 213

Chapter 2 Addressing Modes
RAM Addressing Modes

The MSME6201 provides two independent memory spaces, namely the program and data memory
spaces. Tha MSM66201 accommodales the accessing of these memory spaces through a numbar of
different addrassing modes. The program memoary space usually consists of ROM and is referred 10 as
ROM space in this chapter. The dala memory space generally consists of RAM and is referred to as RAM
space. The RAM space inciudes registers, counters, ports and other pieces belonging to SFR, as well as
the pointing and local registers. Addressing the RAM and ROM is relerred to as RAM addressing and
AOM addrassing respectively.

1. RAM Addressing Modes

Except tor a fow cases, AAM addressing modes are generally used lor the operands of the Instructions.
There are five major classes of RAM addrassing modes, which are listed below:

Register addressing

Page addressing

Poiming register indirect addressing
Stack addressing

Immadiale addressing

O oe W o

1.1 Register addressing

Register addressing, for accessing the contenis of the registers, includas the foliowing:

{1) Accumuiator addressing

[isymool A |

The above is the addressing mode for the accumulalor. it is applicable equally to word long and byte long
data.

Example: L A, #0 LB A ¥
MOV A, er0 MOVB A, #0
{2) Pointing registier addreasing

[Symbol]l DP (data pointer)
USP (user stack pointer)
X1, X2 (index register)

This addressing moda is for pointing registers, handling the registers individually. This addressing mode
can be used in word lengih instruction only.

[NOTE] Thers are eight unils of pointing registers (PR0 through PR7), and the units o be accessed by
These modes ara specified by the system control base (SCB).

Chapter 2 Addressing Modes

RAM Addressing Modes
Example: L A, DP MOV USSP, A
MOV X1, #2000H
ROL xX2
{3} Contro! register addressing

{Symbol] LRB ({local register base)
PSW (program slatus word)
PSWH (program slatus word upper byle)
PSWL (program status word lower byte)

Above, Ihe addressing modes for the local register base and program stalus word are shown. LRB and
PSW are applicable only to word long data, while PSWH and PSWL are applicabie only to byte kong data.

Example: L A, LRB MOV PSW, #00H
MOVB PSWH A AOLB PSWL

{4) Local reglster addressing

[Symbol] o—7 {local register addressing)
er0—er3 (extended jocal register addressing)

Above. the addressing modes for Yocal registers are shown. The base address of the set of the local
regisiers is generated by adding three bits of 010 the contents of LAB (locat register base).

Furthermore, r0—7, and erd—erd, may respectively be stated as R0—R7, and ERO0—ER3.

LRB ooo 0
STRNTNENANTRIT N Es% TERNRNE

n
TN
re
jIRREEN! ord
3
111111
4
LILlll or2

]
Hiiiil
Example: MOV A er0 MOVB A, 1]
MOV er3,er2 MOVB R2 A2 11T ord
7

syl

2-2

Chapter 2 Addressing Modes
RAM Addressing Modes

(5) System stack pointer addressing
[ISymbol ssp |

Above, the addressing mode for the system stack pointer is shown, it is applicable only to word long
data.

Example: MOV A, SSP MOV SSP, #1000H

1.2 Page addressing

In this addressing moda, an address is specifiad by ofisetting trom the starting address ol the page. There
are two modes of page addressing: curreni page addressing and zem page addressing modes. In current
page addressing, the offset Is given from the staning address of the page indicated by LRB (local
register). In zero page addressing, the offset within Page 0 is not affecled by LRB.

{1) Current page addressing

{ (Symbol off*' Ng?]

As shown in the diagram, bits 12 through 5 of LRB indicate the page address in RAM space. Sits 4
Ihrough 0 of LRB with an additional 3 bils form the address (8 bits) within the page. All 8 bits are 0 for the
base address of the page, and the ofiset (0 ~ 255) is given from the base address.

This addressing mede is applicable to word long data and byte long data.

[NOTE] 1 "oft" Is the agreed code 1o speciy currant page addressing. it may be written as "OFF™.
However, tha latter expression resemblas OFFH lor the immediate value. To avoid possible
confusion, the use of "off” is recommended.

2 Ng is the amount of the offsel within the page. However, at the coding of the source program,
the absokite, non-offset addrass itself or a symbol such as the label is entered. The
programmer shoukd not be concerned with offsetting,

Chapter 2 Addressing Modes

RAM Addressing Modes
----- L] m
000 odo 0.0 X W
U ERBL gy PROOSI8% T o
15 5 4 1]
1
XXOTHl §y 4441
XXO2H| 111y
Byle & Curren
off Na page
—> XXNgl i1l }unﬂ Word
] \ used [und
1 used
Ll
XXFF
L EIREEREE y
Example: L A, oft 2000H MOV A, off WORK_01
1B A, off 2000H MOVE A, oft WORK_01
{2} Zeto Page addrassing
[(Symbol Ne B
Above Is the zero page addressing mode, whare ihe ofiset is given within Page 0 {addressas 0 through

OFFH) in the RAM space. This addressing mode is applicable to word long and byte long data.

RAM N

Q000K Y 1§ y1)])
000t 111111
0002H| 1y t111

| N }Bﬁe > Page 0
oo LT 1L LI

! used

LLLtl
OOFFH| 11111 J

simplify the entry of addresses 1o SFR, the assembler defines the
data address symbols, some of which are easily mislaken as one of the special assembler
symbols used to describe the addressing modes. Care should be observed. Forinstance, Aisa
spacial assambler symbol used to describe addressing modes such as AGG for zero page
addressing, and off ACC for current page addressing.

[NOTE] SFR is located in Page 0. To

Chapter 2 Addressing Modes

RAM Addressing Modes
More examples of contusing symbols are listed balow.
Examplas 1: MOV PSW, A register addressing
MOV APSW, A z6r0 page addressing
MOV off APSW, A current page addressing
Example 2: MOV LRB, A registar addressing
MOV ALRB, A zoro page addressing
MOV off ALRB, A current page addrassing
Example 3: MOV SSP A register addressing
MOV ASSP, A zero page addressing
MOY oft ASSP, A currert page addressing
Example 4: MOVE PSW, A register addressing
MOvVB APSW, A zem page adkiressing
MOovB off APSW, A currant page addrassing

1.3 Pointing register indirect addressing

This addressing- moda is performed by the pointing registers using indirect addrassing, and i is used for
both word and byte length instructions.

(1) Data pointer indirect addressing

[isymon (o) |

The RAM space whose address is specilied by the contents of the data peinter is accessed by this mode.

RAM 4 Lower Address

oP [DP) Gyte
il =2 Illllll}“"“ Word
15 Q

used punit
SENEEN used

Example: L A, [DP]
LB A [DP]

(2) Uzer stack pointer indirect addressing {with 8-bit displacemaent}

[[Symooi] +NgfUSP} 1

Chapter 2 Addressing Modes
RAM Addressing Modes

The RAM space whosa address s specified by the sum of the user stack pointer contends and tNg
(displacement) is accessad. tNg is in tha range from +127 to -128 or the equivalent range specified by
symbals.

RAM 4 Lower Address

uskP
LT '—_—> (L1111
1 H
TERANN
i '
:]
1Ny :
E]
: TN, [USP Byte
R FTRV TN }w Word
used) unit
Lidlll used

{NOTE] in the machine coda, tNg Is the displacement code sign which is given by the upparmost bit;
however, the integer between +127 and -128 itsell is used al program entry. For instance, the
coda for the displacement of -1 Is FFH and the entry seems to be OFFH{USP]; however, it is
hosorrocl for the assembler, because its value exceeds +127. The comed entry in this case is -1
{UsPL

Exampla: L A, T0H{USP] LB A, -120{USP]
ADD A, DISP1[USP]

{3) Index regisier Indirect addressing (wih 16-bhit base)

[[Symbol NiglX1l NielX2] |]

The RAM space whose address is the sum of the base address N1g (16 bits) and the contents of the
index register is accessed.

The addition of Nyg and X1, or Nyg and X2 is performed in 16 bt length without sign, and the overflow is
ignored. The maximum space addrassable is 64K bytes: namely, Ihe entire space of the current bank.

2-6

Chapter 2 Addressing Modes

RAM Addressing Modes
RAM 4 Lower Address
AL U FTRRNEE
X1 or X2 !
oo = i E
15 0 : : 1
Byte
e) T }un'ﬂ Word
used > unit
Liflil used
] H
Example: L A, 5000H{X1] LB A, TBL_BASE[X2}]
1.4 Immediate addressing
([Symbol] #Na. #N1g]

The numbar or symbol in the operand itsetf specities tha address. The operand statement is #Mqg for
word long data and #Ng for byte long data.

Example: MOV er0, #1234H MOVE 10, #12H

=Advice About RAM Addressing»

in RAM addressing modes, there is not a B4K-space direct addressing mode. The design of the CPU Is
basad on the idea of processing a job complelety within a page of 256 bytes. The data area required for
the job is conlained in the page as much as possible so thal direct page addressing {off NB} can be used.

On the other hand, some data area need to be accessed by many processes. For example, a global
variable area may need to be accessed by multiple subroutines. Special function registers (SFR) are
another good example. This is why SFR is allocated 1o Page 0, and usually accessed by zero page
addressing. Also, allocating a global variable area to Page 0 enables the use of zero page addressing
Tegardlass of the value of the local register (LRB).

When direct accesses are dasired beyond the page limit of 256 byles, the index-register indirect
addressing with a 16-bit base (N1g[X1], N15[X2]) Is used. X1 and X2 are 0 while Nqg is the address of the
object in this case. However, the praceding addressing is not efficient because of the large numbers of
bytes required for the instruction and the number of cycles it uses. Currant page addressing used with
carsfut data arrangement or register addrassing with the local registers slrategically placed in the areas
should be employed as much as possible for batiar program efficiency.

Chapter 2 Addressing Modes
ROM Addressing Modes

2. ROM Addressing Modes

ROM addressing is used for accessing program mamory spaceé which consisls of on-chip ROM and
exlemal program memoary. ROM addressing Is classified into two types, the direct and the indirect type.
The indirect addrassing type is further classilied into 1hree sub-types: single indirect addressing, double
indirect addrassing, and indirect addressing with a 16-bit basa.

Direct addressing l

l?C)M addressing

indirect addressing Double indirect |

Indirect with 16-bit base |

The ROM addressing modes are specified only in the operands of the ROM table refarence instructions
such as LC, LCB, CMPC, CMPCB.

The addressing modas are described below.

2.1 Direct addressing

[(Symboi] N'1g |

The relerence address is direclly specified with 16-bit immediate addressing N°*1s.

Example: Lc A, 2000H
LC A, DATA_TABLE
LCB A, 3800H

2.2 Indirect addressing

Indirect addressing inciudes: single indirect addressing. In which the register and the contents ol he RAM
specilies the object address; double indirect addressing. in which the contents of the RAM addressed by
the poinling register specifies the object address; and indirect addressing with a 16-bit base.

{1} Single indirect addressing
[Symbol] 1. local register indirect fery], [ort), [er2], [erd]
2 pointing register indirect [DF], X1}, [X2], [USP]
3. SSPINGIIBCt coovvvrveerereseeerasirns [SSP]
4. LAB indirect..........cecesscnesernnn- [LRB]
& RAM indirec).......ocosvvvrrmoereeenen- [0 N, [Nal

2-8

Chapter 2 Addressing Modes
ROM Addressing Modes

For cases 1—d4, tha contents of each 16-bit register {er0—erd, DP, X1, X2, USP, SSP, LRB) is the
addrass of ihe ROM 10 be accessed.

ROM 4 Lower Address

Register :> Byte
SEENENNTNUREEEE |n||||}""“ Word
15

used punit
TR used

For case 5, the contents (16 bits) of the RAM which is specified by current of Zero page addressing in
word length is the address of the ROM 10 be accessed.

RAM ROM 4 Lower Address

Byte
oy [y | & Illllll}“"“ e

of Ny used unit
Ll NN J usee
' '
Example: LC A, |erC] LC A, [DP]

LC A, |SSP) LCB A [LRB]

LCB A, [oft 20H) LC A, |off DATA_TBL}

LCB A, [ACC])

(2) Double Indirect addressing

The section below describes double indirect addrassing, in which the RAM addressed indirectly by the
pointing ragisier specifies the ROM indirectly.

[Symbol] 1. DP double indifeclccoceeeivenrinsnsenseernrasenns [[DP]]
2. USP double indirect {with signed 8-bit disptacement} .. [tNa[USP]]
3. Index regisier doubla indirect (with 16-bit base)........... [N1e[X1].IN1s[X2]]

2-9

Chapter 2 Addressing Modas
ROM Addressing Modes

RAM ROM 4 Lower Address

DP Lower address Byte '
sllJlllllllllllI°E:>IIIIlH > |||“}um Word
1

Upper adaress used Junit
wordunt | 111111 LLLLLL] used
addressing 1
Example: ic A, [[OP]

LC A [10USP]
LCB A, [1000H[X1]]
LC A [OFFSET_1[X2}i

(3) Indirect ackiressing with 16-bit bass

[Symbel] 1. pointing register indirect..............ceevcnecnencircrcecenreenee.. N*16]DP], N*16{X1]
N*1g[X2]. N*1g[USP]
2. RAMindirect........................... S——— WET- (1§) T Y]

The sum of the immediate address (N*yg, the basa), and the contents of the pointing register or the RAM
{word long) is the address of the object.

| Pointing Register indirect |

ROM 4 Lower Address

Sl SYRURE N

H 1
DP/ X1/ X2/ USP : !
NN AN ':>s i i
15 [§]]
N6 (XX] }Bx"
R unit | Word
(LIg)p)]fume | Wo
IENNEE] used
) 1

2-10

Chapter 2 Addressing Modes
ROM Addressing Modes

RAM Indirect

ROM 4 Lower Address

i
|
i
RAM
Lower Addrass . ! e N
i A ITTRRE Y
off Ng H t
or Lower Address : i i
K f = | :
Uppar Address ; ! |
| {word unit) Ipﬁ 1110 I - i ae
Higher Address ¥ : . e ’x; l }u it | Word
used »unit
111111 used
Example: Lc A, 1000H[DP)

LC A, EXT_ROM_BASE[X1]
Le A, OFFSET_1joft DISP)

2-1

Chapter 2 Addressing Modes !
ROM Addressing Modes :

RAM ROM 4 Lower Address

oP Lower address Byle ‘
RRREITNITIRITR1 e Nk Ei>un|||}""" Word
15 3 Upper address used »unit
Word unit 1111111 THRRAE used

addressing H H]

Example: LC A [DOP]
LC A [-10{USP]
LC8 A [1000H[X1]]
LC A [OFFSET_1[X2]

(3) Indirect ackiressing with 16-bit bass

[Symbol] 1. POINtNG rOGISEr INBIECEv...rvrrrrmerrsrcresseesssreeesenneenerss N*16[DP], N*160X1]
N"36[X2], N*16[USF]
2. RAMINGHOE -..oreeooecreereee e eeeees e N*y5[off Ng], N*16[Ng]

The sum of the immediate address (N*1g, the base), and the contenis of the pointing register or the RAM
(word long) is the address of the objedt.

Pointing Register Indirect |

ROM Lower Address
]
1
i

Sl STURRET|
: I
DP/X1/X2/USP i ! !
LLLLLEELLLLLE ':> 1 i
! ! i
NwPx] |\ Bre
R TN NAT }::;d Word
SRRNN used
1

2-10

Chapter 2 Addressing Modes

Lower Address 4 ;
off Ny

ROM Addressing Modes

ROM .4 Lower Address

RAM ,
(g Ny

IHEEEN

or

Ne

{

- —

(word unit)
Higher Address ¥

Example:

U

H
Lower Address
L] =

r Address

-

N7g(XX]
LIl

AN

LC A. 1000H[DP)
LC A, EXT_ROM_BASE[X1]
Lc A, OFFSET_1[off DISP]

Byte
} unit Word
used »unit
used

2-1

B Acdgressing Modes

3. Bit Addressing Modes

The addressing instruclions of tha MSMB6201 includes those which permit accessing a specific bi
desired. _Exanplas ol thesq are SBR and S_B. 1]15 addressing of the desiraq bit is realized by_ combining

{1) Specitying a blt using the accumulator indirectty

This mode appears in the SBR, TBR, and MBR instructions. Only the following RAM addressing modes
are avallable to specity the byte location.

L 10—7, PSWH, PSWL, ofl Ng, Ng, [DF], ING[USP], Nyg[X1], Nqg{X2]]
Example: SBR Y RBR PSWH
TBR off FLAGS MBR C. [DF}

(2) Specitylng the bit directly

This mode appears in the SB, AB, and JRB instructions. Addressing is accomplished by specifying the
object bit with the bit location (from 0 1o 7) and byle location specitied by the RAM addressing described
in {1).

In Ihe statement (shown below), the RAM addressing entry and the bit icalion sniry are connected with
adot ().

[[Symbol RAM ackdressing code.Bit location |

Example: 88 0.2
RB PSWH.BIT_POINT
JBR off FLAGS.0, TIMER_LOOP

2-12

Chapter 2 Addressing Modes
Logical Bit Address Sgca

4. Logical Bit Address Space

Bit addressing for the MSME6201 is performed by specifying the bit address with the byte location
spacilied by RAM addressing, and the bit location within the byte thus specified.

There is no physical bit address space for the MSME6201; howaver, its use for the assembler statement
is acknowledged. Because the bit addressing statement with a combination of byte and bit locations is
permitted for assemblers of the MSMBOCS 1 series, such bit address staternents are also recognized by
the MSMBE201 assembler. Strictly speaking, the bit address space is a logical concept, and its
realization at the assembier level is accomplished by combining byle and bit locations.

The logical bt addresses of the MSMB6201 stant at address 0 (that is, location 0 of the data memory) and
they progress in ascending order: address 1, address 2, and so on.

Logical Bk Address

Byte
location
D 7 [} 5 4 3 2 1 0 [+
A F E (v A 9 8 1
T 17 16 15 14 13 12 1 i0 2
A 1F 1E 1D 1€ 1B 1A 14 18 3
27 26 25 24 23 22 21 20 4
M
E
M
O
R 7FFF7| 7FFF8| 7FFFS| TFFF4) 7FFF3} 7FFF2| 7FFF1| 7FFFO FFFE
Y 7FFFE | 7FFFE | 7FFFD | 7FFFC | 7FFFB| 7FFFA| 7FFF9| 7FFF8 FFFF
Bt 7 6 5 4 3 2 1 0
location

Chapter 3. Details of Instructions

1. Classification of INSIFUCHONS ...t s, 3-1
2. INSITUCHION SBL....ocorisriremesrressssrssrsrsrsssessssreosssnsssrssassarssmmsemssansesasmsssanmmssssnssas 35
3. Summary List of Instructions..... emereiesiessreerEsresbRESEeEbent et rennesnrsRet 3-180

Chapter 3 Detalls of Instructlons
Classification of Instructions

The instructions of the MSME6201 may be classified in 16 groups as shown in the following table,
*Classification of Instructions®,

In the sets of Instructions, the details of all instructions will be explained in alphabetical order.

Tables 3-1 through 3-35 at the end of this chapter are the summary list of the functions for alt of the
instructions.

Ctasslfication of Instructions

Group Mnemonic Instruction name
L 16-bit Load
LB 8-bit Load
ST 16-bit Store
STB 8-bit Store
MOV 16-bit Move
MOVB 8-bit Move
{1} Data Transfer CLR 16-bit Clear
Instructions CLRB 8-bit Clear
SWAP 16-bil Swap
SWAPB 8-bit Swap
XCHG 16-bit Exchange
XCHGB 8-bit Exchange
XNBL 8-bit Nibble Exchanga
{2) Stack Operation PUSHS 16-bit Push (System Stack)
Instructions POPS 16-bit Fop (Syslem Stack)
ROL 16-bit Left Rotate
ROLB 8-bit Left Rotate
ROR 16-bit Right Rotale
RORB 8-bit Right Rotate
(3) Rotate/Shilt SLt 16-bit Left Shift
Instructions SLL8 B-bit Left Shift
SRL 16-bit Right Shift
SRLB 8-blt Right Shift
SRA 16-bit Arithmetic Right Shift
SRAB 8-blt Arithmetic Right Shift
INC 16-bit Incrament
{4) Increment/Decrement{ INCB 8-bit Increment
Instructions DEC 16-bit Decrement
DECB 8-bit Decrement
LCc 16-bit ROM Reterence
{5) ROM Table LCB 8-bit ROM Reference
Relerance CMPC 16-bit ROM Compare
Instructions CMPCB 8-bit ROM Compare

341

Chapter 3 Detalis of Instructions

Classification of Instructions

Group Mnemonic Instruction name
MUL 16-bit Multiply
MULB 8-bil Multiply
DIv 16-bit Divide
Dive 8-bit Divide
ADD 16-bit Add
{6) Asithmelic Operation | ADDB 8-bit Add
instructions ADC 16-bit Add with Carry
ADCB 8-bit Add with Carry
sup 16-bil Subiract
sSuUBB 8-bit Sublract
SBC 16-bit Subtract with Carry
SBCHB 8-bit Subltract with Carry
AND 16-bit Logical AND
ANDB 8-bit Logical AND
{7) Logica! Operation OR 16-bit Logical OR
Instructions ORB 8- bit Logical OR
XOR 16-bit Exclusive OR
XOR8 8-bit Exciusive OR
{8) Compare Instructions { CMP 16-bit Compara
CMPB 8-bit Compare
{9) Decimal Adjust DAA 8-bit Dacimal Adjust {Add)
Instructions DAS B-bit Decimat Adjust (Sublract)
(10} Code Extend EXTND Coded Byle to Word Extend
Instruction
SBR Set Bit (Register Indirect Bit Addressing)
RBR Reset Bit (Register Indirect Bit Addressing)
TBR Test Bit {Register Indirect 8il Addressing)
(11) Bit Operation MBR Transtor Bit (Register indirect Bit Addrassing)
Instructions 5B Set Bit {Direct Bit Addressing)
RB Reset Bt (Direct Bit Addressing}
MB Transfer Bit (Direct Bit Addressing)

32

Chapter 3 Detaiis of Instructions
Classification of Instructions

Group Mnemonic Instruction name
SJ Shon Jump
J 16-bit (64K byte) Space Jump
JC Conditional Jump
JBR Bit Test and Jump

{12) Jump/Call Group JBS 8it Test and Jump

Instructions JANZ Loop

SCAL Short Call
CAL 16-bit (84K byte) Space Call
VCAL Vector Call
RT Retum from Normal Subrouting
RTI Retum from interrupt Routine
SC Set Canry
RC Reset Camy

(13) Other instructions BRK Break {System Resal)
NOP No Operation

Chapter 3 Details of Instructions
Instruction Set

ADC A, obj 16-bit Add with Cary
| ob! |

Function

#MN1g, orN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], #NglUSP], N1g[X1], N1g[%2]

A +— A+o0bj+C {word long)

[Description]

This instruction adds together the contents of the accumulator, the addressing object,
and the carry (C) in @ word long operation.

This instruction is influenced by the data descriptor (DD).
For tha instruction 10 be execuled correctly, i is necessary to sel DD=1.

Flags
Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
- » . 1

| Codes/Cycies |

CODE CYCLES
obj BYTE
1 2 3 4 5 6 iNT EXT

A

#Nyy 86 N, Ny) —
N 18+N 3 7
DP 92 92 4 —_
X1 90 92 4 —
X2 91 92 4 -_—
usp Al 92 4 -—
SSP AD 92 4 -_—
LAB Ad 92 4 -_—
ol Ny 97 | N, 4 9
Ns B5 | Ny | 92 8 —
[oF) B2 | 92 & | 10
NJUSP| B3 | N, | 92 7 1
NyalX1] B0 | M | Nu | 92 8 12
NP2 B1 | N | Na | 92 B 12

Chapter 3 Detalls of instructions

instruction Set

apam——

ADC obj, off Ng

16-bit Add with Carry

[

e, DP, X1, X2, USP, SSP, LRB, off N'g, N'g, [DP], tNg[USP], N1g[X1]. N1g[X2]

I Funcilon]

obj «— obj + off Ng + C {word long}

| Dascription |

This instruction adds logether the contents of the addressing object, the data memory
specified by curent page addressing (otf Ng), and tha carry (C) in a word long
operation.

The resuiting sum (16 bits) is stored in the addressing object, and the cary over from
the highest (most significant) bit Is stored in the carry (C}).

Flags
Flags atiected by execution: Flags attecting execution:
ZF | CF | HC | DD DD
» L] *
| COdesl-cﬁes |
CODE CYCLES
obj BYTE INT | INT E¥ E:Tz — obj
1 2 3 4 5] INT JEX [INT|EX | «—off Ng
T T
A
LALRTS
oiN 44+N 93 Ng 71 —1—1]20
DP g2 93 Ny 7l -] —
X1 90 93 Ny 7|16 —] —
X2 91 a3 Ny Tl 1] —
usp Al 93 ™ 716} -1 —
SSP A0 93 Ng 7] —| —
LRB Ad 93 Ns rlws] -] -
off Ny B4 N's 83 ™ s | =] —-]2
| N Bs Ny 93 Ny 9 18] —| —
| [DP] B2 93 Ny 9 18] 137122
tNYUSP] B3 Ny <] 1019714} 23
[NyiX1) 80 N Ny 93 ™ tHH|l2]15]24
[NiX2) B1 N, Ny 53 Ny 1m|20]|15] 24

Chapter 3 Details of Instructions
instruction Set

ADC obj, #N1¢ 16-bit Add with Carry
| obj |

erN, DP, X1, X2, USP, SSP, LAB, off Ny, Ng, [DP], tNg{USP], N'1g[X1), N'1g[X2]

Function
obj «— obj + #N15+ C (word long)

I Description |

This instruction adds togelher the conlents of the addressing object (word long}, the
16-bit immediate vaiue (#Nqg), and the carry (C).

The resuiting sum (16 bits) is storad in the addrassing object, and the cary from the
highest (most significant) bit is stored in 1he camy (C).

i ﬁaga 1

Flags affected by execution: Flags atfecting execution:
ZF | CF | HC | DD [#]0]
- » -
I Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5] INT | EXT

A
"Ny
ot 444N] %0 N Ny 8 17
DP g2 %0 N, Ny 8 —
X1 %0 %0 N, Ny 8 .
X2 91 90 N, Ny 8 -
use Al 90 N, Ny B —
sSSP AD 90 Ny Ny 8 -

, LRB Ad 90 N, Ny 8 -
ol Ny B4 N 90 N Ny 10 20
Na Bs Ny 90 N Ny 10 —_
{DP] B2 %0 N Ny 10 19
+NJUSP] B3 Ns 20 N Ny 1 20
N1 olX1] 80 N Ny 80 Ny Ny 12 21
N'alX%2] B1 Ny Ny 20 N Ny 12 21

18

Chapter 3 Detalls of Instructions

Instruction Set
ADCB A, ob} 8-bit Add with Carry
| obl |

#Ng, N, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP], N1gX1], N1g[X2]

[Function |

AL — AL +0bj+C {byte long)

[Description]

This instruction adds together the contents of Lhe lower byte of the accumulalor (A),
the addressing object (byte long), and the carry {C). The resulting sum (8 bits) is

stored in the lower byte of the accurmuialor (A), and the carry from the highest (most
significant) blt is stored in the carry (C).

This instruction is affacted by the data descriptor (DD).

For the instruction 1o be executed comectly, it Is necessary to set DD={).

| Flags |
Flags atfected by execution: Flags affecting execution:
ZF [CF | HC §{ DD (»]0]
. . . 1]
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 - INT EXT
A
#Ny 96 Ny 4 —
N 18+N 3 5
PSWH A2 g2 4 —
PSWL A3 92 4 —
off Ny 97 Ny 4 7
Ng cs Ng 92 8 —
[DP] C2 92] —
NG[USP] (o] Ne 92 7 9
NqafX1] co N, Ny 92 8 10
Nyol%2) ct N Ny 92 8 10

2.9

Chapter 3 Detsils of Instructions

Instruction Set
ADCB obj, A 8-bit Add with Carry
N, PSWH, PSWL, off Ng. Ng. [DP], tNg|USP], N1ad X1], N1g[X2]
[T Funciion |
obj +— obj + AL + C (byle long}
tion
This instruction adds togethar the contents of tha lower byle of the accumulator (A},
the addrassing object (byte long), and the carry (C).
Tne resulting sum (8 bits) is stored in the addressing object, arxi the carry lrom the
highest {most significant) bit is stored In the carry (C).
Flags
Flags affected by execution: Flags affecting exectition:
ZF | CF { HC | DD oD
[] . »
Codes/Cyciss
CODE CYCLES
obj BYTIE
1 2 3 4 5 INT EXT
A
#Ng
) 24N] 9N 5]
PSWH A2 91 5 _—
PSWL A3 1] 5 —_
oft Ny C4 Ny]| 7 12
Ny cs Ny 9 7 —
{OP] c2 91 7 1
NJUSP] ca Ny | 8 12
N1} co N, Ny 91 ¢ 13
Nqa[X2] c1 N, Ny 91 9 13

3-10

Chapter 3 Detalls of Instructions
Instruction Set

ADCB obj, off Ng 8-bit Add with Carry

ob]

N, PSWH, PSWL, off N'g, N'g, [DP], tN'g{USP], Nqg[X1], N1glX2]

| Functlon |

obj «— obj + ofl Ng + C (byta long)

| Description |

This instruction adds together the cantents of the addressing object, the data memaory
speciiied by current page addressing {off Ng), and the carry (C).

The resulting sum (8 bits) is stored in the addressing object, and Lhe camy from the
highest (most significant) bit is stored in the carry (C).

] Flags |

Flags aftected by execution: Flags affecting execulion:
ZF | CF | HC | DD oD
L3 » .
Codes/Cycles
CODE CYCLES
obj BYTE INT | INT JEX |EX | —obj
T T
1 2 k] 4 5 6 INT|EX R INT{EX | +~—olf Ny
T T
A

#Ng
N 20+N 93 Ny 7 -] — 114
PSWH A2 93 Ne 712 -1 —
PSWL A3 EY] Ns 72l -}|-—
off Ny c4 N's 83 Ng gl =1 -7
Ny cs N,) My 9 |14] - —
[DP] c2 93 N, 9 |14] 18
+N'WUSP] ca N'g <] Ng 1015} 12|17
NyaX1} co N Ny 83 Ny 19|16 13] 18
Nqya[X2] c1 N, Ny <] Ne 1M J16]1a]18

chapter 3 Detalls of Instructions

nstruction Set
ADCB ob}, #Ng 8-bit Add with Carry
oh
M, PSWH, PSWL, off N'g, N'g, [DP}, tN'g{USP], Nqg[X1}, N1g[X2]
Function
obj +— obj + #Ng + C ({byte long)
thon
This instruction adds together the contents (byle long) of the addressing object, the B-
bit immediate value (#Ng), and the camry (C).
The resuiting sum (8 bits) is stored in the addressing object, and the carry from the
highast {most significant) bit is stored in the carry (C).
Flags
Flags atfected by execution: Flags affecting execution:
ZF | CF |HC | DD DD
» » -
Codes/Cycles |
CODE GYCLES
obj BYTE]
1 2 3 4 5] INT EXT
A
#Ny
N 24N | S0 Ny & 11
PSWH A2 90 Ny 8 -
PSWL A3 | 90 | N ! 6 -
ol Ny c4 Ng 90 Ng 8 14
Ny cs Ny 80 Ny 8 _—
[DP) c2 80 Ns 8 13
+N'o[USP] c3 s 80 Ny 9 14
NyalX1] co N Ny 90 Ng 10 15
NyafX2] c1 N Ny 90 Ny 10 5

R.12

Chapter 3 Detalls of Instructions
Instruction Set
ADD A, obj 16-bit Add (user stack)
obj J
#Nig, eN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP], Nyg{X1), Nqg[X2)]
Function
A+—A+ ob| (word long)
Description
This instruction adds tha contents of the accumulator (o the addressing object in a
word long operation. The resulting sum (16 bits) is stored in the accumulator, and the
cairy from the highast (most significant) bit is stored in the camy (C).

This insiruction is affected by the data descriptor (DD).
For this instruction 1o be executed cotrectly, it is necessary to set DDa1.

I Flags I

Ftags affecied by execution: Flags atfecting execution:
ZF | CF { HC | DD oD
- . . 1
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 [INT EXT

A

#Nyp 86 N, Ny 6 -
orN 0B+N 3 7
ppP 92 a2 4 -_
X1 90 82 4 -
X2 91 82 4 —
UuspP Al B2 4 —
SSP Ao 82 4 -
LRB Ad a2 4 —_
off Na a7 Ny 4 9
Na BS Ns B2 6 -
[DP) B2 82 8 10
N USP] B3 Ng 82 7 1
NygX1] Bo N Ny 82 8 12
N,o[X2] B1 N, Ny a2 8 12

.13

Chapter 3 Detalls of Instructions

Instruction Set

ADD obj, off Ng

16-bit Aad

T

orN, DP, X1, X2, USP, SSP, LRB, off N'g. N'g, [DP], tN'[USP], N4g[X1], Ny g[X2]

|ﬁFGnctIon]

obj «— obj + off Ng (word long)

This instruction adds the contents of the addressing object to the contents (oft Ng} of
the data memory specified by currenl page addressing.

The resulting sum (16 bits) is stored in the addressing object, ari the cany lrom the

nighest (most significant) bit is stored in the carry (C).

[Fiags]

Flags affected by execution: Flags affecting exacution:
ZF | CF | HC | DD DD
. . .]
Codas/Cycles
CODE CYCLES
obj BYTE INT | INT|EX |EX | ~—obj

, T T

/ 1 2 3 4 5 INT|EX [INT|EX | —ofing

i T T
A
#Nyg
o MM | B2 Ny 7| -] =12
oP) 83 N 78] -] —
X1 20 B3 ™ 7|16 =] — 1
X2 91 83 Nas 71| =]~ :
usP Al a3 Ny 7{16f—|—
ssp AD 83 ™ 78] —1 —~
LAB Ad) Ng 7116 —] —
off N'g B4 N'g 83 Ny s[—]{—f2
Ny BS | Ny | 63 Ns s f18f—|—
[DP] B2 B3 Ng 9 1B[1af 22
+N'JUSP] 83 N'g a3 Na 0 19f14] 23
Ny eX1) 80 N Ny a3 Ny 1| 20| 15| 24
N,elX2] 81 Ny Ny 83 Ny 1n|2|15]| 24

.44

Chapter 3 Detalls of Instructions
Instruction Set

ADD obj, #N1g 16-bit Add
[ob! |

[Function I
| Descrlgllon |

erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP), N'1g{X1}, N'1¢[X2]

obj +— obj + #N1g (word long)

This instruction adds the contents of the addressing objact (word long) to the 16-bit
immediate value (#Nyg).

The resulting sum (16 bits) is stored in the addressing object, and the carry from the
highest (most significant) bit is stored in the carmry (C).

[Flags]

Flags affected by execution: Flags atiecting execution:
ZF | CF { HC | DD oD
* » *
Cades/Cyclas
CODE CYCLES
obj BYTE
1 2 k] 4 5 6 INT | EXT

A

#Ng

o 4N | 80 N Ny 8 17
DpP 92 80 Ny Ny a -
X1 90 80 N Ny 8 _
X2 91 BO N, Ny a —
usP At 80 N, Nu B -
SSP AD 80 N, Ny 8 -
LRB A a0 N Ny 8 -
off Ng B4 Ny 80 N, Ny 10 20
Ny Bs Na B0 N, NH 1c -
{DP} 82 80 N Ny 10 19
+NJUSP] B3 Na 80 N Ny 1 20
NaX1] B0 N Ny BO N Ny 12 21
N o[X2] Bt Ny Ny 80 N, Ny 12 21

3-1A

Chapter 3 Detalls of Instructions

Instruction Set
ADDB A, obj 8-bit Add
i obj]
#Ng, N, PSWH, PSWL, oft Ng, Ng, [DP], +Na[USP], N1glX1], N1g[X2)
| Function |
A — AL + obj (byte long)
| Description |
This instruction adds the conlents of the lower byte of the accumulator (A1) 1o the
addressing object {byte long). The resulting sum (B bits) is stored in the lower byte of
the accumutator (A), and the carry over from the highesl (most significant) bit is
stored in the camy (C).
This instruction is affecled by the data descriptor (DD).
For this instruction to be executed comrectly, it is necessary to set DD=0.
[ﬁags |
Flags affected by execution: Fiags affecting execution:
ZF | CF | HC | DD DD
. . - v]
| Codes/Cyclas |
CODE CYCLES
obj BYTE
1 2 3 4 5 & INT EXT
A
N,y 85 Ny 4 _
N 0B+N 3 &
PSWH A2 82 4 _
PSWL A3 a2 4 —
of My 87 Ny 4 7
Ny cs Ns 82 5 —
{OP) c2 82 [-
4N, fUSP] ca N, 82 7 9
N,g[X1] co N Ny 82 8 10
N, DX2) c1 N Ny 82 8 10

Chapter 3 Detalls of Instructions

Instruction Set
ADDB obj, A 8-bit Add
obj
N, PSWH, PSWL, off Ng, Ng, [DP), tNg{USP], N1g[X1}, Nq1g[X2]
| Function |
obj «— obj + A, (byte long)
l Description |

This instruction adds the conlents of the lower byte of the accumulalor {Ay) to the

addressing object (byte long).

The resulting sum (8 bits) is stored in the addressing object, and the carry from the

highest (most significant) bit is stored in the cary (C).

Flags
Flags atiected by execution: Flags affecting execution:
ZF | CF { HC | DD oD
L » [3
Codes/Cycles
CODE CYCLES
ob} BYTE
1 2 3 4 -] & INT EXT

A
My
[20+N 81 5 9
PSWH A2 3] 5 -—
PSWL Al 8 s —
off Ny C4 Ng ai 7 12
Ny cs5 Ny 81 7 -
{DP] c2 81 7 1
NJUSP} c3 Ng B1 B 12
NyoX1} co N Ny 81] 13
N1aX2) [¢1] Ne Nu 81 '} 13

Chapter 3 Detalls of instructions
Instruction Set
ADDB Ob], off Ng 8-bit Add
N, PSWH, PSWL, off N'g, N'g, [DP], 1N'g[USP], N1g[X1], NqgfX2]
[Funciion]
obj +— oby + off Ng (byte long)
De on
This instruction adds the contents of the addressing object 1o the data memory (off
Ng) specified by current page addrassing.
The rasulting sum (8 bits) is stored in the addressing object, and Lhe carry from the
highest (most significant} bit is storad in the carry (C).
3
—]
Flags -
Flags affected by exacution: Flags affecting execution:
2ZF | GF | HC | DD DD
* » *
Codes/Cycles
CODE CYCLES
obj BYTE INT | INT | EX E)T(— obj
T
1 2 3 4 5 & INT |EX | INT JEX | «—oft Ny
T T
A
N,
™ 20N | 83 Ny 7 —=1—-114
PSWH A2 43 Na 712 =}~
PSWL A2 83 ™ 7inl-=-1-
off Ng C4 N'g 83 Ny s | —]| -] 7
Ny C5 N 83 Ny g [1a] =] —
[oP} c2 83 N 9 | t4]| 11186
+N'JUSP) c3 Ny 83 Ny w]|15]12]17
Nss[X1] co N, Ny 83 Ng 11116 |13 18
NyalX2] c1 M Ny 83 Ns 11 p16{13]18

3-18

Chapter 3 Detalls of Instructions
Instruction Sat

ADDB obj, #Ng 8-bit Add
I obj I

Function

N, PSWH, PSWL, off N'g, N'g, [DP}, $N'g[USP), Nqg[X1), N1giX2]

obj < obj + #Ng (byte long)

| Dascription |

This instruction adds the contents (byte long) ol the addressing object to the 8-bit
immediate value (#Ng).

The resulling sum (8 bits) is stored in the addressing object, and the carry from the
highest {(mos! signiticant) bit is stored in the canry (C).

Flags
. Flags aflected by execution: Flags atecting execution:
ZF | CF | HC | DD]
L] L] L]
| codwgctes |
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT | EXT

A

Ny

™ 20+N 80 Ng [1"
PSWH A2 80 Ng -] _—
PSWL A3 80 Ng 6 —_
off Ny C4 N'g B0 Ng B 14
N GC5 N's 80 Ny B8 —
DR} c2 BO Ny 8 13
1NQ[USP} c3 Ny 80 Na [14
NyslXt] co Ny Ny 80 Ny 10 15
N1alX2} i N Ny 80 Ny 10 15

Chapter 3 Detalls of Instructions
Instruction Set

AND A, obj

16-bit logical AND

oo 1]
N1lX2]

#Nqg, &N, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], 2Ng{USP}, N1g[X1],

| Function l

A — A A obj (word long})

[Description]

This instruction periorms the word long logical AND operation on the contents ol the
accumulator and the addressing object. The rasult {16 bits) is stored in ihe

accumulator,

This instruction is affecied by tha data dascriptor (DD).

For tha instruclion to be executed corractly, # is necessary to set DD=1.

Flags
Flags atfected by execution: Flags atlecling execution:
ZF | CF | HC | DD DD
- i
{ Codes/Cycles |
CODE CYCLES
obj BYTE

1 2 3 4 5 INT EXT
A
g D& Ny Ny] —
ofN 58+N 3 7
oP 92 [\ 4 -
X1 %0 D2 4 -
X2 91 02 4 —
usr Al D2 4 —_
SSP AD D2 4 _
LRB Ad D2 4 —_
off Ng D7 Na 4 8
Ny BS Np D2] —_
[OP] B2 D2 6 10
+Ng|USP] B3 Ns D2 7 1
N ,afX1] Bo N Ny D2 8 12
N,al%2] B1 N, Ny D2 8 12

Q.90

Chapter 3 Details of Instructions
Instruction Set

AND obj, A 16-bit logical AND
oo 1}
I Funetion |
| Daescription |

orN, DP, X1, X2, USP, SSP, LRB, off Ng, Na. [DP], tN[USP], Nyg[X1], N1g[X2]

cbj «— obj A A (word long)

This Instnuction performs the word long logical AND operation on the contents of the
addrassing object and the contents of lhe accumulator.

The result (16 bits) is stored in the addressing object.

| Flags]

Flags affected by execution; Flags aflecting execution:
ZF | CF | HC | DD oD
»
| CDdeslrE!ctes |
CODE CYCLES
obj BYTE

1 2 3 4 5 8 INT EXT
A
g
orN 444N Dt 5 13
ppP 82 D1 5 -
X1 %0)] L3 —_
x2 9N D1 5 —_
UsSP Al m 5 —_
SSP AQ D1 5 —
LRB Ad (1]] 5 -
off Ny B4 N | D1 7 16
Ns Bs Ng 1)) 7 -—
[OP] 82 [7 15
Ng[USP} B3 Ng D 8 16
NiglX1) BO Ny Ny D1 ® 17
NygX2] Bi Ny Ny D1) 17

e

Chapter 3 Detalls of Instructions

instruction Set

AND obj, off Ng

16-bit logical AND

I obj]

orN, DP, X1, X2, USP, SSP, LRB, off N'g, N'g, [DP}, tN'gUSP], Nyg(X1], NyglX2)

| Function |

obj «— obj Aofi Ng (word long)

I Description I

This instruction performs the word long logical AND operation on the contents of the
addressing object and the data memory (off Ng) specified by current page

acidrassing.
The result {16 bits) s stored in the addressing object.
Flags
Flags affected by execution: Fiags affecting execution:
ZF | CF | HC | DD DD
*
Codas/Cycles
CODE CYCLES
obj BYTE INT? INT|EX | EX | «—obj
T T
1 2 3 4 § & INT | EX | INT |EX |« off Ng
T T
A
ofN 444N D3 Ng 7 -~ —| 20
DP a2 D3 Ng 7] -] —
X1 90 D3 Ng 7018 —1—
X2 a1 D3 Ng 7116} —§ —
usP Al D3 Na 71184 —| —
S5P AC D3 Ny 716 —] —
LR8 Ad D3 Na 7 18| —f —
ofi Ny B4 Ny fit) Ny p|—f—123
Ny B5 Ny | D3 Ny s{ef—|—
[OF) 82 Da Ny g || 13] 22
HNUSP] B3 Ny | D3 Ny 10|19 |14 {23
Nyg[X1] Bo N Ny D3 Ny 11 f20]15]24
N;s{X2] 81 N, Ny D3 Ny 11] 20 | 18 | 24

3-22

Chapter 3 Delails of Instructions
Instruction Set

AND obj, #N4¢ 16-bit logical AND
Lo 1|
| Function |
| Descrlgtlon |

erN, DP, X1, X2, USP, SSP, LRB, off Ng, Na, [DP], tNglUSP], N'1g[X1), N'yX2]

obj «— obj A#Nys (word long)

This instruction performs the logical AND operation on the contents of the addressing
object (word long) and the 18-bit immediate value (#N1g).

The resull (16 bits) is stored in the addressing object.

Flags
Flags affected by exacution: Flags aflecting execution:
ZF | CF | HC | DD DD
.
Codes/Cycles
CODE CYCLES
obj BYTE

1 2 3 4 5 [INT EXT
A
Ny
orN 444N DO N Ny a 17
DP 52 D0 N Ny 8 —
X1 %0 Do N Ny a .
x2 91 Do N ™ 8 —
usp Al Do N, Ny 8 -
SSP AD Do N, Ny 8 —
LRB Ad Do N, Ny B -
off Ny B4 N Do N, Ny 10 20
™ BS Ns Do N, Nw 10 —
{DP} B2 Do N Ny 10 19
+NoUSP] 83 N, Do N Ny 1 20
Nyl X1] BO N | Ny | Do N Ny 12 21
N\ %2] a1 N, Ny, Do N, Ny 12 21

3-23

thapter 3 Detalls of instructions
1struction Set

\NDB A, ob} 8-bit logical AND
o0]

#Ng, (N, PSWH, PSWL, off Ng, Ng, {DP], tNglUSF), NyglX1], N1g[X2)

~Function |
AL — A Aobj (byte long)
“Description__|

This instruction performs the logical AND operation on the conlents of the iower byte
of the accumulalor (AL} and the aciressing object (byle long). The result (8 bis) is
stored in the lower byts of the accumulator (A).

This instruction is affected by the data descriplor (DD).
For this instruction to be executed correctly, it is necessary to sat DD=0.

~ Flags }
Flags affectad by execution: Flags affecting execution:
ZF | GF | HC | OD oD
L] 0
Codes/Cycies |
CODE CYCLES
obj BYTE
1 2 3 4 5] INT EXT
A
#Ng 06 g 4 -
i) 8+ N 3 5
PSWH A2 D2 4 _
PSWL A3 D2 4 —_
off Ng 07 Hy 4 7
Ng c5 Ng D2 g -
{OP) c2 D2 8 —
+NglUSP) ca Ng D2 7 8
NqelX1) co N, Ny D2 8 10
N.g[X2) c1 Ny Ny D2 [10

3-24

wIlWpUE 9 Ueuans o insirucions

instruction Set
ANDB ob}, A 8-bit logical AND
|: ob]]
N, PSWH, PSWL, off Na, Ng, [DP], tNg[USP], Nq1g[X1], NqgiXx2]
Function

obj «— obj A AL (byte kng)

[Description]

This instruction periorms the logical AND operation on Ltheé contents of the lower byte
of the accumulator (AL} and the contents (byle long) of the addressing objedt.

The result {8 bits) is stored in the addressing object.

Flags
Flags aflected by execution: Flags affecting execution:
ZF { CF | HCG | DD (]M]
»
[[Codes/Cycies |
CODE CYCLES
obj BYTE
1 2 k! 4 5 [INT EXT

A

‘Ng

] 20N | DY 5]
PSWH A2 D1 5 -—
PSWL A3 D1 5 —
off Ny C4 Na D1 7 12
Na Cs Na D1 7 —
[OP] c2 D1 7 11
N USP] ca Ny D1 8 12
NyoX1] co N Ny D1 9 13
N2 ct N, Ny D1 9 13

3-25

Chapter 3 Detalls of Instructions

Instruction Set
ANDB obj, off Ng 8-bit logical AND
| obj]
N, PSWH, PSWL, off N'g, N'g, [DP], £N'g[USP), NygfX1], N1g[X2]
| Function l :
obj +— obj A off Ng (byte long)
| DescrEuon |
This Instruction performs the logical AND operation on the conlents (byle long) of the
addressing object and the data memoary (olf Np) specified by current page
addressing.
The result {8 bits) is stored in the addressing object.
Flags
Flags aifected by execution: Flags affecting execution:
ZF | CF J HC | DD 0D
L]
| COdeslgciea |
CODE CYCLES
obj BYTE INT | INT | EX E¥ +— obj
T
1 2 3 4 5 & INT|EX JINTJEX |+ oft Ng
T T
A
0y
N 20+N D3 Ny 7| —1—1]14
PSWH A2 D3 Ny Tl —q1 -
PSWL A3 D3 N; 71— -
oft Ny C4 Ny D3 Ny g =117
Ny C5 N'g D3 Ny g 4] =] —
{DP) c2 D3 Ny 9 (14] 11] 16
N[USP] c3 Ny %] Ny 10ii15] 2] 17
NyalX1] co N Ny D3 Ny n|1el13] 8
NyelX2} c1 N Ny | D3 Ng 11613 18

3-26

Chapter 3 Details of Instructions
Instruction Sat

ANDB obj, #Ng 8-bit logical AND

obj

I Function I
[_Description |

N, PSWH, PSWL, off N'g, N'g, [DP], tN'g[USP), Nyg[X1], Nyg[X2]

obj «— obj ANg (byte long)

This instruction performs the logical AND operation on the contenis (byte long) of the
addressing object and the 8-bit long immediate value (#Ng).

The result {8 bits) Is stored in the addressing object.

I Flags I

Flags affected by execulion: Flags aflecting execution:
ZF | CF | HC | DD bD
»
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 & INT EXT

A

#N,

™ 20+N Do Ng 6 11
PSWH A2 Do Ng 3 —
PSWL A3 Do Ne 5 -
off N'y c4 Ny Do Na g 14
Ny cs Ny Do Ny [-
[a13]] cz Do Ng 8 13
+H'3[USP] c3 N'a 0o Ny 9 14
NyolX1] co N Ny Do Na 10 15
N, e[X2} ¢ Ny Ny Do Ny 10 15

3-27

Chapter 3 Details of Instructions

Instruction Set

BRK

Break (system reset)

| obj I

Function

SYSTEM RESET
PC «— (Vector Table 00024)

[Description

The CPU, upon decoding this instruction, execules the systam raset procass whose
speciic delails are given in the user's manual ol the MSM66301.

Following the complelion of the system reset, the contents of addresses 2 and 3 of
the vector-able arg transferred to the PC.

| Flags |
Flags affected by axecution: Flags affecting execution:
ZF | ¢F | HC | DD DD
Codes/Cycles
CODE |
obj BYTE | cveies
1 2] 4 5 ¢ |
FF | 13

3-28

Chapter 3 Detalls of instructions

Instruction Set
CAL address 16-bit Space (64K bytes) Direct Call
[__ob |
Functlon

{SSP) +~— PC +3

SSP «- SSP-2

SF— 0

PC +— address (15 bits)

Description |

This Is the direct call instruction for accessing the 64K byle program space, The
address (in the instruction) Is evaluated as a 16-bit address value (0000, through
FFFFyy) and becomes Ihe address 1o be accessed by the CAL instruction.

Flags]
Flags affected by execution: Flags affecting execution:
ZF | CF { HC | DD DD
Codes/Cyclas
CODE | cvcies
obj BYTE i
1 2 3 4 5 6 J Wr | Exr
32 | ady | adn | o 13

[NOTE] adn_and adry indicate the lower 8 and upper 8 bils respectively.

Chapter 3 Detalls of Instructions

Instruction Set

CAL ob]

16-bit Space (64K byte) Indirect Call

I obj]

[erN], [DF], {X1], [X2], [USP], [SSP]. {LRBY}, {off Ng]. [Ng], {IDP]I. [+Ng[USP],

[N1elX1]). {Nsg[X2])

{S5P) = PC+n
SSP «- 8SP-2

SF— 0

PC «— obj {16 bits)

[NOTE] °n” indicates the number of the bytes for this
instruclion and i is allecled by the addressing
object. For the number of the bytes, n, refer 1o

the section "CODES".

[Description]

This is the 16-blt (64K byte} space indirect calf instruction, whare the conlents of the
addrassing object determine the destination address. The obj term in the function is
genarally enclosed in square brackets ([]) as shown in the obj section. The value
inside the square brackets is the word long conlents ol the RAM that is addressed.
The same contants of the RAM becoma the final address called.

Flags

Flags affectad by execution: Flags affecting execution:

ZF | CF | HC | DD DD
[[Codes/Cyciea]
CODE CYCLES
obj BYTE INT | INT E¥ E¥ +— obj
1 2 3 4 8 INT |EX | INT |EX | «— (S5P)
T T

A
#Nyg
[erN] 44+N 23 g |12]12] 16
[DP] 92 23 8 f1z] — | —
X1] 90 px] g ji2|—|—
x2] 9 23 g j12]|—-1|—
{UsP} Al 23 alw|—-1|—
[SSP) AD P2 8 [12] -] —
[LRB] Ad 23 8 [12f] =] =
lot Ng) B4 Ny 23 1014] 15| 18
(Mal BS Ny <] w|4f—] —
oP] B2 23 Ny 10]14]14] 18
ENQUSP]} 83 N 23 11)15]15] 19
INofX1]] BO Ny Ny <] 12]16] 16| 20
[N.aIX21 Bi N, Ny 23 12|16)16] 20

Chapter 3 Detalls of instructions

instruction Set

—————

CLRA

16-bit Clear

I Functlon |

A +— 0 (word long)

DD +— 1

I Description |

This word fong instruction clears the accumulator.

This instruction seis the data descriptor (DD), making DD=1.

This instruction functions identically 1o the instruction [L A, #0), including the effects
on the flags. However, this instruclion incurs comparatively fewer numbers of byles

and cycles.
Flags
Flags affected by execution: Flags affecting execufion:
ZF § CF { HC | DD DD
1 1
Codes/Cycies
CODE f CYCLES
obj BYTE |
1 4 5 6 § Wr | Exr
A F§ | 2 —

3-31

Chapter 3 Detalls of Instructions

Instruction Set

CLR obj

16-bit Clear

obj

erN, DP, X1, X2,USP, SSP, LRB, off Ng, Ng, [DP}, tNg{USP], N1g[X1], N1g[X2}

| Function |

obj +— 0 (word long)

| Descrlgtlon |

Thig word long instruction clears the addressing object.

[Flags |
Flags alfected by execution: Flags affecting execution:
ZF | GF | HC 1 DD DD
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 INT EXT

A

#Ng

erN 44+N 15 4 12
OP 92 15 4 —_
X1 80 15 4 —
X2 91 15 4 -_—
UsP At 15 4 _—
SSP AD 15 4 —_
LRB Ad 15 4 —
off Ny B4 M 15 [18
Na BS Ny 15 6 —
[OP) B2 15 6 14
NJJUSP] B3 Ng 15 7 1§
NyeX1] BO N Ny 15 [16
N, e[X2) B1 N, [T 15 [16

3-32

Chapter 3 Detaills of Instructions
Instruction Set

——

CLRB A 8-bit Clear

| obj |

| Functlon |

AL + 0 (byte long)

| DescrIEtlon |

This instruction clears the lower byle of the accumulalor (Ay), setting all 8 bits equal
100.

Thig instnuction resets the data descriotor, making DD=0.

This instruction functions identically to the instruction [LB A, #0] including Ihe efiects
on the flags. Howevaer, this instruction incurs comparalively fawer numbaers of bytes

and cycles.
| Flags |

Flags affectad by execution: Flags affecting execution:

ZF | CF | HGC | DD DD
1 o
’ Codes/Cycles I
CODE CYCLES
obj BYTE
1 2 3 4 5 8 INT | EXT
A FA 2 —_

3-33

Chapter 3 Detalls of Instructions

Instruction Set

CLRB obj

8-bit Clear

Lo |

N, PSWH, PSWL, ot Ng, Ng, [DP]. tNglUSP], N1g{X1). N1g[X2]

Function

obj + 0 (byle iong)

[Description]

This byte long instruction clears the addressing object, making all bits equalto 0.

Fiage

Flags alfected by axecution:

ZF

CF

HC

DD

Flags atiecting execution:

DD

obj

CODE

CYCLES

BYTE

#Ng

2

15

PSWH

15

PSWL

15

off Ng

15

"

Ny

15

{DP]

15

10

NJUSP]

11

NolX1]

15

12

NeX2)

2|2| 8|8 8| L2|B|”

z|=z|=z

FlF|a

15

L AR A I AR AR

12

3-34

Chapter 3 Detalls of Instructions

Instruction Set
CMP A, obj 16-bit Compare
I: obj |)
#N1g, erN, DP, X1, X2, USP, SSP, LRB, off Ng, Na, [DP], tNg{USP), NyglX1],

N1g[X2]

| Functlon |

A - obj (word long)

[Description |

This instruction compares the contents of the accumulator 1o the addressing object in

a word long operation. In the actual operation, the contents of the addressing object
are sublracted from the contents of the accumulator, and the result of this subtraction
determinas the slatus of the zero flag (ZF) and the camy flag (CF). The contents of
the accumalator are unchanged.

This instruction is affected by the data descriptor (DD).

For the instruction to be execuled comectly, it is necessary lo set DD=1.

[Flags |

Flags affected by execution: Flags attecting execution:
ZF | CF | HC | DD oD
. . 1
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 § INT EXT

A

Ny cs Ny & —
o 484N 3 7
DP 92 Cc2 4 -
X1 20 c2 4 -
x2 n C2 4 —_
USP Al G2 4 —
sSSP AD c2 4 -—
LAB Ad c2 4 -
oft Ng c7 Ny 4 9
Ny Bs Ny c2 8 —
[OP] A2 c2 8 10
iNJUSP] B3 Ny c2 7 11
N e[X1) Bo N Ny c2 8 12
N, ofX2] B N Ny c2 8 12

3-35

Chapter 3 Detalis of Instructions
Instruction Set

CMP obj, A 16-bit Compare

obi

erN, DP, X1, X2, USP, SSP, LRB, olt Na, Ng, [DP], tNg{USP], N1g[X1]. N1g[X2]

| Function |

obj - A (word long)

| Descrﬂnon |

This instruction compares the contents of the addressing object io the accumutalor in
a word long operation.

In the actual operation, the contents of the accumalator are subtracted from the
contents ol the addressing object and the result of the subltraction determines the
status of the zero Hag (ZF) and the camry flag (CF).

I Flags]

Flags aflected by execution: Flags aflecting execution:
ZF | cF { HC | DD DD
L] L

[Codes/Cycies]

CODE CYCLES
ob| BYTE

1 2 3 4 5 5 INT EXT
A
#N;g
oN 44+N 1 -] 13
oP 92 1 5 —_
X1 90 C1 5 _
X2 | H] [#] 5 —
uspP Al ct 5 —_
SSP Ao 1 s -
LRB Ad G1 5 —
off Ny B4 Ng c1 7 16
Ne B5 | N | CI 7 | —
0P B2 | Ci 7 15
NG [USP) B [Na | Cf 8 16
NoelX1] B | N | Ng | G 9 17
NolX2] B | N | N | O 8 17

3-36

Chapter 3 Detalls of Instructions

Instruction Set

CMP obj, off Ng

16-bit Compare

obj

erN, DP, X1, X2, USP, S5P, LRB, off N'g, N'g, [DP], 1N'g[USP], NqglX1], Nqg[X2]

I Functlon I

obj - off Ng {word long)

| Description |

This instruction compares the contents of the addressing object to the data memory
specitied by cument page addressing (off Ng) in a word long operation.

inthe actual operation, the contents of the data memory specified by Ihe cument
page addressing are subtractad from the contents of the addressing object and the

result of the subtraction determines the stalus of the zero flag (ZF) and the cany flag

(CF). The contents of the addressing object are unchanged.

l Flags |

Flags affecied by execulion; Flags affecting execution:;
ZF | CF | HC | DD DD
L] -
| Codes/Cycies |
CODE CYCLES
obj BYTE INT | INT E¥ E¥ +—ab
1 2 3 d § -1 INT | EX | INT |EX | «-off Ng
T T
A
#Nq
orN 444N c3 Ny 71 —]—=12
DP 92 o] Ns 7 6| =] =
X1 80 3 Ny 7 16| —1] —
X2 9 c3 Ny T8 —] —~
usp Al c3 N, 7116 -] —
SsP A c3 Ns 7|16 - —
[tre Ad c3 Ng 7116 -1 —
off Ny B4 N c3 Na g f{—-| |23
[N, Bs N3 c3 Ng g |8] —-]—
| [OR) B2 ca Ny 9 jw]iaja
[N {JUSP] B3 Ny c3 Ng 10[19[14| 23
[Nyax1} Bo N, Ny 3 N 11| 20]15] 24
[Nglx2] B T =R D 1mjlzo]15]|2

3-37

Chapter 3 Detalls of Instructions
Instruction Set

CMP obj, #Nq¢ 16-bit Compare

Q
arN, DP, X1, X2, USP, 5SP, LRB, off Ng, Ng, [DP], tNg[USP], N'1g[X1). N'15[X2]

obj - #N1g (word long)
Description

This instruction compares the contents of the addressing object (word long) to the 16-

bit immediate value (#N1g).

tn the actual operation, the 16 bk immediate value is subtracied from the contents ot

the addressing object, and the resuk of the sublraction determines the status of the

zero flag (ZF) and the camy Hag (CF). The contents of the addressing object are

unchanged.

Flags
Ftags atlected by execution: Flags affecting execution:
ZF | CF | HC | BD]3]
. L]
| Codes/Cycles]
CODE CYCLES
obj ayYTE
1 2 3 4 5] INT EXT

A
e
N 4uN]| o Ny Ny B 17
DP 92 co N, Ny 8 -
X1 90) N Ny 8 —_
X2 N co N_ Ny a -_
UsP Al Cco N, Ny] —_
sSSP A0 co N ™ 8 -
LRB MM co N Ny B -
off Ng B4 MNe co N, Ny 10 20
Ny gs Ny co N Ny 10 -
[oP] a2 co Ny Ny 10 19
N USP] Ba Na co N Ny 1" 20
NoX1] BO Ny Ny co N Ny 12 2
No{X2) Bt Ny Nu co N Ny 12 2

3-38

Chapter 3 Details of Instructions

Instruction Set

CMPB A, obj

8-bit Compare

| obj |

#Ng N, PSWH, PSWL, off Ng, Ng, [DF), +Ng[USP], Nqg[X1], N1g[X2)

l Function I

AL - obj (byte long)

I DOSCI'E“OI‘I I

This instruction compares the contents of the kower byte of the accumulator (AU to
the addressing object (byte long).

inthe actual oparation, the contents of the addressing object are subtracted frotm the
contents of the accumulator lower byte. The result of the subtraction determines the
status of the zero flag (ZF) and the cany flag (CF). The conients of the accumulator
are unchanged.

This instruction is affected by the data descriptor (DD},

For this instruction to be executed comrecily, it is necessary to set DD«0.

[Fags__]

Flags affected by execution:

Flags affecting execution:

ZF | CF { HC | DD DD
. . 0
[Codesricyeies |
CODE CYCLES
obj BYTE
1 2 3 4 5 INT EXT
A
#N,] Ng 4 -
)] 48+N 3 5
PEWH A2 c2 4 -—
PSWL A3 c2 4 _
off Ng Cc? Ng 4 7
Mg Ccs Na c2 6 _
[DP) c2 c2 6 _
tNp[USP] c3 Ng <2 7 9
NyelX1] co N, Ny ce 8 10
N,a{X2) Cc1 N_ Ny c2 -] 10

.16

Chapter 3 Details of Instructions
Instructicn Set

CMPB obj, A 8-bit Compare
l obj |

(N, PSWH, PSWL, off Ng, Ng, {DP], tNg[USP}, N1g[X1], N1g[X2]
f Function |

obj - AL (byte long)

[Toescripion]

This instruclion compares the contents (Dyte long) of tha addressing object to the
lower byte of the accurmulator (Ay).

Inthe actual operalion, the cortants ol the lower byta ol the accumulator are
subtracted from the conients of the addressing object, and tha result of ihe
subtraction determines the status of the zero fiag (ZF) and the camy flag (CF}. The
contents of the addressing object are unchanged.

I Flags I

Flags affected by execution: Flags affecting execution:
ZF | CF { HC 1 DD oD
» []
[Codes/Cycies |
CODE CYCLES
obj BYTE
1 2 3 4 5] INT EXT

A
#Ny
N 204N c1 5 9
PSWH A2 ci 5 -_
PSWL A3 Cc1 5 -_
off Ny c4 Ng c1 7 12
N cs Ns | ©1 7 —
[DF] c2 | o 7 1"
tNa{USP] ¢a Ng | Ct 8 12
NyelX1] co | N | Na] & 9 13
NyslX2) cl M | Na | ©1) 13

3-40

Chapter 3 Detaits of Instructions
Instruction Set

CMPB obj, off Ng

8-bit Compare

| obj I

N, PSWH, PSWL, oft N'g, N'g, [DP], N'g[USF), Nyg[X1], N1g[X2]

Function

obj - off Ng {byle long)

| DOSCTEHOI'I I

This instruction compares the contents of the addressing object to the data memory
specified by the current page addressing (off Ng) .

In the actual operation, the contents of the data memory specified by current page
addressing are subtractad from the conlents of the addressing object, and the resuft
of the sublraction delermines the status of the zer flag (2F) and the cany flag (CF).

[Fiags]

Flags affected by axecution: Flags affecting execution.
ZF | CF | HC | DD DD
* L
[Codas/Cycles |
CODE CYCLES
obij BYTE INT | INT E¥ E¥ +— obj
1 2 3 4 H 6 INT |EX | INT JEX | «—off Ng
T T
A
#Ny
™ 204N | C3 Ng 7] —1—1] 14
PSWH A2 c3 N 7112~} —
PSWL A3 c3 Ne T2 -1 —
off Ny C4 Ny ca Ny 9) =] —|17
Na cs Ny c3 Ne 9 |1} —| —
[DP] c2 c3 Ny 9 |14t 11| 1€
1N [USP) c3 N'g c3 Ns 101571217
Nys[X1] co N Ny c3 N 1"n)]is| 13| 8
N,a[X2] c1 Ny Ny c3 Ns 11 116 13| 18

3-41%

Chapter 3 Detaits of Instructions
Instruction Set

CMPB obj, off Ng

8-bit Compare

| obj I

N, PSWH, PSWL, oft N'g, N'g, [DP], N'g[USF), Nyg[X1], N1g[X2]

Function

obj - off Ng {byle long)

| DOSCTEHOI'I I

This instruction compares the contents of the addressing object to the data memory
specified by the current page addressing (off Ng) .

In the actual operation, the contents of the data memory specified by current page
addressing are subtractad from the conlents of the addressing object, and the resuft
of the sublraction delermines the status of the zer flag (2F) and the cany flag (CF).

[Fiags]

Flags affected by axecution: Flags affecting execution.
ZF | CF | HC | DD DD
* L
[Codas/Cycles |
CODE CYCLES
obij BYTE INT | INT E¥ E¥ +— obj
1 2 3 4 H 6 INT |EX | INT JEX | «—off Ng
T T
A
#Ny
™ 204N | C3 Ng 7] —1—1] 14
PSWH A2 c3 N 7112~} —
PSWL A3 c3 Ne T2 -1 —
off Ny C4 Ny ca Ny 9) =] —|17
Na cs Ny c3 Ne 9 |1} —| —
[DP] c2 c3 Ny 9 |14t 11| 1€
1N [USP) c3 N'g c3 Ns 101571217
Nys[X1] co N Ny c3 N 1"n)]is| 13| 8
N,a[X2] c1 Ny Ny c3 Ns 11 116 13| 18

3-41%

Chapter 3 Detalla of instructions
Instruction Set

CMPB obj, #Ng 8-bit Compare
[ob)]

N, PSWH, PSWL, off N'g, N'g, [DP)], tN'gUSP], Nyg[X1}, NygfX2)

l Function |

obj - #Ng (byte long)

[Description |
This Instruction compares the contents of the addrassing object (byte long) to the §-
bit immediate value (#Ng).

Inthe actual operation, the 8-bit immediate value is subtracted from the conlents of
the addressing object, and the resul of the sublraction detarmines the staius of the
mﬂ and the carry flag (CF). The contents of the addressing object are

| Fiags |
Flags affectad by axecution: Flags affecting exaculion.
ZF | cF | HC | DD oD
] L]
CODE | cvces
obj aYTE]
' 1 2 3 4 5 6 A INT | EXT
——
A y
#N,]
N 204N | Co Na 1 & 1
PSWH A2 co Ny [_
PSWL A3 co ™ 8 -
off N'g (] Ny co Ny 3 14
Ny cs Ny co Ny a —
[DP} c2 co Ny) 13
+N'{USP} ca Ny co Ny 8 14
NyofX1] Co N Ny co Ny 10 15
N,J%2] c1 N, Ny co Ny 10 15

3-42

Chapter 3 Details of Instructions
Instruction Sat

CMPC A, N*1g 16-bit ROM Compare {direct)
I obj |
I Function I

A-N*g (word long)

| Description | ‘

This instruction compares the contents {N*; g} of the ROM1 specified by direct I
addressing 1o the accumulator in a word long operation. 1 ’\

In the actual operation, the contents of the addressing object are subtracted from the i
conlents of the accumulator, and the result of the sublraction datermines the stalus of
the zero tlag (ZF) and the cany fiag (CF). The contents of the accumulator are |
unchanged. !

[NOTE] ' The ROM used means the program memory in the program space. The
on-chip memory is aiways the ROM; however, the extemal memory, §
used, may possibly inchude ROM, RAM, and the /O unils allocated fo the

program space.
| Flags |
Flags atfected by execution: Flags affecting execution:
ZF | GF | HC | DO oD L
- !
|
| Codes/Cycles | '
CODE CYCLES
obj BYTE :
1 2 3 4 5 6 INT | EXT
90 9E N'L | N 15 15

3-43 d

Chapter 3 Detalls of Instructions

instruction Set

CMPC A, obj

16-bit ROM Compare (indirect)

ob)

[erN], [DP]. [X1], [X2], [USP], [SSP). [LRB). [oft Ng]. [Na). [DPY, [Ng[USP],
[N1g(X1]], [N1g[X2]]

[“Function |

A -obf {word long)

| Description |

This instruction compares the contents of Lhe addressing object (word long) in the
ROM1 space to the accumulator.

In the actual operation, the contents of the addressing object are subtracted from the
contents of the accumulator, and the result of the subtraction sets the Zero (ZF} and
Carry (CF) flags at 0 or 1. The contenis of the accumulaior are unchanged.

{NOTE]' The ROM used means the program memory in the program space. The
on-chip memory is always the AOM; however, the extemal memory, i
used, may possibly include ROM, RAM, and 1he YO units allocated to
the program space.

| I?I.ags |
Flags atlecied by execulion: Flags affecting execution:
ZF | cF | HC | DD oD
L] E]
| Codas/Cycles |
CODE CYCLES
obj BYTE INT | INT E¥ E¥ +— ROM
1 2 3 4 -] 8 INT|EX | INT |EX | ~— RAM

T T

[e1N] 444N | AC 1|15 11]15
[DP) 82 AC "Ml =1
X1} 90 AC "n|l—-—inj|-—-
x2) 91 AC TN = K=
[USP] Al AC LA N S B
[SSP) AD AC 1] -1] -
[LRB] Ad AC "n|—fnj-—
[oft Na} B4 Ny AC 13)18 11| 18
N4 85 Ny AG mi—|13] -
oF] 82 AC 1| 7|13 7
[ENaJUSP]) B3 Ny AC 14| 18] 14] 18
[NyoX11 Bo N, Ny AC 151915 19
INyelX21) B1 N Ny AC 15]19] 15} 19

Chapter 3 Details of Instructions
Instruction Set

CMPC A, ob]

16-bit ROM Compare (indirect with 16-bit base)

obj

N*16[DF]. N*1g1X1), N*1[X2], N*16[USP], N"1glott Ng], N*1g[Ng]

| Function |

A -obj {word long)

| Description |

This instruction compares the conternts of the addressing object in tha ROM! space
(word long) 1o the accumulator.

In the actual operation, the contents of the addressing object are sublracted from the
contents of the accumulator, and the result of the subltraction sets the zero flag (ZF)
and the carry flag (CF) at 0 or 1. The conlenis of the accumwlator are unchanged.

[NOTE} !

The ROM used means the program memory in Ihe program space. The
on-chip memory is always the ROM; however, the external memory, i
used, may possibly include ROM, RAM, and the VO units allocated to

the program space.
[Flags |
Flags affected by execution: Flags atfecting execution:
ZF | CGF | HC | DD DD
» L
| Codes/Cycles |
CODE CYCLES
obj BYTE INT] INT E¥ EX | — ROM
T
1 3 4 5] INT |EX | INT {EX | ~— RAM
T T
N*,s{DP} 92 AD N Ny 5| ~—-]15] —
N* 5 X1] 90 AD Ny | N'm 15 —|15] =
N"14X2] 7 AD N"_ Ny 15| —|15§ —
N*,{USP] At AD Ny | Ny 5| {15} —
N*ygfafl Mg} B4 Ny AD N, Ny 17| 217 | 22
N1 5[Ng] BS Na AD Ny | Ny 17| =] 7| -

3-45

Chapter 3 Defalls of Instructions
instruction Set

CMPCB A, N*¢5 8-bit ROM Compare (direct)
1 ob)]

Function
A - N"1g (byla long)

| Dosctlgtbn |

This instruction compares the contenis (N*1) of the ROM' specified by direct
addressing 1o the lower byte of the accumulator (AL) in a byte long operation.

In the actuat operation, the conlents of the addressing object are sublracled from the
coments of the accumutator, and the result of the subtraction sets the zero llag (ZF)
and the carry flag (CF) at 0 or 1. The contents of the accumuiator are unchanged.

[NOTE] ! The ROM used means the program memory in the program space. The
on-chip memory is aways the ROM; however, the extemal memory, ¥
used, may possibly include ROM, RAM, and the ¥O units allocated lo the

program space.
Flags
Flags affecled by execution: Flags atfecting execution:
ZF | CF | HC | BD faly
L] *
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 8 INT EXT
€ Ny Ny 13 13

3-46

Chapter 3 Detalls of Instructions
Instruction Set

CMPCB A, obj

8-bit ROM Compare (indirect)

ob)

[erN], {OP], [X1], [X2], [USP), {SSP], [LRBY, [off Ng. [Ng]. [[DP]), [+Na[USP],
[N1X1]), N1s[X2]}

I Function I

AL -obj (byte long)

| Description]

This instruction compares the contenis of the addressing object in the ROM! space
{byte iong) 1o the lower byle of the accumulator (Ay).

In the actuat operation, the cortents of the addressing object are subtracted, in a byte
long operation, from the contents of the accurwlator, and the result of the subtraction
sats the zero flag (ZF) and the camry flag (CF) at 0 or 1. The conients ¢l the

accumulator are unchanged.

[NOTE]1 The ROM used maans the program memory in the program space. The
on-chip memory is always the ROM; however, the external memory, il
used, may possibly include ROM, RAM, and the KO units aliocated to
the program space.
" Flags
Flags aflected by execution: Fiags atfecting execution:
ZF | GF | HC | DD oD
[_Codes/Cycies |
CODE CYCLES
obj BYTE INT [INT E¥ E¥ — ROM
1 2 3 4 5 8 INT|EX | INT |EX] «— RAM

T T
{erN] 444N | AE 9 |1} 9|
[OF] 82 AE 9 | —| 9] —
X1 90 AE 9l 19| -
[x2) o1 AE g | —] 9|~
{USP] Al AE 9 | —| 9%} —
[SSP] AD AE s | —1[91—
ILRB) Ad AE 9] —19]|—=
[oft Nyj B84 Ng AE 11 |16 | 11| 16
[Nd BS Ng AE "ml—11j—-
oPl B2 AE mjis|1njfis
[ENg[USP] Ba Ny AE 12]|16§12] 18
[N X1 Bo N_ Ny AE 1317|1317
[NqePX21 a1 N, Ny AE 13|17 1a]7

2.A7

Chapter 3 Detalls of Instructions

Instruction Set

CMPCB A, ob)j

8-bit ROM Compare (indiract with 16-bit base)

ob)

N*16[OF], N*16[X1], N*15[X2], N*1[USP]. N*yg[olt Nag], N*yg[Ng]

| Function |

Ay - obj {byte long)

I Descflgtlon |

This instruction compares the contents (byte long) of the addressing object in the

ROM? space and the contents of the lower byte of the accumulator (A).

In ihe actual operation, the contents of the addressing object are subtracted, in a byte
long operation, from the contants of the lower byts of the accumulator, and the result
of the subtraction sets the zero flag (ZF) and the carry llag (CF) at D or 1. The

contents of the accumuiator are unchanged.

[NOTE]' The ROM used means the program memory In the program space. The
on-chip memory is always the ROM; however, the external memory, if
used, may possibly inchude ROM, RAM, and the VO units allocaled to

the program space.
| Flags |
Flags atiected by execulion: Flags atfecting execution:
ZF | CF { HC | DD DD
| Codes/Cycies [
CODE CYCLES
obj BYTE INT } INT E¥ E# — ROM
] 2 3 4 5 6 INT|EX | INT|EX | — RAM
T T
N',[DP]] AF Ny | N |11 -
N J[X1] 90 AF N | N m|—-|13}—-
N[X2) o AF Ny | W Bl —-]1a} -
N*16[USP] Al AF Ny] Ny Bwml—=f13] -
N* eJoH Ngj B4 Ny AF | Ny | Ny TR E-D K K-
N*alNa] Bs Ny AF N | N 17 —i 7| —

3-48

Chapter 3 Details of Instructions
instruction Set

DAA

8-bit Decimal Adjustment for Addition

obj

I Function |

IF (AL30210) OR (HC = 1) THEN A — A
+6
IF (A 7-4210) OR (C=1) THEN Al7.4 «~— Al74+6

| Description |

This instruction adjusts the 8-bit value in the lower byte of the accumulator {A)
resulting Irom an earlier binary addition of 2-byte long BCD codes, producing packed
BCD codes. Following the sxacution of the adjusting instruction, when a camy from
the lower nibble 1o the upper nibble occurs, the half carry (HC) is set 1o 1.
Furthermore, when a carry occurs from a digit to the adjacent higher digit, the carry
{C) is sat to 1; such carries come from the upper nibble during the decimal adjusting
manipulation or from the execution of the add instruction prior to the decimal
adjustment.

It shoukd ba noted that this instruction is based on the tollowing threa premises. Two
{byte long) BCD codes are added by using one of Lhe byte long add instructions
(ADDB, ADCB). The result of the addition is slored in tha lower byta of the
accumulator. The contents of the half carry and the camy maintain the status which
existed at the end of the adding cperation until the following adjustmenl opsration
revises the status. Below the actual process encountered in this (adjustment)
instruction is described.

1. At first, the lower nibble {A| 3-g) of the accumulator is adjusted by adding 6 il either
the lower nibble of the accumulator is more than 9 (0A—0F), or the half carmry
{HC} is equal 1o 1. This adding operalion is a byte long operation, and when the
addition causes an overtiow from bit 3 10 bit 4 of the accumwlator, the halt carry is
sel to 1 while the overfiow from bit 7 sets the camry to 1.

When the lower pibble of the accumulator does not exceed 9 and also the half
canry (HC), prior to the execution of the adjust instruction, is 0, then no adjustment
operation is applied to the lower nibble.

2. Secondly, the adustment of the upper nibble {Ay7-4) of the accumulator begins by
adding 6 to tha upper nibble & either the upper nibble of the accumulator is more
than 8 (0Ay through OF), or the carmry is 1, which may have existed eilher before or
afler the adding operation of step 1. The status of the haif carry at this momeni
remains unafered from the status which existed during the process of step 1. The
overfiow from bit 7, if it exisls, sets the camy to 1.

When the upper nibble of the accumuiator does not exceed @ and also the camy is
0 before and aftar the operalion of step 1, then no adjustmenl operation is applied
to the upper nibble.

[Fiags]

Flags affected by execution: Flags affecting execution:
ZF J CF JHC | DD oo
- [

3-49

Chapter 3 Detalls of instructions
Instruction Set

[CodesiCycies |
CODE CYCLES
obj BYTE
1 2 3 4 § 6 INT EXT
93 [] -—
Examples
The execution process for this instruction is described below, where Ay and r)) are
the BCD codes.
ADDB A, 10
DAA

[Example 1] 87 +95

{ 1000 0111 | [1001 0101

7 1 [} Fi 1
(I

1
ADDBA, r0

\
AL ¢ H
[0001 w100 | (1] [o0]
7 [

0

The BCD codes for decimat numbers 87
and 95 are respectively A, and r), and they
are added using ADDB A, 0.

The resulis of the addition are that 1C,, is
stored in A, and C is sel to 1 because of
the overflow from the bit 7.

There is no overllow from bit 3 and H is set
to 0.

Decimal adjustment is pedormed by the
DAA instruction.

Al first, the lower nibble of A; is more than
9, and therefore 6 s added to the lower
nibbie. As a result, A, becomes 22, and
tha carry from bit 3 sets Hto 1.

C is 1 prior to the execution of the
instruction; tharefore, 6 is added 1o the
upper nibble and A, becomas 82y, and C
remains al 1 (as i was at the beginning)
Toliowing the execution of the instruction.
Finally, the BCD code lor the decimal
number 82 remains in Ay, and the carry {0
the next higher digil is selin C.

3-50

Chapter 3 Details of Instructions
Instruction Set

[Example 2] 69 + 38
AL

0

;

[o110 1001 | | o011 1000
- —

1 0 7

| . -

ADDB A, r0

AL c

H

[oo000111 | f1] o]}

Ay and r) rapresent the BCD codes for
decimal numbers 69 and 38 respactively
which are added by the ADDB A, 10
instruction,

As a result of the addition, A1y is stored in
Al , and C is set to 0 because of no
overlow from the bit 7.

The carry frombit 3 sets the Hio 0.

Decimal adjustment is performed by the
DAA instruction,

At first, 6 is added to A because H=1, A
becomes A7H and there is no carry from bit
3. henceHis selto 0.

The upper nibble of Ag is more than 9,
therelore 6 is added to the upper nibble of
Al making Ay 07y4. C is set to 1 because of
the overllow from the upper nibble
adjustment. Finally, the contents of Ay
show- the BCD code for the decimal
number 07 and the camy to the next higher
digit is indicated by C=1.

3-51

Chapter 3 Details of Instructions
instniction Set

DAS 8-bit Decimal Adjustment for Subtraction
l obl I

| Function |
IF {A302 10} OR {HC = 1) THEN A - A

-8
IF {AL7.4210) OR (C=1) THEN Ay7q +— A74-6
HG «— 0

| Dascription |
This instruction adjusis the 8-bit vaiue in the lower byte of the accumulator (AL
resulling from the eariier binary subiraction of 2-byte long BCD codes, producing
packed BCD codes

It should be noted that this instruction Is based on the following three premises. Two
(byle long} BCD code are sublracted by using one of the byte long subtract
instruction (SUBB, SUCB). The result of the sublraction is stored in the lower byte of
the accumulator. The contents of the half carry and the carry maintains the status
which existed al the end of the subtracting oparation until the following adjustmen
operation revises the status.

The iollowing is the aclual process encountered in this (adjustment) instruction.

1. Atfirsi, the lower nibble (A¢3.0) of the accumulator is augmented by subtracling 6
from the lower nibble of the accumulator if the half carry (HC) is equal 1o 1. When
the half carry (HC}, prior 1o the axecution of the augment instruction, is 0, then no
adjustment operation is applied to the lower nibble.

2. Secondly, the adjustment of the upper nibble (A 7-4) of the accumulator begins by
subtracling 6 from 1he upper nibble of the accumulator i the carry (C) is 1. When
the camry (C) is 0, then no adjusiment operation is applied to the lower nibble.

| Flags]
Flags affected by execution: Flags affecling execution:
ZF | CF | HC | DD DD

L »

| Codeslgcles I
CODE [cycies
obj BYTE |
1 2 3 4 5 § | WwT | EXT
94 |G —

3-52

Chapter 3 Details of Instructions
Instruction Set

l E!al‘l'lElOS I

The execution process of this instruction Is shown using the following case in which
A and r0 are the BCD codas.

SUBB A, 10 {or SBCB A, r0)
DAS

[Example 1] 87 -95 The BCD codes for decimal numbers 87
and 95 are respectively A(and r0 and they
A 0 are sublracted using SUBB A, r0.

[1000 0131 | | 1001 0101 |
71 © 7 1 0

l—————f—-———l

1
SUBBA, 0

As a result of the subtraction, F2 is stored
in Ay and C is set to 1 because ol the
Jv borrow trom bit 7.

There is no borrow from bit 3 and H is sel to

0.

I 1111 0010 l 1 0
7 0
| S

|| DAS

Decimat adjustrment is parformed by the
DAS instruction. initially, since H=(0, the
lower nibble is nol adjusted. Since C=1,6
is sublracted from the upper nibble of At,
and Ay bacomes 92y.

,; C maintains the status that exists prior 10
the execution of the augment instruction,
namely C=1,

Finally, the BCD cods for the decimal
number 92 stays in A and the bormow from
Ay C H the next highet digit Is indicatad by Ce1.

1001 0010 | 11| [o]

3-53

Chapter 3 Detalls of Instructions
Instruction Set

[Exampla 2] 99 - 99 with the borrow Both A_ and r0 ara the BCD code for the
from the preceding step. decimal number 93 andthe Cis setlo 1
indicating a bormow has occurrad in the
0 preceding step. Now the subtracl

A
L ! >
[1001 1001—| |_1001 1001J instruction, SBCB A, 10, is executed.
7 I [/} 7 I [}

na
SUBB A, 10
The result of the sublraction, FFy is stored
in A_. Cis setlo 1 because of the bomow
\l trom the bit 7.
H is set 10 1 because of the borrow from the
A c H bi 3.
] 1111 1111 | 1 1
7 1 0
| S
1
DAS
The decimal adjustment is performed by the
DAS instruction.
At first, sinca H=1, 6 is subtracied from the
lower nibbla of A.
Since Ca1, 6 is sublracted lrom the upper
! nibble of AL and A becomes §9H.

The C has basn 1 prior 1o the execution of
the adjusiment instruction, and remains 1.
Finally, the BCD code for the decimal
number 99 stays in Ay and the borrow from
A C H the next higher digit is indicated by C=1.

o] [[T

a.54

Chapter 3 Details of Instructions

Instruction Set

DEC obj

16-bit Decrement

ob]

erN, DP, X1, X2, USP, SSP, LRB, oft Ng, Ng, [DP], tNg[USP], N1g[X1], N1g[X2]

| Function |

ob} +— obj + 1 (word long)

I Description l

This instruction sublracts 1 from the conients of the addressing object (word long).

Flags
Flags aftected by axecution: Flags allecling execution:
ZF | CF | HC | DD)b
& -
| Codes/Cycles |
CODE CYCLES
obj BYTE

1 2 3 4 5 INT | EXT
A
‘N‘a
orN 441N 17 5 13
DP 82 3 -
X1 80 3 -_
X2 81 3 -—
usp Al 17 5 —
S5P AD 17 5 -
LRB FE 3 -
olf Ny B4 Ng 17 7 16
Na BS Ng 17 7 -
[OP] B2 17 7 15
N [USP] B3 Ng 17 8 16
N,yg[X1] Bo N, Ny 17 ¢ 17
Ny gfX2] B N, Ny 17) 17

3-55

Chapter 3 Details of Instructions

instruction Set

DECB obj

8-bit Decrement

| oof |

N, PSWH, PSWL, off Ng, Na, [DP], $Ng[USP], N1g[X1], N1g[X2]

{ Function |

obj «— obj +1 (byte long)

| Deascription |

This instruction subtracts 1 from the contents ol the addressing object (byte long).

| Flags]

Flags affected by execution: Flags atfecting execution:
ZF | CF | HC | DD DD
- L]
| Codes/Cycles |
CODE CYCLES
ob]j BYTE
1 2 3 4 5 INT | EXT

A

’Na

N Ba+N k] 7
PSWH A2 17 5 -
PSWL A3 17 5 —_—
off Ny c4 Ng 17 7 12
Ny c5 Ny 17 7 _
[DP] c2 17 7 1
1Na[USF) c3 Ng 17] 12
NygX1] co N, Ny 177 9 13
N X2] ¢1 N, Ny 17 9 13

3-56

Chapter 3 Detalls of Instructiona
Instruction Set

DIV

16-bit Divide

obj

I Function I

(810, A) «— erQ, A) +er2
erl «— (er0, A} MOD er2

| Description |

32 bits divided by 16 bits —32 bits divide Instruction

The 32-bit value (dividend), whose upper and lower 16 bits are given by the extended
focal register 0 (er0) and the accumulator respectively, is divided by the conlents ot
the extendad local register 2 (er2).

The results of the division are stored in three different locations. The upper 16 bits of
the quotient is stored in the extended local register 0 (erD), the lower 16 bils of the
quotient is stored in the accumulator, and the remainder (16bits) is stored in the
extended local register 1 {erl).

[NOTE] When division by 0 is executed (i.e., er2 = 0), the quotient and the
remainder become undetermined, and the carry tlag is set to 1. |n ali other
cases, the carry flag is set 10 0.

Flags
Flags aflected by execution: Flags aflecting execution:
ZF | cF | He | DD DD
L] L]
Codes/Cycles
CODE i cvcies
obj BYTE i

1 2 3 4 5 s | WNT | ExT
A %0 | a7 | 7 | e

Chapter 3 Detalls of Instructions
Instruction Set

DIVB B-bit Divide

| obj]

Function
A —A+rD
n—A MODO

| Dascription I

16 bits divided by 8 bils — 16 bits Divide Instruction

The contents (186 bits) of the accumulator are divided by the contants (8 bits) of the
local register 0 (r), when this instruction is axecuted.

The resufl of the division are stored in twa locations. The quotient (15 bits) is stared
in the accumulator and the remainder (B bils) is stored in the local register 1 (r1}.

[NOTE] When the division by 0 is executed (ie., 8r2 = 0}, the quotient and the
remainder become undetermined, and the carmry llag is set to 1. |n all other
cases, the camry flag is set to 0.

Flags
Flags aflecied by execution: Flags affecting execution.
2F § CF | HC | DD DD
L]]
Codes/Cycles
CODE CYCLES
obj 8YTE
1 2 3 4 5 6 INT EXT
A A2 % r 29 a3

Chapter 3 Detalls of Instructions

Instruction Set

EXTND Signed Byte to Word Extend
ot]
| Function |
A
Aisg — A7 T
DD ~—1 0,0,0,0,0,00 0:0: Case where A7 = 0
B7

15

I o S Y
0

111111111

Ly 1111111l
1% ay [

Case where Ay = 1

{ Description]

This instruction extends signed byte type data 1o signed word type data. The upper
byle of the accumulalor is tilled with the highest bit (A7), which is the sign bit of the
byte type data. Af the same lime, the dala descriptor is sat o 1 lo indicale a word

long operation.
{ Flags]
Fiags atfected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
1
| Codes/Cyclas |
CODE CYCLES
obj BYTE
1 2 3 4 5 INT EXT
F8 2 —

3-59

Chapter 3 Details of Instructions

Instruction Set

INC obj

16-bit Increment

obj

erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP], N1g[X1}, N1g[X2]

[Function |

obj «— obj + 1 {word long)

| Description l

This instruction adds 1 1o the contents of the addressing object (word long).
H LAB is the addrassing objed! in any addressing mode, ZF will not be atfected.

{ Flags]
Flags atlecied by execution: Flags affecting execution:
ZF { CF | HC | DD DD
» L]
Codes/Cycles
CODE CYCLES
obj BYTE

] 2 3 4 5] INT EXT
A
#Nyg
erN AdN 16 5 13
DP 72 3 —
X1 70 3 _
Xz 71 3 -
UsP Al 16 5 -_
SsP A 16 5 -
LRB FD 3 —
off Ng B4 Ns 16 7 16
Ny BS Ny 16 7 —
[OP) B2 16 7 15
+Ny[USP] Ba Ny 16 8 16
Nyel%1) BO N Ny 16 9 17
NelX2) B1 N, Ny 16 9 17

3-60

£

Chapter 3 Details of Instructions

Instruction Set

INC obj

16-bit Increment

obj

erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP], N1g[X1}, N1g[X2]

[Function |

obj «— obj + 1 {word long)

| Description l

This instruction adds 1 1o the contents of the addressing object (word long).
H LAB is the addrassing objed! in any addressing mode, ZF will not be atfected.

{ Flags]
Flags atlecied by execution: Flags affecting execution:
ZF { CF | HC | DD DD
» L]
Codes/Cycles
CODE CYCLES
obj BYTE

] 2 3 4 5] INT EXT
A
#Nyg
erN AdN 16 5 13
DP 72 3 —
X1 70 3 _
Xz 71 3 -
UsP Al 16 5 -_
SsP A 16 5 -
LRB FD 3 —
off Ng B4 Ns 16 7 16
Ny BS Ny 16 7 —
[OP) B2 16 7 15
+Ny[USP] Ba Ny 16 8 16
Nyel%1) BO N Ny 16 9 17
NelX2) B1 N, Ny 16 9 17

3-60

£

Chapter 3 Details of Instructions
Instruction Set

aaa———

INCB obj 8-bit Increment

[_'_'._"'Zl_|
N, PSWH, PSWL, off Ng, Ng. [DP], tNg[USP), N1glX1], NyglX2]

l Description |
This instruction ackds 1 1o the contents of the addressing object (byte long).
It LRB's upper bits are the addressing object in any addressing moda, ZF will not be

obj +— obj +1 (byte ong)

affected.
Fiags
Flags afteciad by execution: Flags affecting execution:
ZF | CF | HC | BD DD
» L]
Codes/Cyclas
CODE CYCLES
obj BYTE
1 2 3 4 5 8 INT EXT

A

N,

N AB+N 3 7
PSWH A2 16 s -
PSWL A3 18 5 —
off Na 4 Na 16 7 12
N c5 N 16 7 —_
[DP} c2 16 7 1
NGJUSP) c3 Ny 16 8 12
N&IX1} co Ny [16 9 13
Nyel%2] ct N Ny 16 Y 13

3-61

Chapter 3 Detalls of Instructions
Instruction Set

J address 16-bit Space (64K byte) Direct Jump

l obj |

Function
PC « address (16 bits)

[Description |}
This instruction performs a direct jump to the program (memory) space of 84K bytes.
The address is specified by Ihe 16 bit address vaiue {00004 through FFFFy) that is

the destination addrass of the jump.
[Fags]
Flags affected by execution: Flags affecting execution:
ZF J CF { HC | DD DD
| COdu!ﬂclu |
CODE CYCLES
¢bj BYTE
1 2 3 4 5 € INT EXT
03 adn, adry 7 _

[NOTE} adn and adny are respectively the lower 8 bits and the upper 8 bits of the address.

3-62

Chapter 3 Detalls of Instructions
instruction Set

J obj 18-bit Space (64K byte} Direct Jump

obj .
[erN], [DP), [X1), [X2], [USP], [SSP), [LRBY, [oif N, [Ng}, [DP, [+Ns[USP],
[N1g[X7]. [N1g[X2])

I Function |
| Description I

PC «— ohj (18 bits)

This instruction performs an indirect jump to the 16 bit (64K byte) space where the
destination is specified by the contents of the addressing object.

it should be noted that the obj in the preceding “Function” is expressed by enclosing
the contents of the RAM addressing expression (word long) with brackelts (]), and
the value Is the 16-bit contents of the RAM which is the object of the addrassing. In
other words, the dastination address of the jJump is given by the 16-bit contents of the
RAM which is addressed in the instruction.

[NOTE) Thig instruction may be easier to undersland if # is thought of as a
“MOV PC, obj" instruction with the brackels (]) of the obj removed.

[Flags]

Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD (#]6)
I Codes/Cycles |
CODE CYCLES
obj BYTE

1 2 3 4 5 [} INY EXT
A
Ny
{ari] 4N | 22 6 10
DR 92 22 6 —
X1 90 2 P —_
2]) 22 6 -
[USP) Al ord [-
[SSP} AD 22] _—
[LRB] Ad 22 6 —
[oft N B4 MNa 2 8 13
[Ng] Bs Ny 22 a -
foPy) 82 2 8 12
[+Ng[USF]) 83 ™ 22 9 13
[NyelX1]) Be N, Ny 22 10 14
{N.olX2]) B1 N My 22 10 14

2.R1

Chapter 3 Detalls of Instructions
Instruction Set

JBR off Ng.bit, address Jump if Bit Reset

L oo 1

Function

IF {off Ng.bit = 0} THEN PC «— address

where PC* - 128 s address s PC* + 127
PC* = staring address of the instruction following the JBR instruction
= (address of Ihg first byte of ihe JBR instruction) + 3

| Oescription |
This instruction causes a jump if a specitied bit of the data memory (off Ng) that is the
object of direct page addressing has a value ol 0.

The location of the specified bit is given by the “bit™ (0 through 7) in the inslruction.
The destination address of the jump is given by the "address” in the instruction. The
range ol the jump is from -128 to +127 with the address of the instruction that foliows
naxi serving as the origin.

[NOTE] This jump instruction manipulates the PC based on the displacement.
However, in the source program of the assembler (RAS66K), the destination
address of the jump specilied as a labe! and not as a displacemenl, is
entered as the operand of the instruction. The assembler figures out the
amount of ihe displacement, which, if it stays within the allowable range, is
used 10 generale the machine codes. i the amount ot the displacement is
outside of the allowable range, the assembler iSsues an error waming.

| Flags |
Flags aflected by exacution: Flags atfecting execution:
ZF | CF | HC | DD (] 0]
[CodesiCycies]
CODE CYCLES
obj BYTE INT INT EXT EXT | —oabj
1 2 3 4 5 INT EXT INT EXT — off NB
D8+ Ns Ng 10] 13 ']
n

[NOTE] 1. Ng ks the 8-bit code to reprasent the displacemant in the range from -128 to +127. Negative values are
expressed as 2's complement.

[EXAMPLE] Displacement Ny
o 000000008
+1 000000019
+127 o1t1t111g
-1 11111111
-127 10000001
-128 100000008

2. nis detarminad from the valus of the "bit, and ranges Irom 0o 7.

3-64

Chapter 3 Delails of Instructions
Instruction Set

JBS off Ng.bit, address Jump if Bit Set

I Function l

iF (off Mg.bit = 1) THEN PC +— address

where PC*- 128 < address s PC* + 127
PGC" = slarting address of the instruction following the JBS iastruction
= (address of the first byte of the JBS instruction) + 3

[Description_ |

This instruction causes a jump K a specifled bit ol the data memory {off Ng) that is the
object of direc! page addressing has a value of 1.

Tha location of the specified bit is given by the *bit™ (0 through 7) in the instruction.
The destination address of the jJump is given by the "address” in the instruction. The
range of the jump Is from -128 to +127 with the address of the instruction thal follows
next serving as the origin.

[NOTE] This ump instruction manipuiales the PC based on the displacemenl.
However, in the source program of the assembler (RASE6K), the
destinafion address of the jump specitied as a label and not as a
displacement, is entered as the operand of the instruction. The assembler
figures out the amount of the displacemant, which, ¥ i stays within the
allowable rangs, is used to generate the machine codes. If the amount of
the displacement is outside of the allowable range, the assembler issues
an amor waming.

| Flags |

Flags alfectod by execution: Flags affecting execution:
ZF { CF | HG | DD DD
| Codes/Cycies |
CODE CYCLES
obj BYTE INT iNT EXT EXT +—off Ny
1 2 3 4 5 8 INT EXT INT EXT — off Ng.bit
EBsn) Ny | Ny 10 [13 9
{NOTE] 1. N'gisthe 8-bit code W raprasent the displacamant in the range from -128 to +127. Negative values are
expressad as 2's complement.
[EXAMPLE] Displacement N'g
1] 000O00008
+1 000000018
+127 011111118
-4 11111115
-127 10000001g
-128 100000000

2. nis dalerminad from tha vaiue of the “bit", and ranges om0 W 7.

3-85

wLIEPIer 3 WS OF INSTucuons

Instruction Set ;
JC condition, address Conditional Jump
| obj] R
Function o

IF condition Is true THEN PC +— address

where PC*- 128 < address < PC* + 127
PC* = starting address of the instruction following the JC instruction
= {address ot the jirst byte of tha JC instruction) + 2

| Dascription |
This instruction causes a jump to the address specified by the second operand
*address" In the instruction, if 1he first operand condition® is true.

The range of the jurmp is from -128 1o +127 with the origin al the address of the
Instruction that follows next.

The tnuth of the conditions is defined by the zero flag (ZF) and/or the carry flag {CF) .
as described in the following table, which also list the symbois lor the conditions. The
conditions and the terms that must be fultilled for the conditions to be true are shown

in the following table.]
1
Symbois for Termns to be fullilled for condition 10 be true Z
Conditions Flgg Logical meaning 1
EG Z=1 = | Equal
NE Z=0 # Nol Equal
LT C=1] <« |LlessThan
LE Z=1 of C=1] < 1|LessorEqual
GT Zw0 or C=0] > [GreaterThan
GE Ca=0f 2 jGreaterorEqual
Flags
Flags atfected by execution: Flags affecting execution:
ZF § CF J HC | DD Do
I Codes/Cycles }
CODE CYCLES
CONDITION BYTE TRUE Fﬁts
1 2 3 4 § 6 {lump)
EQ ce Ny a 4
NE CE Ng 8 4
LT CA N B 4
LE CF | Ny] 4
GT ca Ny 8 4
GE cD Ny 8 4

[NOTE) Nga is the code for the displacement. See the foliowing section, "Displacement.”

3-66

Chapter 3 Detalls of Instructions
Instruction Set

[[Dispiacement]

Na

inthe above lable, Ng is the 8-bit code lo represent the displacement in the range
from -128 to +127. Negative values are expressed as 2's complement.

{EXAMPLE] Displacement Ny
0 00000000
+1 00000001 s
+127 01111111
-1 11111111g
-127 100000018
-128 10000000g

["Caution tor entering address |

This jurnp instruction maniputates the PC based on the displacement; howaver, in the
source program of the assembler (RASE6EK), the deslination address of the jump
specified as a label and not as a displacement, is entered as the operand of the
instruction. The assembler figures out the amount of the displacement, which, i it
stays within the allowable range, is used lo generate the machine codes. K the
amount of the displacement is outside of the range, the assembler issues an emror
warning,

2-R7

Chapter 3 Details of Instructions

Instruction Set
JRNZ DP, address Loop
L___ob]
[Function |
DPpL «~— DP_ -1
IF DP_ =0 THEN PC +— address
whore PC*- 128 < address < PC* + 127
PC* = starting address of the instruction following the JRNZ instruction
« (address of the first byte of the JRNZ instruction) + 2
| Description |
This instruction performs a jump 1o the address specilied by the second operand
=address" in the tnstruction il the content of the lower byle of the data pointer (DP)
decremented by 1 is not 0. This instruction permits implementing a simpla loop
process for osunting the lower byle of the dala pointer. The range of the ump is from
-128 to +127 with the address of the instruction that follows next serving as the origin.
| Flags 1
Flags atlected by execution: Flags affecting execution:
ZF | CF | HG | DD pD
| Codeugclll |
CODE CYCLES
ob} BYTE DP =0 | DP =0
1 2 3 4 L 6 (jump) | {po jump)
30 N‘ 11 7

[NOTE] Ng is the 8-bil code ta represent the displacement in tha range from -128 to +127. Negative values are

exprassed as 2's complement.

[EXAMPLE] Displacement ™
0 000000008

+1 000000018

+127 D1111111p

q REEEEEETY

127 100000018

-128 100000008

3-68

Chapter 3 Detalls of Instructions

lastruction Set
.
L A, obj 16-bit Load
e 1
#Nqg, orN, DP, X1, X2, off Ng, Ng, [DP], tNg{USP], N1glX1], Nigl%2]

I Functlon I

DD 1

A «- obj (word long)

| Description |
This instruction ransfers the contents of the addressing object {word long} 1o the

accumulator.

This instruction sels the data oescriptor io 1.

[CFees]

Flags atfected by execution: Flags atfecting axecution:
ZF | CF | HC | DD oD
L 1
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 5 INT EXT

A

N, 67 N ™ 6 -
o 344N 2 | 6
DP 42 2 -
X1 40 2 —
X2 41 2 —_
usp

SSP

LRB

off Ny E4 Ny 4 9
Ny ES Ny 4 —
DY E2 4 8
+Ng[USP] E3 Ny 5)
NygX1] EO Ny [; 10
N, g[X2] E1 N, 6 10

3-69

Chapter 3 Detalls of Instructions

Instruction Set

LB A, obj

8-bit Load

| obj]

#Ng, ™, ofl Ng, Ng, [DP], tNg{USP], Nyg[X1], N1 glX2)

Function

Ar +— obj (byte long)
DD «0

{ Description |

lower byte (AL} of the accumulator.
This instruction sets the data descriptor {DD) o 0.

This Instruction transfers the contents of the addressing object (byte iong) 1o the

[Fags]
Flags aflectad by execition: Flags affecting exacution:
2F | CF | HC | DD DD
.]
| CGdtsIE!cm |
CODE CYCLES
ob]j aYTE
1 2 3 4 5 INT EXT
A
", 77 Ns 4 -
N 78+N 2 4
PSWH
PSWL
off Ny F4 Ny 4 7
Ny F5 Ny 4 —
iDP) F2 4 6
NJUSP) F3 Ny 5 7
N,gfX1} Fo N, Ny] a8
NyelX2) F1 Ny Ny] 8

3-70

Chapter 3 Detalls of Instructions

Instruction Set

LC A, N*16 16-bit Load ROM Reterence (diract)
[obj]
I Function |

A+— N1 (word long)

Dascription
This instruction transfers the contents (N*1g) of the ROM? specified by direct
addrassing lo the accumulator in word long operation.

[NOTE]! ROM as used here means the program memory in the program space.
The on-chip memory is aways considered ROM; however, the extemnal
memory, if used, may possibly include ROM, RAM, and V0 units allocated

to the program space.
[Flags]
Flags atfected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
L
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT
90 9C Ny Ny 15 15

3-71

Chapter 3 Detalls of Instructions

Instruction Set

16-bit Load ROM Reference (indirect)

ferN], [DP), [X1], [X2], [USP], [SSP], [LRB). [oif Ng]. [Ng), [[DP]), [tNe[USPL, [Nyg{X1]],
[NqelX2]}

LC A, obj
| obj |
I Funciion |

A « obj (word long)

[escription]

This instruction transters tha contents of the addressing object (word long) in the
ROM? space 10 the accumuiator.

[NOTE]'! ROM as used here means the program memaory in the program space,
The on-chip memary is always considered ROM; however, the exiernal
memory, if used, may possibly include ROM, RAM, and VO units
allocated to the program space.
| Flags |
Flags aflected by execution: Flags affecting execution:
ZF | CF { HC | DD oo
L]
| Codes/Cycles |
CODE CYCLES
obj BYTE INT | INT E¥ E_)IS +~ ROM
1 2 3 4 5 6 INT|EX | INT|EX | «— RAM
T T
[orN] 4N | A8 1|15 |11} 15
DR} 92 A8 | —11]—
X1} 90 A8 | -] nnj—-
fx2] 91 Af | —|nnj}—-
[USP) At AB "n|—J1nnf|—
[SSP) AQ Y n|l~jnj-
[LRB) Ad A8 "nNl—Iinj—=
[aH Ny B4 Ny A 13|18 |13]18
[Nal BS Ny Ag 1Bf—=|1| -
[eey 82 Al 13 |17] 13| 17
[tNg[USP]} 83 Np A8 14 | 18| 14| 18
[Nqe[X1]] 8o N Ny Ag 15| 19}§15¢ 18
[NelX2]) Bt N, Ny A8 151191519

3-72

Chapter 3 Detalls of Instructions
Instruction Set

LC A, obj

16-bit Load ROM Reference (indirect with 16-bit base)

N"16{DP], N"16[X1], N*1g{X2), N"16[USP], N*16[ofl Ng]. N*1g[Na]

l Functlon I

A + obj (word long)

| Description |
This instruction transfers the contents of the addressing object (word long) In the
AOM? space 10 the accumuiator.
[NOTE]' ROM as used hers means the program memory in the program space.
The on-chip memory s always considered ROM: however, the extemal
memory, il used, may possibly inciude ROM, RAM, and VO units .
allocated to the program space.
| Flags |
Flags affected by execulion: Flags affecting execution:
ZF | CF | HC | DD oD
| Codes/Cycles |
CODE CYCLES
obj BYTE INT | INTJEX JEX | — ROM
T T
1 2 3 4 5 6 INT |[EX §INT|EX | «— RAM
T T
N*JJDP) 92 Ag Ny Ny S| —|15} —
N X 1] 20 A9 | N | Ny 5] —]15]—
N*,g[%2] 91 A9 N, N'y 15| —}j15] —
N*,JUSP) Al AR Ny | Ny 5| —]15] —
N*,gloH Nyl B4 Ng | As | NU | Ny 17| 22)17 | 22
N*1alNa] 85 Ng A9 N | Ny 7] —{17] —

3-73

Chapter 3 Detalls of Instructions

instruction Sat

LCB A, N*16

8-bit Load ROM Referenca (direct)

Lo |

[Founction |

AL — Nqg (byte long)

| Doscrllletlon |

This Instruction translers the contents (N*y¢) of the ROM! specifled by direct
addressing to the lower byle (A{) of the accumulator in a byte long operation.

[NOTE]'! ROM as used here means the program memory in the program space.
The on-chip memory is always considerad ROM; however, the exiemnal
memary, K used, may possibly include ROM, RAM, and YO units allocated
to the program space.
Flags
Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
L
| Codes/Cycles |
COOE CYCLES
obj BYTE
1 2 3 4 5 INT EXT
90 sD N | N 13 13

3-74

Chapter 3 Detalls of instructions

Instruction Set
LCB A, obj 8-bit Load ROM Reference (indirect)
ob .
{erN], [DP), [X1], [X2), [ott Ng]. [Ng), [DPL, {tNa[USP]), [N1g[X10, [N1e{X2]}
Function
AL +— obj (byte long)
Description

This instruction transfers the contents of the addressing object (byte long) in the
ROM! space 1o the lower byte (A} of the accumulator.

[NoTE]

ROM as used here means the program memory in the program space.
The on-chip memory is always considered ROM; however, the external
memory, if used, may possibly include ROM, RAM, and /O units
allocated o the program space.

| Fiags |

Flags affected by execution: Flags affecting execution:
2F | CF | HC | DD oD
»
| Codes/Cycles |
CODE CYCLES
ob]j BYTE iNT | INT EJT< E¥ — ROM
1 2 3 4 5 8 INT | EX | INT JEX | « RAM

T T

[erN] 44+N AA 9 11 911
(23] 92 AA 9l —|s9|-—
[X1] 90 AA 8| —1] 81—
x2] 91 AA gl —f 8] —
[USP) Al AA g | ~] 9| —
[5SP) AD AA s | —| 9| —
ILRB] Ad AA 91l —1 91 —
[off Nal B4 Na AA 11] 16} 11§ 18
Mg} Bs Ns AA nji—[n|-—
[IDP] B2 AA 1|15 1] 1s
[+NoJUSP] B3 Ny AA 1211612 15
[No[X 1]} Bo Ny Ny AA 13 17 113 {17
[N&IX2]] 81 N, Ny AA tal1r]1a] w7

.78

Chapter 3 Detalls of Instructions
instruction Set

LCB A, obj 8-bit Load ROM Retarence (indirect with 16-bit base)

ob
N*1g[DP], N*16[X1], N*1g[X2], N*16[USP], N*1gloft Ng], N*4eiNg|

Functlon
AL + obj {byte long)

Daescription

This instruction transfers the contents of the addrassing object [byte lng) In the
ROM? space 1o the lower byte {A]) of the accumulator.

[NOTE]'! ROM as used here means the program memory in the progiam space.
The on-chip memory is always considered ROM; however, e external
memory, # used, may possibly include ROM, RAM, and U0 units

aliocated to the program space.
| Flags]
Flags aflected by execution: Flags aflecting execution:
ZF | CF {HC | DD DD
L]
Codes/Cycles
CODE CYCLES
obj BYTE INT § INT|EX |EX | ~ ROM
T(T
1 2 3 4 5 -] INT JEX | INT|EX | ~— RAM
T T
N*;slDP] 92 AB N*L Ny B3] =131~
N gfX1) 0 AB Ny Ny Bw)l—-|11]-
N*e[%2} 91 AB N, Ny B =13} -
N*,s[USP] A1 AB N*L Ny B|l-]n1|-
N" ygfoH Ng) B4 Na AB N, | Ny 7lnlin|2z
N*,slNal BS Ne AB N} Ny 7l-|17)-

3-76

Chapter 3 Detalls of instructions
Instruction Set

MB C, obj.bit Move Bit {direct bit addressing)

ob|
N, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP], NygIX1l], N1g{X2}

[Function]
C « obj.bit
I Doscr!llon |

This instnuction transfers the contents of the specified bi of the opsrand "obyi” (byte
long) that is the addressing object in this instruction to the carry (C). The location of
the bit is specified by the term “bit* whose value ranges from 0 1o 7.

Flags
Flags affected by execution: Flags affacting execution:
ZF | cF | He | oD DD
| Codes/Cycles |
CODE CYCLES
ob} BYTE
1 2 3 4 5 6 WNT EXT

A

#MN,

™ 204N | 284n 5 7
PSWH A2 28+n 5 —
PSWL A3 28+n 5 —
off Ny C4 Ny 28+n 7 10
Na Ccs Na 2840 7 -
0P} c2 { 284n 7 9
NaUSP) Ca Ny | 28+n 8 10
NyoX1] o N, Ny | 2B+n 9 1
NolX2} c1 N, Ny 28+n 9 11

INOTE] “n" is determined from the value of 1he “bil*, and ranges from 010 7.

Chapter 3 Detalls of Instructions

Instruction Set
MB obj.bit,C Move Bit (direct bit addressing)
Lo 1]
N, PSWH, PSWL, ofl Na, Na, [DP], tNa[USP], N1g[X1], N1g[X2]
" Function
oblbit — C
| Description |
This instruction transfers 1he contents of the carry (C) to the specified bit of the
oparand “obJ" {byle long) that is the addressing object in this instruction. The location
of the specified bit is given by the term "bit” in the instruction and its vaiue ranges
fomOte 7.
l Flags ||
Flags alfected by execution: Flags atfecting execution:
ZF | CF | HC | BD [2]0]
CODE CYCLES
obj BYTE
1 2 3 4 5 & INT EXT
A
N,
1] 20+N | 38+n 10 16
PSWH A2 38+n 10 —
PSWL A3 38+n 10 —
oif Ng c4 Ng | 38+n 12 19
N. Cs N| AB+n 12 —_—
[OP) cz 38+n 12 18
+NfUISP) 3 Ny | 38+n 13 19
N,oX1] co N, Ny [38+n 14 20
Ny o[%2) c1 N Ny | 38+n 14 20

[NOTE] "n"is determined from the value of the "bit", and ranges from 0 1o 7.

3-78

Chapter 3 Details of Instructions
Instruction Sat

MBR C, obj Move Bit (register indirect bit addressing)

| ob| |
| Function |
[DescrIEzlon |

N, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP], NygIX1], Nyg[X2}

C « objbit (As.q)

This instruction transfers the contents of the specilied bit of the operand “obj" {byle
long) that Is the addressing object in this instruction to the carry (C). The location of
the bit is specilied al the execution time of the instruction by the contents of tha lower
3 bits (Az.p) of the accumulator.

l Flags I

Flags atlected by axecution: Flags atfecting execution:
ZF | CF | HG | DD (0]9]
-
[Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 [INT EXT

A

#Ny

)] 20+N 21 5 7
PSWH A2 21 5 —_
PSWL A3 21 5 _
off Ng c4 Ng 21 7 10
Ny cs Ny 21 7 —
{OP} c2 2 7 9
+NgJUSP] c3 Na 2 a8 10
NglX1] co N Ny 2) 1k
Ny ofX2) ct N Ny 21 9 1"

a.7a

Chapter 3 Detalls of Instructions
Instruction Set

MBR ob|, C Move Bit (register indirect bit addressing)

O
1N, PSWH, PSWL, off Ng, Ng, [DP], tNg{USP], N1g[X1], N1g[X2]

| Function l

obj.bit (Ag.g) «— C

| Description |

This instruction transters the conlents of the carry (C) 10 the specilied bit of the

operand “cbj” (byte long) that is the addressing object in this instruction. The location

of the bt is specilied at the execution time of the instruction by the contenis of the

lower 3 bits (Az.p) of the accumuiator.

Flags
Flags affected by execution: Flags affecting execution;
ZF | CF | HC | DD DD
[Codes/Cycles |
COoDE CYCLES
obj BYTE
1 2 3 4 s [INT EXT
A
‘N.
N 20N | 20 10 16
PSWH A2 20 10 -
PSWL A3 20 10 -
off My [Ny P2 12 19
Ny cs Ny 20 12 —
(DR G2 20 12 18
N[USP] c3 Ng 20 13 15
N,DX1) co N, Ny 20 14 20 .
N,gfX2] c1 N, Ny 20 14 20
i

3-80

Chapter 3 Detalls of Instructions
Instruction Set

MOV A, obj 16-bit Move

obj

| Function |

erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP], Nyg[X1], N16[X2]

A «—obj (word long)
DD «1

| Description |

This Instruction transters the contents of the addressing object (word long) to the
accumulator.

This instruction sels the data descriptor (DD) to 1.
Also, this instruction funclionally overiaps par of the "L A, obf" instruction. This

instruction differs from "L A, obj" insiruction in that the execution of this instruction is
nol affected by the zero flag, and, also, this instruction incurs a comparalively large

number of bytas and cycles.
Flags
Flags alfected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
1
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT

A

"Nﬂ

orN 44+N 99 4 8
op 92 249 4 -
X1 90 99 4 —_
X2] 29 4 .
Usp Al 99 4 —
S5P AD 99 4 —_
LRB Ad 99 4 _
off Ny B4 Ny 29 [1
[™ Bs Ny 9 & -
{DP} B2 99 6 10
N USP] Ba Ng 99 7 11
N,glX1) Bo N, Ny 89 8 12
N, gfX2] At N Ny 9% 8 12

2.81

Chapter 3 Detalls of Instructions
Instniction Set

MOV DP, obj 16-bit Move

ob)

A, #Nqg, erN, OP, X1, X2, USP, SSF LRB, off Ng, Na, [DF], tNg{USH, N1g[X1}, .
M1glX2)

[Functlon]
| Doscr.lgllon |

DP + obj (word long)

This instruction transfers the contents of the addressing object (word long) 1o the dala

pointer.
Fiags
Flags affected by execution: Flags affecting execution:
ZF | GF f HC | DD DD
I Codes/Cycles |
CODE CYCLES _
obj BYTE :
1 2 3 4 5 6 INT | EXT f
A 52 2 -
TR 62 | N | Ma s — ;
orN 444N 7A 4 8
DP 92 TA 4 -
X1 90 TA 4 _
X2 9N 7A 4 —_
use Al TA 4 -
§SP A 7A 4 —
LRB Ad 7A 4 -
ofl Ny B4 Ny TA 6 1"
Ny Bs Ny 7A 6 —
[OP} B2 7A] 10
+NaJUSP] B3 Ng TA 7 1"
N,aX1] Bo M, Ny TA] 12
NWX2] a1 N, Ny 7A 8 12

3-82

Chapter 3 Detalis of Instructions
Instruction Set

MOV erN, ob]

16-bit Move

ob]J

A, #Nqg. o', DP, X1, X2,USP,SSF. LAB, off Ng, Na, [OP], tNa[USA, N1g[X1].

N16{X2]

| Functlon]

erN «— obj (word kong)

I Dascription |

This instruction transters the contents of the addressing object {word long) 1o the
extended local register (erN).

[_Fiags]

Fiags atfected by execution: Flags affecting execulion:
ZF | CF | HC | DD DD
| Codes/Cycles |
CODE CYCLES
obj BYTE INT | INT |EX }EX | — arN
T T
1 F 3 4 5] INT{EX | INT|EX | ~ obj
T T
A 444N 8A 4 - - 12
#Nyp 44+N 98 Ny Ny 8 — | —] 16
orN’ 444N | 48+ 4 — | — 12
DP 92 | 484N 4| -] 8| -
X1 90 484+N 4 -1 8 -
x2 91 48+N 4 -_— 8 -_
usp Al 48+N 4| —38]| -
S5p AD 48+N 4 — 1 8 —_
LRB A4 48+N 4 — 8 —_
off Ny B4 Ng | 48+NM 6| —]—| 15
Ny Bs Ny | 48+N 6 | —| 10} —
[OP} B2 484N 6 j10{10] 14
+NgUSP] B3 Ng | 48+N T{11]11]1s
NyslX1] a0 N Npy | 48+N 8 |12]12] 18
N.aiX2) B1 N Ny | 48N g8 |12]1271 186

Chapter 3 Detalls of Instructions

Instruction Set
MOV LRB, obj 16-bit Move
| ob) |
A, #N1g, &rN, DP, X1, X2, USP, SSP LRB, off Na. Ng. (DP]. tNg[USH, N1g[X1],
N1s[X2)
Function
LRB <« obj (word long)
| Description |
This instruction transfers the contents of the addressing object (word long) o the
local register base (LRB).
Flaga
Flags aflected by execulion. Flags aflecting execution:
ZF | CF | HC | DD DD

] Codes/Cycles |

CODE CYCLES
obj BYTE
1 2 3 4 s -] INT EXT
A Ad BA 4 —
#Nyg 57 N Ny 8 -_
orN 444N 7F 4 8
0] 4 92 7F 4 —_
X1 90 7F 4 —
xX2 9N 7F 4 -
usp Al 7F 4 _
58P A0 TF 4 _—
LRB A4 7F 4 —_
off Ny B4 Nj 7F & 11
Ny BS Ng 7F 8 —_
[DP) B2 7F 6 10
tNg{USP) B3 Ny 7F 7 t
NyelX1] BO N, Ny 7F B 12
N, g[X2] a1 Ny N 7F L] 12

Chapter 3 Detalls of Instructions

Instruction Set

MOV obj, A

16-bit Move

obj

erN, DP, X1, X2, USP, SSP, LRB, oft Ng, Ny, [DP], tNg(USP}, NyglX1). NygX2]

I Function I

obj «— A (word iong)

|__Description |

{word long).

This instruction functionally ovarlap the par of the “ST A, obj” instruction. This
instruction ditters from tha “ST A, obj" lnstruction in that the execution of this
instruction is not affected by the data descriptor {DD). On the other hand, the
insiruction *ST A, obj” incurs tewer bytes and cycles, hance the use of the “ST A, obj*

ts preferred because il resulls in better program etficiency.

This instruction transfers the contents of the accumutator to 1

he addressing objecl

| Flags |

Flags aflected by execution: Flags atfecting execution:
ZF | CF | HC { DD oD
| Codes/Cyclas |
CODE CYCLES
obj BYTE
1 2 3 4 5 INT EXT

A

#N,g

orN 44+N BA 4 12
DP 52 2 —
Xt 50 2 i
X2 51 2 —_
Usp At 8A 4 —_
SspP AD 8A 4 —_—
LRB Ad EA 4 —
off Ny B4 Ny 8A 6 t§
Ny 85 Ny 8A 6 —
{DP] B2 BA 8 14
+Ng{USP] B3 Na 8A 7 15
N [X1] 80 N Ny BA [18
N, s[X2} B1 N Ny 8A 8 18

Chapter 3 Detalls of instructions

Instruction Set

MOV obj, #N1g

16-bit Move

oo]

orN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP), tNg[USP]. N'1g[X1), N'1gX2}

|Fﬁnctlon|

obj «— #N1g (word long)

I Dascription |
This instruction fransfers the contents of the 16-bit immediate value (#Ng) 1o the
addressing object (word long).
[Fags]
Flags afiected by execution: Flags aftecting execution:
ZF | GF | HC | DD 0D
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 & INT | EXT

A
#Nsy
orN FYRTH BT N, Ny] 18
Dp 62 N[Ny 6 —_
X1 80 N, Nu 6 -
X2 81 N, Ny 6 —
usp Al 9a ™ ™ 8 —
SSP A0 98 N Ny 8 —
LRB 57 N, Ny 6 —
off Ny B4 Ng 98 N Ny 10 19
Na BS Ny 98 N, Ny 10 —_
[DP) B2 98 N, Ny 10 18
Np{USP] %) Ns o8 N, Ny 11 19
N'yolX1) BO N, | Nu 98 N Ny 12 20
N' ol X2] Bi N Ny 98 N Ny 12 20

Chapter 3 Detalls of Instructions
Instruction Sat

MOV off Ng, obj

16-bit Move

obj

A, #Nsg, erN, DP, X1, X2, USP, SSF LRB, off N'g, N'g, [DP), :N'g{USP], Nyg[X1].

N1glX2]

I Function I

ol Ng +« obj {word long)

| Description]

This instruction translers the contents of the addressing object (word long) to the data
memory (o Ng) speciliad by direct page addressing.

l Fiags |

Flags affected by execution:

Flags affecting execution:

ZF {CF [HC | DD oD
[CodesiCycles]
CODE CYCLES
obj BYTE INT | INT | EX JEX | —offNg
T{T
1 2 3 4 5 6 JINT]EX JINT[EX | o—obj
T T
A B4 Ne | BA 6 [~[15]—
#N,g B4 Mg | s8 N[wy 10| ~]1w]—
orN N[7C Ny 6| —] =112
DP 82 | 7C Na 6 | — |11] —
Xt %0 7C Ne 6§ f—| 1|~
X2 9 7C Na 6| —[n | —
usp Al 7C ™ s | —|nl—
SSP a0 | 7C ™ 6| — 1]~
LR A4 7¢ Ne 8 [— 1§ 11| —
off N's B4 | Ny | 7C Ny g f{—|—|1a
Ny 8s Na | 7C Ng 8| =[] -—
0P B2 7C Ny 8 [12]13] 17
tN'JUSP) 83 | N, | 7C Ny g [13|14] 18
NigX1] B0 N | Ny | 7C Ne 10141519
NeelX2] B1 N | Ny | 7C Ns 1014 15 19

3-87

Chapter 3 Detalls of Instructions

Instruction Set

MOV PSW, obj

16-bit Move

{ obj |

eN, DP, X1, X2, USP, S5SP, LRAB, off Na, Na, [DP), 1Ng[USP}, N1g{X1], N1g[X2]

| Function |

PSW «— obj (word long)

{ Description |

This Instruction transfers the addressing object (word long) to the program status

word {PSW).
{_Flags |
B Flags atfecied by execution: Flags aflecling execution:
ZF | CF { HC | DD DD
L] L] -
Codes/Cycles
CODE CYCLES
obj BYTE

1 2 3 4 5 INT EXT
A
#Nyy
orh 444N 70 4 8
DP 92 70 4 —
x1 0 D 4 _
X2 91 70 4 —_
usp At D 4 —_
Ssp AQ D 4 -
LAB Ad 7D 4 —_
off Ny B4 Ng 7D 6 1
Ny Bs Ny 7D [-
[DP] B2 7D 6 10
Ng[USP] B3 Ny 7D 7 1
NaglX1] Bo N Ny 70 8 12
Nyel%2] 81 N Ny 70 8 12

3-AR

Chapter 3 Detalls of instructions
Instruction Set

MOV SSP, obj 16-bit Move

obj

A, #Nqg, erN, DP, X1, X2, USP, SSP, LRB, off Na, Ng, [DP], tNg{USP], Nyg[X1],
N1g[X2]

| Function |
| Description |

SSP «— obj (word long)

This instruction transfers the conlents of the addressing object (word long) to the

system stack poinier (SSP).
| Flags I
Flags affected by execulion: Flags aflecling execution:
ZF | CF | HC | DD DD
[Codes/Cycles |
CODE CYCLES
obj BYTE

1 2 3 4 5 6 INT | EXT
A AO 8A 4 —
#N, g AD 98 N Ny 8 -
oN 444N 7E 4 8
DP 92 7E 4 -
X1 90 7E 4 —
x2 9 7E 4 -_
UsP Al 7E 4 —_
SSP AQ 7t 4 _
LRB Ad 7E 4 _
off Ny B4 Ny 7E] 1"
Ny 8s Ny 7E [-
DR} a2 7E [10
Ng[USP} B3 Ny 7E 7 1
Nqg[X1] BO N, Ny 7E 8 12
Nyo%2) B1 N Ny 7E [12

3-89

Chapter 3 Details of instructions
Instruction Set

MOV USP, obj 16-bit Move
| obj |

A, #Nyg. o, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP], N1glX1),
N1g[X2]

| Functlon I

USP « obj (word long)

Description
This instruction transfers the contents of 1he addressing object (word iong) to the user
slack pointer (USP).
Flags
Flags aftected by execution: Flags affecling execulion:
ZF | CF | HC | DD [i]3)
[Codes/Cycies |
CODE CYCLES
obj 8YTE
1 2 3 4 5 6 INT | EXT

A Al 8A ' —_—
Ny Al 93 Ny Ny 8 -
orN N | 78 4 8
DP 92 78 4 -
Xt %0 7B 4 -
Xz N 7B 4 -
UsSP Al 78 4 -—
s§5P Ao 7B 4 —
LRA Ad 78 4 -
off N B4 Ny 7B 6 11
Ng BS Ny 7B] —_
[DP] B2 7B 8 10
+Ng[USP] B3 Ny 7B 7 1
NyIX1} BO Ny Ny 78 a 12
NofX2) B1 N, Ny 7B) 12

3-90

Chapter 3 Delails of Instructions

Instruction Set

MOV X1, obj

16-bit Move

obj

A, #Nqg, erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNglUSP], Nqg{X1],

N1g[X2]

I Function I

X1 +— obj (word long)

| Descriplion |

This instruction transters the contents of the addressing object (word long) to the

index register (X1).
[Flags |
Flags affected by axecution: Flags affecting execution:
ZF 1 CF | HC [DD DD
| Codes/Cycles |
CODE CYCLES
obj BYTE

1 2 3 4 5 INT EXT
A 50 2 _—
#N,q 60 N, Ny [—
arN 444N 78 4 8
DP 92 78 4 —
X1 90 78 4 _—
x2 N 78 4 —
usp Al 78 4 -_—
§5P Ao 78 4 —
LRB Ad 78 4 —
off Na B4 Ny 78 6 T
Ng Bs Ng 78 8 -
[DP} B2 | 78 8 10
HN[USP) B3 Na 78 7 i
Ny g[X1] Bo ™ Ny 78 8 12
N,sfX2] B1 N, Ny 78 [] 12

3-81

Chapter 3 Details of Instructions

Instruction Set

MOV X2, obj

16-bit Mave

l obj]

N1g[X2]

A, #Nyg, orN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP}, Nqg[X1],

[Function |

X2 « obj (word long}

| Description |

This instruction transters the cantents of the addrassing object (word iong) o the

index register (X2).
Flags
Flags affected by execution: Fiags affecting execution:
ZF | CF | HC | DD [a3]
{ Codes/Cycies |
CODE CYCLES
obj BYTE
1 2 3 4 s -] INT EXT
A 51 2 —
#N,g 61 N Ny) -
orN 444N 79 4 B
DP 82 79 4 -
x1 80 78 4 —
X2 91 79 4 —
usp Al 79 4 _—
8sP A0 79 4 —_
LAB Ad 79 4 -—
off Ny B4 Ng 79 6 11
Ny BS Ng 79 -
[OP) 82 79 8 10
1Ny[USP} 83 Ny 79 7 11
NyalX1} BO N, Ny 79 8 12
N, g[X2] B1 N, Ny 79 8 12

12-92

Chapter 3 Detalls of Instructions
Instniction Set

MOVB A, obj " B-bit Move

Q.
N, PSWH, PSWL, off Ng, Ng, {DP]. tNg[USP], N1 g[X1], Nyg{X2]

| Functlon |

AL «— obj (byte long)

| Description |

This instruction transfers the contents (byte long) of the addressing object to the
lower byte of the accumulaltor (A).

This instruction sets the data descriptor (DD) lo 0.

Also, this instruction tunctionally overlaps part of the “LB A, obj" instruction. This
instruction differs from "LB A, obj* insiruction in thal this instruction is nol affected by
the stack flag (SF) and does nol altect the zero flag (ZF). On the othar hand, the "LB
A, obj” instruction incurs comparalively fewer numbers of bytes and cycles, hence the
use of LB A, obj" is preterred because it results in better program efficiency.

I Flags I

Flags aflected by execution: Flags atlecting execution:

ZF | GF | HG | DD DD
0

| Codes/Cycles |

CODE CYCLES
obj BYTE

1 2 3 4 5 6 INT | EXT
A
#N,y
™ 204N | 9% 4 6
PSWH A2 8g + —
PSWL A3 | 99 4 —
off Ny c4 | Ny | 98) 9
Ne cs [Ny | 99 6 —
[DP} c2 | w8) 8
NJUSP] C3 | Ny | 89 7 9
NglX1] TN ENE] 10
N,alX2) c1 MRS 8 10

Chapter 3 Detalls of Instructions
Instruction Set

MOVB obj, A 8-bit Move
| ob| |

[Function]

N, PSWH, PSWL, off Ng. Ng, [DP), +Ng[USP), N1g[X1], N1g[X2]

obj «- A (byte long)
| Description |
This instruction transfers the contents of the lower byte of the accumulalor (A} to the
addressing object {byte long).
This instruction functionally overiaps part of the “STB A, obyj” Instruction. This
instruction ditfers from “STB A, ob™ instnuction in that this instruction is not attected
by the data descriptor (DD). On the other hand, "STB A, obj" incurs comparalively
tewer numbers of bytes and cycles, hence the use of "STB A, oby” is prelemed
because of the resulting program efficiency.
Flags
Fiags aflected by execution: Flags affecting execution:
ZF | cF | WC | DD DD
| Codes/Cycies |
CODE CYCLES
obj BYTE
1 2 a 4 5 1) INT | EXT
A
'N.
™ 204N BA 4 8
PSWH A2 BA 4 —
PSWL A3 BA 4 —_
off Ny C4 Ng B8A 6 1"
Ne c5 Ng BA 5 —
{DP) c2 BA] 10
+Ny{USP] c3 Ny 8A 7 1
NyalX1) co N, Ny BA B 12
Ny oiX2} 3 N, Ny 8A 8 12

Chapter 3 Detalls of Instructions

Instruction Set
MOVB off Ng, ob] 8-bit Move
[ob! I .
A, #N'g, N, PSWH, PSWL, off N'g, N'g, [DP), tN'g[USP), N1g[X1], NygfX2]

| Functlon |
| Description |

off Ng +—obj (byte long)

This instruction transfers the content (byte long} of the addressing objed to the data
memory specilied by direct page addressing (off Ng).

Flags
Flags affected by execution: Flags affecting execution:

ZF | CF | HC | DD oD

| Codes/Cycles |

CODE CYCLES
obj BYTE INT | INT |EX JEX | o~ off Ny
T T
1 2 3 4 5 [INT JEX | INT|EX | «~—obj

T T

A C4 Ny BA & — | 13] -
YR C4 | Ne | 8 | N, 8 | — 13| —
N 20N | 7C | N, § | —| —|n
PSWH A2 jC Ny 8|l —]| st —
PSWL A3 7C Ny [] — g —
off Ny Ct | Ng | 7C | N B | — | —| 14
Na cs N's 7C Ng 8| — 1§ —
[OP] cz | 7C | N, 8 fio| 11|13
NUSP] ca | N | 7C | N s | 1|1z] 14
NyalX1] Co | N | Nn | 7C | N 0|12 |13 15
NoslX2) c1 NL | Nu | 7C | Ns 0112 13| 15

Chapter 3 Detalls of Instructions
Instruction Set

MOVB obj, #Ng 8-bit Move
L obj |

N, PSWH, PSWL, off N'g, N'g, [DP], tN'g{USP], Nyg[X1], N1glX2)

I

I Function

obj «— #Ng (byte long)

[Description |

This inslruction transfers the byte long immediate value (#Ng) 10 the addrassing

object {byte long).
Flags
Flags aliecied by execulion: Flags aftecting execution:
ZF | CF | HC | DD DD
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5] INT EXT

A
#Ng
N 98+N | Ny 4]
PSWH A2 98 Ng 6 —
PSWL A3 Y] Ny 6 -
oft Ny c4 Ny 98 N 8 13
N's Cs | Ny | o8 Ny 8 -
[DP] cz2 28 Ny 8 12
N'[USP] ca N 98 Ny g 13
N,ygfX1] co N Ny 98 Na 10 14
Ny X2] ¢l N, Nu 08 Na 10 14

3-96

Chapter 3 Detasils of instructions
Instniction Set

MOVB PSWH, obj

8-bit Move

obj

A, #Ng, iN, PSWH, PSWL, off Na, Ng, [DP], tNg{USP], N1g[X1], NygIX2]

Function

PSWH «— obj (byte long)

This instruction transfers the address

ing cbject (byte long) to the upper byle of the

PSW (PSWH).
Flags
Flags atfected by execution: Flags atfecting execution:
ZF | CF { HC | DD DD
L] L » L]
| Codes/Cycies |
COBE CYCLES
obj BYTE
1 2 3 4 5 INT EXT
A A2 BA 4 -
#N, A2 98 Na 6 _
™ 204N 89 4 8
PSWH A2 a9 4 —_
PSWL A3 89 4 —_
ofi Ny c4 Ny 89 [9
Na cs Ny 89 8 —
[DF] c2 89 6 [
NJUSP] c3 Ns 89 7]
N, o[X1] co N Ny 89 a 10
N,&X2) c1 N Ny 89 [10

2.07

Chapter 3 Detalls of Instructions

Instruction Sat
MOVB PSWL, obj 8-bit Move
Lo 1|
A, #Ng, N, PSWH, PSWL, off Ng, Ng, {DP], tNgfUSP], N1g[X1], N1glX2]
| Function |

PSWL «— obj {byte long)

| Description |

This instruction transters the addressing object (byle long) to the lower byte of the

PSW (PSWL).
" Flags
Flags affecied by execution: Flags aftecting execution:
ZF | CF | HC | DD DD
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 [INT | EXT

A A3 BA 4 —
N, A3 98 Ny €& —
N 204N 88 4)
PSWH A2 88 4 —
PSWL A3 a8 4 —
olt Ny c4 N, a8 6 9
Ng Cs Ny a8 6 -
[OF} c2 8a] 8
+NJUSP] Cc3 Ny 88 7 9
Ny fX1} co N, Ny] 8 10
N, alX2] c1 N Ny 88 8 10

3-98

Chapter 3 Detalls of Instructions
Instruction Set

MOVB rN, obj

B8-bit Move (Byte)

l obj |

A, #Ng, IN', PSWH, PSWL, oft Ng, Ng, [DP], tNa[USP}, Nyg[X1], N1g[X2)

l Funcllon I

N « obj (byle jong)

l Description |

This instruction transfers the contents

register ().

(byte long) of the addressing object to the bcal

Chags™]

Flags atfected by execution: Flags atfecting execution:
ZF | CF [HC | DD DD
| Codes/Cycles |
CODE CYCLES

obj BYTE INT | INT E)T(E:T(— N

1 2 3 4 6 INT{EX | INTJEX]| « obj
T T
A 20+M | 8A 4 | —| 81—
#Ng sa:+N | N, 4 —Ts6]—
N* 20+N' | 48+N 4 —]| -1 8
PSWH A2 48+N 4 — 6 —
PSWL A3 48+N 4 - ! 8 _—
off Ny C4 Ny | 484N E|l—|—=1]mn
Ny cs Nay | 484N 6| —]68] -
IDP] c2 | 484N B ESEREL
$Ng[USP] c3 Ng 48+N 7 9 9 1
NP1 co N Ny | 484N 8 [10]10}] 12
N,g[%2] C1 N, Ny | 48+N B g0 12

.00

Chapter 3 Detalis of Instructions

Instruction Set

MUL

16-bit Multiply

| obj

J

[Funciion]

(er1. A) — AxerD

| Description '

16 bits x 16 bits — 32-bit mulliply instruction

This instruction performs muliplication between the contents of the accumulator and
the extended local register {er0). The upper 16 bits of the resulting product is stored
in the extended local register (er1) and the lower 16 bits of the produc! is stored in the

accumutator.
T
Flags aflected by execution: Flags allecting execution:
ZF | CF | HC | DD DD
L]
Codes/Cycies
CODE CYCLES
obj BYTE

1 3 [INT EXT [+ or0, arl
90 27 as

3-100

Chapter 3 Details of Instructions

Instruction Set
MULB 8-bit Multiply
L oo |
| Function |
Av— ANx10
| Descrtgtlon]
8 bits x 8 bits — 16-bit multiply instruction
This instruction performs mutiplication betwean the lower byte of ihe accumulator
(AL and the local register (r0). The resulting product {16 bils} is stored in lhe
accumulator.
| Flags '
Flags afiected by axecution: Flags affecting exacution:
ZF | CF | HC | DD oD
I Codes/Cycles I
CODE | cvces
obj BYTE |
1 2 3 4 5 6 § wT | Eexy
A2 | 34 | v [a

A_1n4

Chapter 3 Detalls of Instructions

Instruction Set
NOP No Operation
[Function”]
No Operation
| Description |
This instruction performs no operation, but consumes time for 2 cycles.
[Fags |
Flags affecied by execution: Flags affecting execution;
ZF | GF | HC | DD DD
[Codes/Cycies |
CODE CYCLES
ob]j BYTE
1 2 3 4 6 1 INT EXT
00 I

3-102

Chapter 3 Details of Instructions
Instruction Set

OR A, obj 16-bit logical OR

ob] .
#N1g, orN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DF), IMNg[USP], N1glX1], N1g[X2]

| Function |
I Description |

A «— AV obj (word kong)

This instruction performs the logical OR operation on tha contents of the accumulator
and the addressing object. The result (16 bits) is stored in the accumulator,

This instruction is affected by the data descriptor {DD).
For this instruction 1o be executed correctly, it is necessary {o set DD=1,

| Flags |

Flags aflected by execution: Flags altecting execution:
IF | GF | HC | DD (o]3]
. 1
| Codes/Cycles |
CODE CYCLES
obj BYTE

1 2 3 4 5] INT EXT
A
Ny ES N Ny [-
orN G8+N 3 7
DP 92 E2 4 —
X1 90 E2 4 —
X2 91 E2 4 _
usp Al E2 4 —
85P A0 E2 4 —_
LRB Ad E2 4 —_
off Ny B4 Ny E2 4 9
N, BS Ny E2 6 -
[DP} a2 E2 [10
NGJUSP} B3 Ng E2 7 1
NyX1] 80 N, Ny E2 8 12
NysP22] B1 N, Ny E2 8 12

inn

Chapter 3 Detalls of Instructions

Instruction Set

OR obj, A

16-bit logical OR

| obj]

erN, DP, X1, X2, USP, SSP, LRB, ofi Ng. Ng, [DF], tNg[USP], N1 ¢[X1], N1gX2]

[Function |

obi «-obj VA (word long)

| Description |

addressing object and the accumuiator.

The rasult {16 bits) is stored in the addressing object.

This instruction performs the word long logical OR oparalion ¢n the conlents of the

[Fags]

Flags affected by execution: Flags affecting execution:
ZF { CF | HC { DD DD
- L) L]
I CDdele!CiB! I
CODE CYCLES
obj BYTE
1 2 3 4 5 INT | EXT

A

Ny

arN 444N | E1 5 13
bP 92 3] 5 -
X1 90 E1 s -_
X2] E1 5 -—
USP Al E1 5 —_
SsP Al E1 5 -
LRB Ad £1 S —
off Ny B4 Ng E1 7 15
Na Bs Ny Et 7 -
(DR} B2 E1 7 15
+Ny[USP] B3 Ny E1 8 16
NqX1] 80 N Ny Et 9 17
Ny g{X2] 81 Ny N E1 8 17

3-104

Chapter 3 Datalls of instructions
Instruction Set

OR obj, off Ng

16-bit logical OR

L o8 |

erN, DP, X1, X2, USP, SSP, LRB, off N'g, N'g, [DP], tNg[USP), N1g[X1], NqglX2]

Function

obj «— obj Voff Ng (word long)

| Description [

This instruction performs the word long logical OR operation on the contents of the
addressing object and the data memory specified by direct page addressing (ofl Ng).

The result (16 bits) is stored in the addressing objedt.

I Flags I

Flags atfected by execution: Flags affecting execution:
ZF CF | HC { DD DD
L
| Codes/Cycles |
CODE CYCLES
obi BYTE INT | INT E¥ E)T(— obf
1 2 3 4 H 6 INT |EX §INT|EX | ~—octi Ny
T T
A
#Nyg
orN 44N| E3 Ng 71— —]2
oP g2 E3 Ny 7416 —| —
X1 80 E3 Ny 78| —1—
X2 o EA Ns 71w -} —
usp Al E3 Ny 7]l —| —
SSP Ao E3 Ny 7]6] =} —
LRB Ad E3 Ny Ti16f—]|—
ofi Ny B4 Ny E3 Ny I I I
Ny BS Ny E3 Ny g |w]~]—
iDP) B2 E3 Ny 9 |m@ji13|2
+N'yJUSP] B3 Ny E3 10110 14| 23
NygfX1] B0 N Ny E3 N 1|2 15] 24
NygX2) a1 N, Ny E3 Ny 1mj2f15] 24

3-105

Chapter 3 Detalls of Instructions
Instruction Set

ORB A, obj B-bit logical OR

obj

#Ng, IN, PSWH, PSWL, oif Ng, Ng, [DP], tNg{USP), NiglX1], Nyg(X2]

Function

| Bescription '

AL +— AL V obj (byte long)

This instruction periorms the kgical OR oparation on the contents of the lower byte of
ihe accumulator (A1) and the contents of the addressing object {byte long).

The result (8 bits) is stored in the lower byte of the accumutator (AL). This instruction

is affected by the data descriptor (DD).
For this instruction 1o ba exacuted comectly it is necessary 10 set DD=0.

[Fags |

Flags affected by execution: Flags affecting execution:
ZF J CF | HC | DD bD
. 0
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT
A
Ny E6 Ny 4 -
™ 68+N 3 5
PSWH A2 E2 4 —_
PSWL A3 g2 4 -
off Ng E7 Ny 4 7
Ny Ng | E2 6 -
{DP} cz | ez 6 -
+NGIUSP] <3 Ny E2 7 9
NpgfX1] co N, N | E2 8 10
N, g[X2] Cc1 N Ny E2 8 10

3-107

Chapter 3 Detalls of Instructions
Instruction Set

ORB obj}, A 8-bit logical OR

l obj }
tN, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP], N1g[X1]. N1g[X2)

| Function]

obj « obj v A (byte long)
[Description]

This instruction perlorms the legical OR operation on the contents of the kower byte ol
1he accumwialor (AQ) and the conlents of the addrassing objed (byte ong).

The resull (8 bils) Is stored in the addressing object.

| Flags |
Flags aftecied by execution: Flags affecting execution:
ZF | CF HC | DD #]]
.
{ Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT

A
#Ny
N 20+N E1 5 9
PSWH A2 £1 5 —
PSWL A3 E1 s _
off Ng c4 Ny E1 7 12
Ny C5 Mg E1 7 -
[or c2 E1 7 11
1N JUSP] c3 Ny E1 8 12
Nqg[X1} co Ny Ny E1 9 13
N,a%2] Ci Ny Ny E1 9 13

3-108

Chapter 3 Details of Instructions
Instruction Set

ORB obj, off Ng 8-bit logical OR

| obj |
{_Function]
| Description]

N, PSWH, PSWL, off N'g, N'g, [DP], tN'g[USP]. N1g[X1), N1gX2)

obj +— obj V off N (byle long)

This instruction performs the byte lang logical OR operation on tha contents of the
addressing object and the dala memory specified by the direct page addressing (oft
Ng).

The rasult (8 bits} is stored in the addressing object.

Flags
Flags affected by execution: Flags atlecting axecution:
ZF | CF { HC | DD DD
» N .
| Codas/Cycles]
CODE CYCLES
ob} BYTE INT | INT | EX | EX
T3 7T
1 2 3 4 5] INT | EX | INT | EX
T T
A

#Ny
N 20+N | E3 Ny Tl =114
PSWH A2 E3 Ny 7112 —|—
PSWL A3 E3 Ny T2 —| —
off N'g C4 N'g £3 Ny g —| =117
Ny cs Ny E3 'S g 14| =] —
[oP) c2 E3 Ng 9|14 11]18
+N'aJUSP] c3 Ny E3 Ns 10|15 12]17
NyglX1] co N, Ny E3 Ny 1|16 |13] 18
Ny X2) c1 N, Ny E3 Ns 11|16 |13] 18

3-109

Chapter 3 Detalls of Instructions
Instruction Set

ORB ob], #Ng 8-bit logical OR

ob)
M, PSWH, PSWL, off N'g, N'g, [DP), N'g{USP), N4g[X1], N1g[X2]

I Function |
obj « obj V #Ng (byte long)

| Description |
This insiruction perlorms 1he logical OR operation on the content of the addressing
obiect (byte iong) and the 8-bit immediate vakua (#Ng).

The resuit (8 bits) is stored in the addressing object.

| Flags |

Flags attected by execution: Flags affecting execution:
2F | CF | HC | DD (o] 8]
.
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 & INT EXT

A

#N,

™ 20+N | Eo Ny [11
PSWH A2 E0 Ny 6 —
PSWL A3 Eo Ne [—
off Ny c4 N E0 Ny 8 14
Ny cs Ny Eo Ny 8 —
[OP] c2 Eo Ng 8 13
+N§[USP] ca Ny EO N 9 14
NygX1] co N, Ny Ea Ny 10 15
N,al%2] C1 N Ny E0 Ne 19 15

2-110

Chapter 3 Detalls of Instructions
Instruction Set

POPS A 16-bit Pop (system stack)

obj

| Functlon |

S8P «—85P+2
A « (S5P) (word long)
DD «— 1

[Description]

This instruction pops the data trom the system stack into the accumulator in a word
long operation.

This instruction sets the data descriptor (DD) to 1.

[NOTE] Note thal the "PUSHS A~ instruction does not atfect DD, while the "POPS A”
instruction sets DD=1,

Flags
Flags affected by execution: Flags affecting execution;

ZF | CF | HC | DD bo
1

[CodesiCycles |

CODE CYCLES
obj BYTE
1 2 3 4 5 5 INT | EXT

#MNyg
N
DpP
X1

usp
8SP

LRB

off Ny

Ny

{DP)
2N{USF}
NyfX1]
N,e[X2]

3-111

Chapter 3 Details of Instructions
Instruction Set

POPS LRB 16-bit Pop (system stack)
| I

[Funciion |
SSP «~—SSP+2
LRB « (SSP) (word long}

[Description_§
This instruction pops the data from the system stack into LRB in a word long
opearation.

|___Flags 1

Flags aflected by execution: Flags affecting execution:

ZF | CF | HC | DD DO

| Codes/Cycles |

CODE CYCLES
obj BYTE
1 2 3 4 5 s | wr | exr

A
#MNyp
erN
DP
X1
X2
uspP
SSP
LRB 84 4]
off Ny

Ny

[DP]
+Ng[USP}
NyglX1]
N1l X2}

3112

Chapter 3 Detalls of Instructions

Instruction Set
PUSHS obj 16-bit Push {system stack)
obj
A, LRB
Function

(SSP) +— obj (word long)
SSP «— 8SP -2

| Description |

This instruction pushes the contenis of the addressing object into the system stack in
& word long operation.

Flags
Flags aflected by execution: Flags affecting execution:

ZF | CF { HC | DD DD

| Codes.'gzcles |
CODE CYCLES

obj BYTE

#Nyq
otN
DP
X1

Usp
55
LRB 54 3 7

off Ny
Ny

(DF]
+NJUSP]
N, ofX1}
Nqa[X2]

3-113

Chapter 3 Detalls of Instructions

Instruction Set

RB obj.bit

Raset Bit (direct bit addressing)

| ob! |

M, PSWH, PSWL, off Ng, Ng. [DP], tNglUSP). N1g[X1), N1g[X2]

| Function |

IF objbit=0 THEN Z «—1
ELSE Z « 0
obj.bit — 0

[Descripiion |

This instruction resats the specified bit of the addressing object, “obj” (byta iong), 1o
0. The kocation of the bit is specified by the "bit” in the operand. The vatkue of the
“bit" rangas from G to 7.

Prior to the execution of this Instruction, the conlent of the specified bil is examined
and the zero flag (ZF) is set accordingly. It the specified bil is 0 prior to the execution
of the instruction, the zero flag is 1, otherwise the ZF=0.

| Flags |
2 Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
>
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5] INT EXT
A
Ny
L,] 20+M | 0B+n 7 13
PSWH A2 08+n 7 -_
PSWIL A3 0B+n 7 _
oft Ng c4 Ng | o8en 8 16
Ny cs5 Ny | G8+n 9 -
[DP} 2 | 08en 9 15
+NJUSP] [+ Ny | 08en 10 16
Ny X1] o N Ny | 08en 1 17
NyoX2) c1 N Ny | 08en 1" 17

[NOTE] "n"is determined from the vaiue of the "it", and ranges from 0 1o 7.

3-114

Chapter 3 Detalls of instructions

instruction Set

RBR ob)j

Reset Bil (register indirect bit addressing)

obj

N, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP), N1g[X1], N1[X2]

| Function I

IF objbit (Az.0) =0 THEN Z «—1

obj bt (Az0) +—0

ELSE Z —0

| Description]

This Instruction resets the specilied bit of the operand “obj* (byte jong) which is the
addressing object. The kcation of the bit is specified by the contents of the lower 3
bits of the accumulator (Az_g) al the axecution time of the instruction.

Prior 1o the execution of the instruction, the contents of the specified bit is examined
and the zero llag {ZF) is set accordingly. If the specilied bit is 0 prior to the execution
of the instruction, the zero flag is 1; otherwise ZF=0.

{ Flags I

Flags aHecled by execution:

Flags affecting execution:

ZF {t CF JHC { DD oD
.
| Codes/Cycles I
CODE CYCLES
obj BYTE

1 2 3 4 5 INT EXT
A
#Ng
N 20+N 12 7 13
PSWH A2 12 7 —_—
PSWL A3 12 7 -
off Ng c4 Ne 12 9 16
Ny cs Ne 12 9 —
[OP] c2 12 9 15
NJUSP} c3 Na 12 10 16
NyglX1] co N, Ny 12 1 17
N, X2} c1 N, Ny 12 1 17

3-116

Chapter 3 Detalls of Instructions

Instruction Set

RC

Reset Carry

l obj]

[Function |

C«—0

[Dascription]

This instruction resets the carry (C) by making C=0

g
Flags attacted by execulion. Flags affecting execution:
ZF | CF | HC | DD DD

[

| CodasiCyclas |
CODE CYCLES
obj BYTE
1 2 3 5 | NT EXT
A 95 i 2 -

3-116

Chapter 3 Detalls of Instructions
instruction Set

ROL A 16-bit Rotate Left

ob)

[Function |

L e—F A !

This instruction rotates the coments (word long) of the accumulator including the
carry, one bit 10 the left.

| Description |

This instruction is affected by the data descriptor (DD).
For the instruction to be executed correctly, it is necessary 1o sel DD=1. When DD=0,
the Instruction actually executed becomes "ROLEB A™.

| Flags l

Flags atiecied by execution: Flags affecting execution:

ZF | CF | HC | DD oD
. 1

|CGdesICycles |

CODE CYCLES
obj BYTE

#Ng

#|2(s/g(g[3|=\5(e

[DF]

N [USP)]
NylX1]
Ny gfX2]

3-117

ﬁinﬁkmodﬁam

ROL ob] 16-bit Rotate Left
| ob| I
[Function]

erN, DP, X1, X2, USP, SSP, LRB, oft Ng, Ng, [DP]. tNg[USP], N1g[X1]. N1glX2]

—fclk—ts obj o Je—

[Description]
Thig instruction rolates the coment (word long) of the addressing objecl including the
carry, one bit to the lefi.

[Fags]
Flags aflected by execution: Flags afiecting execution:
ZF | CF | HC | DD DD
»
| Codas/Cycles |
CCDE CYCLES
obj BYTE

1 2 3 4 5 8 INT | EXT
A
#N,g
orN 444N 87 5 13
DP 92 87 5 —_
X1 80 BY 5 -
X2 1] B? 5 -_—
usp At B7 5 —
SsSP A0 B7 5 —_
LRB Ad B? 5 —_
off Ng B4 Ny B7 7 16
Ny B Ne B? 7 .
[OP) B2 87 7 1§
+NyJUSP] B3 Ng a7 8 16
N, olX1] BO N ™ B7 8 17
Ny alX2] Bl Ny ™ 87 9 17

3-118

Chapter 3 Detalls of Instructions
instruction Set

ROLB A 8-bit Rotata Left

| ob! |
[Function |

—fcle—Ts AL o<
|_Description]

This instruction rotales the contents of the lower byte of the accumulator {Ay)
including the cary, one bit 1o the left.

This instruction is affected by the data descriptor {DD).
For this instruction 10 be execuled correctly, it is necessary lo sel DD=0. When
DD=1, the instruction actually executed becomes "ROL A"

! Flags]

Flags aflecied by execution: Flags aftecting execution:

ZF | CF | HC | DD pD
. 2]

| Codes/Cycles |

obj BYTE

A n 2 —
Ny

N

PSWH
PSWL

off Ng

Na

[DF]
INJUSP]
NygfX1]
Ny f%2]

3-119

Chapter 3 Detalls ot Instructions
Instruction Set

ROLB obj 8-bit Rotate Lett

| oby |

N, PSWH, PSWL, oft Ng, Ng, [DP], tNg{USP}, N1g[X1]. N1g[X2]

| Function |

Cl—1s obj of«—

I Description |

This instruction rotales the contents of the addressing object (word long) including
the carry, one bit 10 the left.

[Flags]
Flags aftected by execution: Flags affecting execution:
ZF | CF | HC | DD Do
L
[CodesiCycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 [INT EXT

A
#Ny
™ 20+N B7 5 9
PSWH A2 B7 5 —
PSWL A3 | B7 s -~
off Ny c4 Ny B7 7 12
Na cs [™ B7 7 -
[DP) cz2 B? 7 "
Ny[USF] ca Mo B? [12
NyglX1] co N Ny B7 9 13
NyglX2) C1 N, Ny a7 9 13

2-120

Chapter 3 Detalls ot instructions
tnstruction Set

ROR A

16-bit Rotate Right

obj

[Funciion |

-—>|—§|——->|15 A of—

| Deascription |

This instruction rotales the contents (word long) of the accumulator including the
carry, one bif {c the right.

This instruction is affected by the data descriptor (DD).
For this instruction (o be executed correctly, & is necessary 10 set DD=1. when DD=0,
the instruction actually executed becomes "RORB A",

| Flags |

Flags affected by execution:

Flags atfecting execution:

ZF

CF

HC

18] DD

1

| Codes/Cycles |

obj

BYTE

MNyg

X1

usp

SSP

off Ny

[DP]

Ny{USP)

Nyg[X1]

N,6[X2]

3-121

Chapter 3 Details of Instructions

Instruction Set
ROR obj 16-bit Rotate Right
{ obj]
erN, DP, X1, X2, USP, S85P, LRB off Ng, Ng, [DP], +NglUSP], N1gIX1]. N1g[X2]
| Function |

—>c—1s

obj

of—

| Ducrlgtlon |

tha carry, ona bit to the right.

This instruction rotates the contents of the addressing object {(word kng) including

" Flags

Fiags affected by exacution:

ZF | CF | HC | DD

Flags aftecting execution:

DD

| Codas/Cycles |

obj

CODE

CYCLES

BYTE

A

'N|‘

orN

oP

X1

X2

uspP

58P

LRB

off Ng

Ny

c7

[DF]

tNJUSP]

NyglX1]

N1alX2)

z|g|8|al | e|2|z|2|2|s|s|E
#|z|z|a|#|#|g|s|2|a|ale|a

F|F|9

;7

Oilw|l@mi~d|~N]|~ftrhwin|n]on]o]|o

3-122

Chapter 3 Detalis of Instructions
Instruction Set

RORB A 8-bit Rotate Right

ob)

| Funcilon |

—Jcj—s obj o—

This instruction rotales the coments of the lowear byte of the accumulator {A¢)
including the carry, one bil to tha right.

| Description |

This instruction is affected by the data dascriptor (DD).
For this instruction to ba executed correctly, it is necessary 1o set DD«=0. When
DD=1, the instruction actually executed becomes "ROR A™

| Flags]

Flags affected by exscution: Flags atlecting execution:

ZF | CF { HC | DD DD
o]

[CodesiCTycies]

obj BYTE

A 43 2 -
Ny

™

PSWH
PSWL

off Ng

Ny

[DP]
tNUSP]
Nyg[X1]
Myo[X2)

T-t2%

Chapter 3 Detalls of Instructions
Instruction Set

RORB obj 8-bit Rotate Right
| obj |
N, PSWH, PSWL, off Ng, Ng, [DP], 1Ng[{USP], N1g[X1], Nig[X2]
[Funciion]

—fe

obj

e—!

[Description |

carry, one bit to the right.

This instruction rotates the content (word iong) of the addressing objact including the

| Flags |

Flags affected by execution:

ZF | CF | HC | DD

Flags affecting execution:

oD

ICDaestycles |

CYCLES

obj

aYTE

A

N,

N

PSWH

PSWL

off Ny

12

a9

[OP]

11

+Na{USP]

12

NelX1)

2|g[e|c|s|e|z|x|?

13

oo~ ~N]~N|wv]nlo

F|F|Z|Q|#F|#&|8]8(1

N, efX2]

FIF|Q

Ccr

13

3-124

Chapter 3 Detalls of Instructions

Instruction Set
RT Return from Normal Subroutine
obj
| Function |
SSP +- SSP 42
PC + (55P)
SF +—0
| Description |
This instruction is used (o return from normal subroutines thal are called by the
instructions "SCAL" and "CAL". (See RTI Instruction}
| Flags]
Flags affected by execution: Flags affecting execution:
ZF § CF | HC | DD (8]0
| Codes/Cycles I
CODE] croes
obj BYTE |
1 2 3 4 5 6 J Nr | EXT
01 [7 11

3-125

Chapter 3 Datalls of Instructions
Instruction Saet

RTI Return from Interrupt Routine
| obj !

| Function |
SSP « SSP 42
PSW « (SSP}
SSP ~ SSP +2
LAB « (SSP)
SSP «— SSP 42
A +—(55P)
SSP «— SSP 42
PC « (85P)

[Descripiion]

This instruction is used 10 retumn from the interrupt routines. (See RT instruction)

The data saved in the system stack are returned {0 the units in the order : PSW, LRB,
A, and PC. The system stack pointer is ullimatiely incramented by 8.

| Flags |
Flags affected by execution: Flags alfecting execution;
ZF | CF | HC | DD DD
| Codes/Cycles |
COOE § cvcies
obj BYTE fl
1 2 3 4 5 6 f Nt | ExT
02 [s 31

3-126

Chapter 3 Detalls ot Instructions
Instruction Set

SB obj.bit Set Bit (direct bit addressing)
Lo]

Function

N, PSWH, PSWL, off Ng. Ng, [DP], tNg[USP], N1glX1), N16{X2}

IF objbit=0 THEN Z «—1
ELSE Z «— 0
obj.bit «— 1

| Description |

This instruction sets the specified bit of the addressing object (obj) to 1.

The location of the bit is specified by the bit in the second operand. The value of the
"bit” is from 0 to 7. Prior to the execution of the instruction, the content of the
specified bit is axamined and the zero flag {ZF) is set accordingly. If the specified bit
is 0 prior to the execution ol the Instruction, the zero flag is 1, atherwise ZF=0.

[Fags]

Flags atfected by execution: Flags aftecling execulion:
ZF] CF | HC J DD DD
L]
[[Codes/Cycles]
CODE CYCLES
obj BYTE
1 2 3 4 5 -1 INT EXT

A

N,

™ 20+N | 184n 7 13
PSWH A2 18+n 7 —
PSWL A3 18+n 7 —
off Ny c4 Ng | 18+n 9 15
Ne cs Ng 18+n 9 —
{OP) cz 184n 9 15
+NJUSP) c3 Ng | 18+n 19 16
Nyg[X1] co N Ny | 1B¢n 14 17
Ne{X2] (&) N, Ny 18+n 1 17

[NQTE] Tha value of n is determined following evaluation of *bit*. The value of nranges from Oto 7.

3-127

Chapter 3 Detalls of Instructions

instruction Set

SBC A, ob)

16-bit Subtract with Carry

l cbj]

#Ng, erl, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP), tNg{USP], NyglX1], N1glX2)

[Function]

A +—A-obj-C (word long)

| Oescription |

This instruction sublracts from the contents of the accumulator, the contents of the

addressing object, and the contents of the carry (C) in the word long operation.

The resulting difference (16 bits) is stored in the accumulator. The borrow that
occurs during the sublraction is stored in tha camry (C).

The instruction is affected by the data descriptor (DD).
For this instruction o be execuled comrectly, it is necessary 1o set DD=1.

| Flaps |

Flags aflected by execution; Flags affecting execution:
ZF | CF { HC | DD DD
. * * 1
| CodesiCycies |
CODE CYCLES
obj BYTE

1 2 3 4 5 [INT EXT
A
#Ng B6 N Ny [—
orN 38+N 3 7
Dp ez a2 4 -
X1 90 B2 4 —
X2 N B2 4 —_
use Al B2 4 -
S&P AD B2 4 -—
LRB A4 82 4 —_
off Ny a7 Ny 4 9
N Bs Ny B2 6 —
[0P) B2 | B2 6 10
Ng[USP) B3 Ng B2 7 1
N, gX1] Bo N, Ny B2 8 12
N,o[X2] [} N, ™ B2 8 12

3-128

Chapter 3 Detalls of Instruciions

Instruction Set

SBC obj, A

16-bit Subtract with Carry

obj

erN, DP, X1, X2, USP, S5P, LRB, off Ng, N3. [DP], tNg[USP], Nyg[X1], N1glX2]

I Functlion l

obj +— obj-A-C {word long)

| Doscrlgtlon I

This instruction subtracts from the contents of the addressing object, the contents of

the accumulator, and the contents of the camry (C} in a word long operation.

The resulting difierence (16 bits) is stored in the addressing cbject. The borrow that
occurs during 1he subltraction is stored in the carry (C).

| Flags |

Flags atlected by execution: Flags affecting execution:
ZF J CF | HC | DD DD
- 1) .
| Codes/Cyclas |
CODE CYCLES
abj BYTE
1 2 3 4 5 € INT | EXT

A

Ny

orN 444N B 5 13
DP 82 2} 5 -_—
X1 90 81 5 _—
X2 9 B1 5 -
usp Al Bt 5 —
55pP A0 -3} 5 —_
LR8 Ad B1 5 —
off Ny B4 Ny 81 7 16
Nj as Ny B1 7 —
{DP) B2 B1 7 15
NG UISP] B3 Ng B 8 16
NyaDX1] 80 N ™ B1 9 17
MyalX2] B1 N Ny B1 9 17

2 1NN

I instnction Set

SBC obj, off Ng

16-bit Subtract with Carry

ob

N, DP, X1, X2, USP, SSP, LRB, off N'g, Ng. [DP], tNgUSP], Nyg[X1), N1¢X2]

| Function]

obj « obj-off Ng-C (word long}

I Dascription |

This instruction subtracts from the contenis of the addressing object, the contents of
the dala memory specitied by direct page addressing (oH Ng), and the contents of Ihe
carry {C) in a word bng operation,

Thea resulting difference (16 bits) Is stored in the addressing object, and the borrow
that occurs during the subtraction is siored in the carry (C).

Flags

Flags affacted by execution: Flags affecting execution:

ZF | CF | HC | DD Do
L] »]
|_Codes/Cycies |
CODE CYCLES
obj BYTE INT | INT E)T(E1>_: — abj
1 2 3 4 5] INT JEX | INT |EX | +~offN,
T T

A
#Nyy
orN 444N B3 N, 7 -] —] 20
oP 82 as Ny 7 6] -} —
x1 %0 B3 N, 71w =] —
x2 9 B3 Ny 76| -] —
usp Al B3 Ny 7 6] —| —
ssp AQ B3 Ny 7l -] —
LARB Ad B3 Na 7 18] —{ —
off Ny B4 N’y 83 Ny $f—f—|23
Ny BS Ny B3 [™ g [=] —
[OP] B2 83 Ny 9 |18 132
AN JUSP] B3 Ny B3 Ny 1019 14] 23
N ofX1) 80 N, My B3 Ny 1|20 15] 24
Ny glX2] B1 N, Ny B3 N 11| 20f15] 24

3-130

Chapter 3 Detalls of Instructions

Instruction Set

SBC obj, #N1s

16-bit Subtract with Carry

obj

orN, DP, X1, X2, USP, SSP, LRB, oft Ng, Ng. [DP}, tNgjUSP], N'yglX1], N'1é[x2]

Function

obj +— obj-#N1g-C (word long)

| Dsscrlgtlon |

This instruction subtracts trom the conlents of the addressing object {(word long), the
16 bit immediate vakue (#Ng), and the contenls of lhe carry (C).

The rasulting difference (16 bits) is stored in the addressing object, and the borrow
that accurs during the subtraction is stored in the cany (C).

[Flags }

Flags affected by axeculion: Flags affecting execulion:
ZF | CF | HC | DD Do
. . .
| Codes/Cycies l
CORE CYCLES
obj BYTE

1 2 3 4 5] INT EXT
A
#Nyp
oN aN]| Bo N Ny 8 17
DP 92 Bo N, Ny 8 —
X1 80 B0 N, Ny 8 -
X2 91 Bo N, Ny 8 —
UsP Al Bo N, Ny 8 —
SSP AD Bo Ny N 8 —
LRB Ad Bo N, Ny 8 —
off Ny B4 Ng 80 Ny Ny 10 20
Na BS Ny BO N Ny 10 .
[DP) B2 BO N, Ny 10 19
tNa[USP] B3 Ng 80 N Ny 11 20
NsX1] a0 N Ny BO Ny Ny 12 21
N'\o[X2] B1 N, Ny BO N, Ny 12 21

3131

Chapter 3 Detalls of Instructions

instruction Set

SBCB A, obj

8-bit Subtract with Carry

obj

#Ng, IN, PSWH, PSWL, oif Ng, Ng, [DP], tNg[USP], Nyg{X1]. N1g[X2]

IFTmctlonl

AL «— AL -obj- C (byte long)

[Descripiion |

This instruction subtracts from the conterts of the lower byte of the accumutator (A(),

the contents (byte long) of the addressing object, and the contents of the carry (C).
The rasulting sum (8 bits) is stored in the lowar byte of the accumulator (A), and the
carry from the highest (most significant) bit is stored in the carry (C).

This instruction is affected by the data descriptor (0D).
For the instruction to be execuled correctly, R is nacessary to set D=0,

| Flags |

Flags altected by execution:

Flags affecting execution:

ZF | CF | HC | DD Do
» . . [+]
| Codes/Cycles '
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT
A
#Ny B& Ny 4 —_
N 38+M 3 5
PSWH A2 B2 4 -
PSWL A3 B2 4 _
off Ny B? Ny 4 7
Ng cs Ny B2 & -
[DP] c2 B2 8 —
1NR[USP] C3 N, B2 7 9
NagX1] co Ny Ny B2 8 10
NqglX2) c1 N, Ny B2 8 10

o 191

Chapter 3 Detalls of Instructlons
Instruction Set

SBCB obj, A 8-bit Subtract with Carry

obj
i, PSWH, PSWL, off Ng, Ng, [DP], tNg{USP], N1g[X1], N1g[%X2]

Function I

obj +—obj- AL-C (byte long)

Description |

This instruction sublracts from the contents of the lower byte of the accumulator {(A,).
the contents (byte long) of the addressing object, and the contents of the carry (C).

The rasulting sum (B bits) is stored in the addressing object, and the borrow that
occurs during the subtraction is stored in the camry (C).

Flags |
. Flags aflected by execution: Flags affecting execution:
ZF | CF | HC | DD oD
. L] »
Codes/Cycles |
CODE CYCLES
obij BYTE
1 2 3 4 5] INT EXT

A
#N|
N 20+N At 5 9
PSWH A2 B1 5 _
PSWL A3 B1 5 —_
oft Ny C4 Ng B1 7 12
Ny cs Mg B1 7 -
{DP] c2 B1 7 LB
+Ny[USP] c3 Ng at 8 12
N,gX1] co N Ny B1 9 123
N X2}] N Ny B1 9 13

a 4230

Chapter 3 Detalls of Instructions

Instruction Set

SBCB obj, off Ng

8-bit Subtract with Carry

| ob 1

N, PSWH, PSWL, off N'g, N'g, [DP], tN'g[USP], Nyg[X1], Nyg[X2]

| Function]

obj «- obj-oft Ng - C (byte long)

| DoscrEbn |

This instruciion sublracts Irom the contents (byte long) ol the addressing object, the
contsnts of the data memory specified by direct page addressing {off Ng), and the
contants of the carry (C).

The resulting difference (8 bits) is stored in the addressing object, and the borrow that
occurs during the sublraction s stored in the carry (C).

[Flags]

Flags afiected by execution: Flags affecting execution:
ZF | CF | HCG | OD Do
[] - -
| cmygcm |
CODE CYCLES
obj BYTE INT | INT E¥ E>T< +— obj
1 2 3 4 5 [INT | EX | INT | EX — off Ny
T T
A
#Ng
N 20+N | 83 N 7{—1—1]14
PSWH A2 B3 N 2] —=1—
PSWL A3 B3 Ny 7liz]l -1 -
olf Ny G4 N's 83 N s f—f— |17
N'g cs Ny B3 Ng g 14| =} —
[OP} c2 B3 ™ 8 {1a] 1] 1e
N JUSP) ca Ng B3 Ny 1015 | 12}117
Ne[X1} co ML Ny B3 Ng 1)16 [13] 18
N,s[X2] c1 Ny Ny B3 Ns TR ETIEER L

3-134

Chapter 3 Detalls of Instructions

Instruction Set
SBCB ob], #Ng 8-bit Subtract with Carry
obj
N, PSWH, PSWL, off N'g. N'g, [DP}, N'g[USP), Nyg[X1], Nyg[X2)
Function

obj «— obj- #Ng - C (byte long)

| Descrletlon I

This instruction subtracts from the contents {byte long) of the addressing object, the 8
bit immediate value (#Ng), and the contents ol the carry (C).

The resulting differanca (B bits) is stored in the addressing object, and the borrow that
occurs during the subtraction is stored in the carry (C),

Flags
Flags alfected by exacution: Flags affecting execution:
ZF | CF | HC | DD (0] 0]
L] L 3 L]
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT

A

Wiy

™ 20+N | Bo Ng 6 "
PSWH A2 Bo Mg [-
PSWL A3 Bo Ny 6 -
oft Ng C4 Ny 8o Ng 8 14
Ny cs Ny Bo Ng 8 -
[DP] cz BO Na B 13
+N[USP] (o] Ny BO Ny 9 14
NyelX 1] co N Ny 80 Ny 10 15
N,g[X2] 1 Ny Ny BO Na 10 15

~ anec

Chapter 3 Details of Instructions

Instruction Set
SBR obj Set Bit (register indirect bit addressing)
obj
M, PSWH, PSWL, off Ng, Ng, [DP}, +Ng[USP], Nig[X1], Nyg[X2]
Function
IF objbit (A2.g)= 0 THEN Z «—1
ELSE Z « 0
objbit (Az.q) + 0
| Description]
This instruction sets Ihe specified bit of the addressing object obj (byte kong) to 1.
The bit location is spacified by 1he contents of the lower 3 bits of the accumulator
{A2.0) at the execution time ot the Instruction.
Prior to the execution of the Instruction, the contents of the specified bit is examined
and the zaro flag (ZF) is set accordingly. H the specified bit is O prior 1o the execution
of the instnuction, the zero flag is 1, otherwise ZF=0,
Flags
Flags affected by execution: Flags aftecting execution:
ZF | CF | HC | DD pp
| Codes/Cycles]
CODE CYCLES
obj BYTE
1 2 3 4 5 INT EXT
A
N,
N 20+N (A 7 13
PSWH A2 1 7 —
PSWL A3 1% 7 -_
off Ng c4 Ny 11 9 16
Ny cs Ny 11 -] —
[OP) c2 1 [15
tNa[UISP) c3 N, 1 10 16
NyalX1) co N Ny " n 17
NialX2]] Ny Ny 11 11 17

3-138

Chapter 3 Detalls of instructions

Instruction Set
SC Set Canry
oo |
Function
C 1
| Description]
This instruction sets the camy (C} lo 1.
| Flags |
Flags afiected by execution: Flags affecting execution.
ZF | CF { HC | DD DD
1
Codes/Cycles
CODE f CYCLES
obj BYTE i
1 3 4 5 [wr] ext
A 85 HE —

2.1927

Chapter 3 Details of Instructions
Instruction Set

SCAL address

Short Call

obj

! Fu

nction |

(SSP) —PC + 2
8SP «—55pP-2
SF+—0

PC « address

where PC" - 128 < address < PC* + 127
PC* = head address of the instruction following the SCAL instruction
= (address of the first byte of the SCAL instruction} + 2

I Dcscrlgtlon I

This instruction is a call instruction with a 7-bit displacament whose origin is at the
starting adkress of the next instruction. The range of the call is from -128 o +127
with the stanting address of the next instruction serving as the origin.

[NOTE] This call instruction manipulates the PC with the displacement. However, in
the source program of the assembler (RASG6K), the dastination address of
a call, such as a label and not the actual displacement, is entered as the
operand of the instruction. The assembler figures out the amouni of the
displacement, which if R stays within the allowabla range, is used to
penerate the machine codes. If the amount of the displacement is ocutside of
the allowable range, the assembler issues an arror waming.

[Flags]

Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD (9] 0]
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 INT EXT
9 13

TR

[NOTE]

Np is the 8-bit coda to represant tha displacemnant in the ranga Irom -128 to + 127, Negativa values are

axprassad as 2's complemaent.

[EXAMPLE}

Displacament Ny
a 000000008
+1 000000018
+127 011111t1a
-1 11111%11p
-127 100000018
-128 10000000g

3-138

Chapter 3 Detalls of Instructions

Instruction Set
I Exampie I
Case whara Displacement = -1, PC* = 0100H
Maching Code: CBY FFy
PC* 0000 0001 0000 0000 | 0100,

+

Displacement | 1111 11114111 1111 | -1

------- I‘_I----_ Signbltis

extended

PC [0000 0000 1111 1111 | 0OFF

3-138

Chapter 3 Detalls of Instructions
Instruction Set

SJ address Short Jump

[Funcion)

PC «+ address

where PC*- 128 < address 5 PC* + 127
PC* = head address of the instruction following the SCAL instruction
= (address of the firsi byte of the SCAL instruciion) + 2

] Description |

This inslruction performs a jump within a 7-bit displacement whose origin is at the
siarting address of the instruction that follows this SJ instruction. The range ol the
ump of this instruction is from -128 10 +127 with the starting acdress of the next
insiruction serving as the origin.

INOTE] This jump instruction manipulates the PC with the displacemem. Howaver, in
the source program of the assembler (RAS6E6K), the destination address of
the call such as a label and not the displacement, is entered as the operand
of the instruction. The assembier figures cut the amount of the
displacement, which if it stays within the callable range, is used to generales
the machine codes. If the amount of the displacement is outside of the
callable rangs, the assembler issues an error warning.

Flags
Flags aflected by execution: Flags affecting execution:
ZF | CF | HC | DD Do
I Codes/Cycles |
CODE CYCLES
obj BYTE

] 2 3 4 5 & INT EXT

ch Ny B —_

[NOTE]

Ng is the 8-bit cada to reprasent the displacemaent in the range from -128 10 +127. Negative values are
exprassed as the complement of 2.

[EXAMPLE} Displacement N,
1] RODO0OOOs
+1 00000001g
+127 01111111
-1 11111111
-127 100000018
-128 100000000

3-14n

Chapter 3 Detalls of Instructions

Instruction Set
E
Case where Displacement = -1, PC* = 0100H
Machine Code: CBy FFy
PC* | 0000 0001 o000 0000 | otoo,
+

Displacoment] 1111 11111111 1111 | -

Y | signonss

extended

PC 0000 0000 1111 1111 J OOFF,

1414

Chapter 3 Detalls of instructions
Instruction Set

SLLA 16-bit Left Shift

| obj |
| Function |

C — A15
@‘—{15 A o[€¢—0 Aq ¢ An.q (ne15—1)

< Ag — 0

| Description |

This instruction shifls the contents {(word fong) of the accumulator one bit 1o the left.
The overflow trom Ay is entered in the carry (C).

0 (zem) is entered in Ag.
This instruction is affected by the data descriptor {DD).

For this instruction 1o be exaecuted comrectly, it is necessary 1o set DD=1. When
DD=0, the instruction actually executed becomes "SLLB A"

Flags
Flags atfecled by execution: Flags aflecling execution.

ZF | CF | HC | DD bD
1

»

CODE CYCLES
obj BYTE

A 53 2 —_—
#MNyg

orN

DP

X1

x2

usp

SSP

LRB

off Ng

Na

[DP)
INGJUSP}
NyJX1]
N, a{X2)

3-142

Chapter 3 Detalls of instructions
Instruction Set

SLL obj 16-bit Left Shift

ob)|
erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP], N1g[X1], N1g{X2}

| Function '
|:|(_.|](_ C «— obis
LE] obj 0 0 Obj “— Obig.1 (P=15—1)

<— objg + 0

I Dascription |

This instruction shifts the contents of the addressing object {word long) (obj) one bit
to the left.

The overtlow from obij1s is entered in the carry (C). Alsc, 0 {zero) is entered in objg.

lags
Flags affected by execution: Flags affecting exacution:
ZF | CF | HC) DD #]8]
L
[CodesiCycies]
CODE CYCLES
obj BYTE

1 2 3 4 5 6 INT EXT
A
#Nyg
orN 444N D7 5 13
ppP 92 o7 5 —_
Xi 90 o7 H -
X2 91 D7 5 —_
usp Al D7 5 -_
55P AQ D7 5 —_
LRB Ad D7 5 —_
off Na B4 Na o7 7 16
Na 8s Ne D7 7 —
{DP] B2 D7 7 15
Ng[USP] B3 Ny o7 8 16
NqalX1] Bo Ny ™ D7 9 17
N,efX2] Bi N, Ny b7 9 17

2414

Chapter 3 Dstalls of instructions

Instruction Set
SLLB A 8-bit Left Shift
I obj]
I Functlion I
C| 7 AL ¢ 0 C — A
— Aqy (n=7—1
c z = Gm {n)

{ Description]
This instruction shifts the contents of tha lower byte of the accumulator (Ay) one bit 1o
the left.

The overflow from Az is enterad in the carry (C) and 0 (zero} is entered in Ag.

This insiruction is affected by the data descriptor {DD).
For this instruction 1o be perdormed correctly, it is necessary to set DD=0. When
DD=1, the instruction actually executed becomes "SLL A™.

| Flags |

Flags affected by execution: Flags aifecting execution:

ZF } CF | HC | DD DD
. 0

I Codes/Cycies '

CODE CYCLES
obj BYTE

A 53 2 —_—
TR

N
PSWH
PSWL
off Ny

Ng

[DP]
tNgJUSP]
N1}
N, aX2]

3-144

Chapter 3 Detalls of Instructions
Instnuction Set

SLLB obj 8-bit Left Shift

obj

N, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP], N1g[X1], Ny g[X2]

| Function |

C «— objy
5] 0 T

< objg «— 0

| Description |
This instruction shifts the contents (byle long) of the the addressing object (ob) one
bit 1o the lelt.

The averflow from objz is entered in the carry (C). Also, 0 (2ero) is entered in obijg.

[Fiags]

Flags affected by exacution: Flags affecting execution;
ZF { CF | HC | DD oo
-
| Codes/Cycles |
CODE GYCLES
obj BYTE
1 2 3 4 5 -] INT EXT

A

#h,y

N 20+N D7 s 9
PSWH A2 D7 5 —_
PSWL A3 D7 5 —_
off Ny c4 Ny D7 7 12
Ny cs Ny o7 7 -
[DP) [07 7 1
tNUSP) c3 Ny D7 8 12
Ny g[X1) co N Ny D7 9 13
NelX2] c1 Ny Nu b7 9 13

3-145

Chapter 3 Details of Instructions
Instruction Set

SRA A 16-bit Arithmatic Right Shift

Lo |

1 Function |

L A e 1 I R

—_— Ais «— Ajs

[Bescription]

This instruction arithmetically shifts the contents (word long) of the accumulator one
bit 1o the right.

The overtlow from Ay is enlered in the carry (C), while bit A;g following the shift is
entered by Aqs Hself.

This instruction is affected by the data descriptor (DD).
For this instruction 1o be executed correctly, it is necessary to set DD=1. Whan
DD=0, the instruction actually executad becomes "SRAB A”,

Flags
Flags affected by execution: Flags affecting execution:

ZF | CF | HC | DD DD
. 1

| mdoygclu [
CODE CYCLES

obj BYTE

Ny
orN

DP

X1

x2
Usp
S8P
LRB

oft Ng
Ny
{BP)
1Ng[UUSP}
N,aX1]
NgX2)

3-146

Chaptar 3 Detalls of Instructlons

Instruction Set

SRA obj

16-bit Arithmatic Right Shift

O

erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg{USP), N1g[X1], N14[X2]

| " Function |

N

obj

—_

5]

C « objp
objp <= 0bjn,1 (N=14-—0}
objyis «— objis

I Descrlellon]

This instruction arthmetically shilts the contents of the addressing object (word iong)

(obj) one bit to the right.

The overflow from obj(is entered in the carry (C), while the bit objq 5 toliowing the

shifl is entered by objy5 itself.

| Flags |
Flags affected by execution: Flags alfecling execution:
ZF | CF | HC | DD DD
&
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 -] INT EXT

A
#Nie
oN 444N F7 5 13
oP 92 F7 s -
X1 90 F7 5 -
X2 a1 F7 5 —
usp Al F?7 5 _—
S5P AQ F7 5 -
LRB Ad F7 5 -
off Ny B4 Ns F7 7 16
™ Bs Ny F7 7 -
{OP) B2 F7 7 15
N USP] B3 Ny F7 8 16
NyelX1] Bo Ny Ny F7 b 17
N X2} B1 N Ny F? 9 17

3147

of 3 Detalis of Instructions

Instruction Set
SRAB A 8-bit Arithmetic Right Shif
l obj] S
| Funciion | o
ST C ~4
7 AL of—>c] Aq — Any1 (Ra6—0)
— Ay — A7

| Descripiion |

This instruction arthmelically shifts the conlents of the lower byte of the accumuiator
(Ap) one bil 1o the right.

The overllow from Ag is enfered in the carry (C}, while bit A7 lollowing the shift is
entared by Ay itsell.

This instruction is affected by the data descriplor (DD).
For this instruction to be executed correctly, il is necessary 10 set DD=0. When
DD=1, the instruction actually executed becomas "SRA A",

[Flags]

Fiags affected by execution: Flags affecting execution:
ZF J CF | HC | DD oo
. [+]

| Codes/Cycles |

CODE CYCLES
obj BYTE

A 73 2 —
]

TN
PSWH
PSWL
off Np

Ny

{OF}
+NJUSP]
Nyo[X1}
Nyg[X2]

3-148

Chapter 3 Detalls of Instructions

Instruction Set
SRAB obj 8-bit Arithmetic Right Shift
Lo |
| Function |
C +«— obj
7_obj ol>{C] Objn +— Obje, 1 {Ne6—0)
— > objz +— objz

I Dascription I

This instruction arithmetically shifts the contents (byte long) of the addressing object
(obj} ane bit 1o the right.

The ovediow Irom objg is entered in the camy {C}, while the bit objz following the shift
is entered by cbjy itsell.

Flags
Flags attected by execution: Flags aftecting execution:
ZF | CF | HC | DD oD
L]
| COda?l-_ngIu |
CODE CYCLES
obj BYTE
1 2 3 4 5 [L INT EXT

A [

N,y

N 20+N F7 5 9
PSWH A2 F7 5 -—
PSWL A3 F7 5 -—
off Ng Ny F7 7 12
Ny cs Ng F? 7 —
|DP)] c2 F7 7T I n
Nyuse) c3 | N | F7 8 12
NygX1] co N, Ny F7 9 13
Ny gfX2) c1 N, ™ F7) 13

2140

Chapter 3 Detalls of instructions
Instruction Set

SRL A

16-bit Right Shitt

I

|mcuon|

0 —>is A o— C < A
Aq *+—Apyr (N=14—(
— Ats +— 0)

tion
This instruction shitts the contents (word long) of the accumulator one bit to the right.

The overllow from Ag is entered in the carry (C). Also, O (zero) is enlered in Ays.

This instruction is affected by the data descripior {DD).
For this instruction to be execunad comectly, it is necessary to set DD=1. When
DD=0, the instruction actually executed becomes "SALB A"

[Fags]

Codes/

Flags affected by execution: Flags affecting execution:

ZF | CF | HC | DD DD
. 1

¢las

CODE CYCLES
ob]j BYTE
1 2 a 4 5 6 wT | ExT

#Ny

ofN

DP

X1

X2

Usp

58P

LRB

off Ng

[DP]

1N USP]

NofX1]

N,o[X2]

3-150

Chapter 3 Detalls of Instructions

Instruction Set

SRL obj

16-bit Right Shift

obj

arN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], :NgIUSP], Nqg[X1], N1g[X2]

| Functlon |

0—>s

obj

—_—

_o—>[c]

C « objp
objn +— Objy.1 (N=14—0)
objyg +— 0

|__Deseription |

to the right_

This instruction shifts the contents of the addressing object (word kong) {obj) one bit

The overflow from cbjy is entered in the carry (C). Also, 0 (zero) is entered in objis.

Flags
Flags afiected by execution: Flags affecting execution:
ZF | CF | HC | DD Do
L]
[Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5] INT EXT

A

#Nqo

ofN A4+N E7 5 13
DP 92 E? 5 -_—
X1 80 E7 5 -
x2 9 E7 5 —_
usp At E7 5 —_
S8P A0 E7 H —_
LRB Ad E7 5 —
off Ny B4 Ng E7 7 16
Ny BS Ng E7 7 —
[DP] B2 E7 7 15
#Ng[USF) B3 Ng E7 [] 16
NielX1} BO N Ny E7 9 17
NiefX2| B1 Ny Ny £7 ® 17

3-1561

Chapler 3 Detalls of Instructions

Instruction Set
SRLB A 8-bit Right Shitt
| obj]
{ Function |
Ay «— Ap,y (n=b—0
— A y

I Description]

This instruction shitts the conlents of the lower byle of the accumulator (A;) one bit to
1he right.

The overflow from Ag is entered in the camry (C) and 0 (zero) Is entered in A7.

This instruction is affected by the data dsscriptor (DD).
For this instruction to be perdormed correctly, it is necessary lo set DO=0. When
DOD=1, the insiruction actually execuled becomes "SRAL A”,

1 Flags 1

Flags affected by execution: Flags affecting execution:

ZF | CF § HC | DD oD
. [¢)

[Codea/Cycles |

CODE CYCLES
obj BYTE

A 83 2 —_—
#Ng

N
PSWH
PSWL

off Ny

N

iDP]
+Ng{USP]
N.g[X1]
N,a[X2]

3.152

Chapter 3 Detalls of Instructions
Instruction Set

SRLB obj 8-bit Right Shift

obj

N, PSWH, PSWL, off Na, Ng, [DP}, tNg[USP), Nyg[X1], N1g[X2]

| Function l
0 —>[;_obj o}—>{c] bl - o1 (160}

— Ay — O
| Dascription |
This instruction shifts the contents (byle long) of the addressing object (objjone bit to
the right.
Tha overliow from abjg is entered in the carry (C}. Also, 0 {zero) is emered In objy.
| Flags |
Flags aflecied by execution: Flags affecting execution;
ZF | CF | HC | DD e]n)
| Codes/Cycles]
CODE CYCLES
obj BYTE
1 2 3 4 5 8 INT EXT
A
#Ny
™ 20+N E7 5 9
PSWK A2 E7 5 —
PSWL Al E7 5 _
off Ny C4 Ny £7 7 12
Ny cs Ny E7 7 -
. [DP) c2 E7 7 1
+Ng[USP] c3 Ny E? 8 12
Nig[X1] co ™ Ny €7 9 13
NyaDX2] C1 N Ny E7 9 13

LR N

Chapter 3 Detalis of Instructions
Instruction Set

ST A, obj 16-bit Transfer

Lo |

erN, oft N, Ng, {OP], tNgJUSP], N1g[X1], N1g[X2]

Function
A — obj (word long)

| Description |

This instruction transters the contents of the accumulator to the addressing object
(word long).

This instruction is alfected by the dala descriptor (0D).
For this instruction lo be executed comectly, it Is necessary to set DD=1. When
DD=0, the instruction actually executed becomes “STB A, obj".

Flags
Fiags atfected by execution: Flags affecling execution:
ZF | GF | HG | DD DD
1
I Codas/Cyclas |
CODE CYCLES
obj BYTE
1 2 3 4 5 € INY | EXT
A
#Nyg
arN 88+N 2]
oP
X1
X2
UspP
SSP
LRB
off N, D4 [™ 4 9
Ny Ds Ny 4 —_
[OP] D2 4 8
NaJUSP} (%] Ny 5 9
NyelX1] Do N. Ny] 10
N, %2} o1 | Ny 6 10

3-154

Chapter 3 Details of Instructions
Instruction Set

STB A, ob} 8-bit Transfer

™, off Ng, Na, [OP], tNa[USP}, N1g[X1], N1g[X2]

Funetion
A(-~ obj (byte long)

| Description |

This instruction transfers the contents of the lower byte of accumulator (AL} lo the
addressing cbject (byte long).

This instruction is alfected by the data descriptor (DD).
For this instruction 10 be executed comeclly, it is necessary 1o set DD=0. When
DD=1, the instructor aciually exacuted becomes “ST A, obj".

[Fiags]

Flags affectad by execution: Flags affecting execution:
2F | CF | HC | DD oD
]
| Codes/Cycles ’
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT

A
#Ny
N 88+N 2 4
PSWH
PSWL
off Ny D4 Ny 4 7
Ny Bs Ng 4 -_—
{DP] D2 4 6
+NUSP] 03 Mg 5 7
NyelX1] Do N Ny 6 8
Nyl X2 o1 N Ny 6 8

3155

Chapter 3 Detaiis of Instructions

Instruction Set
SUB A, obj 16-bit Subtract
Lo |
#Nyg, erN, DP, X1, X2, USP, 5SP, LRB, off Na, Ng, [DP), tNg[USP}, N1glX1], N1g[X2]
Function

A +— A -obj {(word long)

| Degacription |

This instruction subtracls the conlents of the addrassing object from the contents of
the accumulator in a word long operation. Tha resulting diffarence (16 bits) is stored
in the accumulator. The boirow that occurs during the subtraction is stored in the

carry.

This instruction is affected by the data descriptor (DD).
For this instruction to be executed comrectly, it is necessary 1o set DDs=1.

| Flags |

Flags affected by exacution: Flags affecting execution:
ZF | CF | HC | DD oD
. . . 1

I Codes/Cycles |

CODE CYCLES
ob} BYTE
1 2 a 4 5 6 INT | EXT
A
#N,g AB N Ny 8 .
orN 28+N E] 7
DP o2 A2 4 -
X1 90 A2 4 -
X2 91 A2 4 —
usP Al A2 4 —
sSSP AD A2 4 .
LRB Ad AZ 4 -
off Ny A7 Ny 4 9
Np BS | My { A2 6 -
[DP) ez A2 [} 10
+NaJUSP) [:\] My A2 7 1
N,oX1] BO N Ny A2 8 12
NyelX2] B1 N Ny AZ a 12

3-156

Chapter 3 Detalls of Instructions

Instruction Set
SUB ob}, A 16-bit Subtract
obj
erN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, {DP], tNglUSP)], N1g[X1], N1¢[X2)
Function
obj «— obj - A {word long)
Dascription
This instruction subtracts the conlents of the accumulator from the contents of the
addressing object in a word long operation.
The resuhing ditference {16 bits) is stored in the addressing object. The borrow ihat
occurs during the subtraction is stored in the carry (C).
| Flags l
Flags affected by execution: Flags affecting execution:
2F | CF | HC | DD DD

[Codas/Cycies |

CODE CYCLES
ob} a8YTE

1 2 3 4 5 & INT EXT
A
#MNyg
orN 444+N Al 5 13
DP 92 At 5 —_
X1 80 Al 5 -
X2 a9 Al 5 -_—
usp Al At 5 -_
58P A0 Al 5 —_
LR8B Ad Al 5 -
off Ny B4 Ne [Al 7 16
Ne BS | Ny | Al 7 | —
[oP) B2 | Al 7 15
+NoJUSP} B3 | Na | A1) 16
NoalX1) Bo | N | Nu | A1 9 17
NoolX2] Bt | N | Ny | A 9 17

3.1R7

Chapter 3 Detalls of Instructions
Instruction Set

SUB obj, off Ng 16-bit Subtract

O ‘
orN, DP, X1, X2, USP, SSP, LRB, off N'g, N'g, [DP], tN'g[USP], N1g{X 1], N1g[X2]

| Functon |

obj «<— obj - off Ng (word long)

{ Description |
This instruction subtracis the contents of the data memory specified by dired page
addressing (off Ng) from 1he contenis of the addressing object in a word long

operation.

The resulting difference (16 bits) is slored in the addressing object. The bamow that
occurs during the subtraction is siored in the canry {C).

Fia

Flags affected by execution: Flags affecting execution:

ZF | CF § HC | DD DO
» » » 1
Codes/Cycles
CODE CYCLES
ob] BYTE INT | INT E¥ E_th +— obj
1 2 3 4 5 6 INT |[EX JINTFEX | —oliNg
T T

A
Ny
ari 4N | A2 Ne 7l=-]-]2
DP Q2 A3 Ny 71l =] —
X1 5q A) Ny 78| ~]-—
x2 9N A3 Ng 7|18]|—} -
usp At A3 Ny T (18| ~]—
SSP AD A3l Ng 71w =1]~—
LRB Ad A3 Ny 7[16] =] —
off Ny B4 Ny | A3 Ny IS E
Ny Bs Ny | A3 Ng g 18] —| —
[DP] B2 A3 Ng 9 18113 | 22
£N'JUSP] B3 Ny | A3 10|19 14] 23
Nyg[X1] BO N, Ny A3 Na 11 |20]15] 24
N,g[X2] B1 N, Ny A3 Ng 11 120715 | 24

3-158

Chapter 3 Detalls of instructions

Instruction Set
SUB obj, #N15 16-bit Subiract
obj .
orN, OP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], +Ng[USP], N'1g]X1], N'1g[X2]
Function

obj «— obj - #Nyg {(word long)

[[Deseription]

This instruction sublractis the 16 bit immediate value (#N4g) Irom the contents of Ihe
addrassing object (word long}.

The resulting diffarence (16 bits) is stored in the addressing object. The bomow that
occurs dunng the sublraction is stored in the carry (C).

[Flags]

Flags affected by execution: Flags affecting exacution:
ZF | GF | HC | DD oD
N . .
| Codes/Cyclos |
CODE CYCLES
obj BYTE

t 2 3 4 5 6 INT § EXT
A
#Nyg
oN 44+N AQ N Ny 8 17
DP g2 AD N, Ny F —
X1 90 AG N, Ny 8 -
X2 91 AD N, Ny 8 -
uspP Al AD N_ Ny [-
SSP A AQ N, Ny 8 -
LR8 Ad AD N Ny 8 .
off Ng B4 Ng Ao N_ Ny 10 20
Ny B5 Na AQ N Nu 10 .
[oP] B2 AD N, Ny 10 19
tNofUSP] Ba My AC N Ny) 20
N elX1] 80 Ny Ny AD N, Ny 12 21
N'yolX2) 81 Ny N AQ Ny Nx 12 21

3-159

Chapter 3 Detalls of Instructions

Instruction Set

SUBB A, obj

8-bit Subtract

1 obj]

#Ng, iN, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP), N g[X1), N1g[X2]

[Funcion |

AL« AL -obj (byte long)

| Doscr!llon |

contents of the lower byte of the accumulator (Ay).

This instruction sublracts the contents (byle long) of the addrassing object from the

The resulting difference {8 bits) ls stored in the lower byle of the accumulator (Ap).
The borrow that cccurs during the subtraction is stored in the carry {C).

This instruction is affected by the data descriptor {DD).

For this instruction 10 be executed comectly, il is necessary to set DD=0.

{ Flags]

Flags affected by execution: Flags affecting execution:
ZF | CF { HC 1 DD oD
. » . 0
| CodasiCycies |
CODE CYCLES
obj BYTE
1 2 3 4 5 INT EXT

A
#N, A8 N, 4 —
™N 28+N 3 5
PSWH A2 A2 4 -
PSWL A3 A2 4 -
off Ny C4 N, 4 7
Ng Cs '™ A2 5 —
[DP] ce AZ [—
NpJUSP) ca Ne A2 7 9
NyglX1) co N, Ny A2) 10
NysX2] c1 N Ny A2 8 10

a1an

Chapter 3 Detslls of Instructions

Instruction Set
SUBB obj, A 8-bit Subtract
N, PSWH, PSWL, off Ng, Ng, [DP), +Ng|USP), Nyg[X1], N1gX2]
Function
obj «+— obj- AL (byte long)
l Demr!etlon |
This instruction subtracls the contents of the lower byte of the accumulator (A) from
thae contents (byte long) of the addressing object.
The resuiting diflerence (8 bits) is stored in the addressing object. The bormow that
occurs during tha sutdraction is siored in the camry {C).
Flags
Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
[] L] []
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 [INT EXT
A
Ny
M 20+N At 5 8
PSWH A2 At 5 ——
PSWL A3 Al 5 -
off Ng C4 Ny Al 7 12
Ns cs Ns Al 7 —
[DP) c2 Al 7 3]
N USP] c3 Ny Al 8 12
Nyaf%1] Co Ny Ny Al 9 13
NglX2] c1 Ny Ny Al 9 13

3-1A/1

Chapter 3 Detalls of Instructions

Instruction Set

SUBB obj, off Ng

8-bit Subtract

o8]

N, PSWH, PSWL, oft N'g, N'g. [DP), tN'g[USP], N1glX1), NyglX2]

| Function |

obj «- obj - off Ng (byte long)

| DcscrEi'l_on]

This instruction sublracts trom the addrassing objecl, the data memory specitied by

direct page addressing (o Na).

The resulting difference (8 bits) is stored in the addressing object. The borrow that
occurs during the subtraction is stored in the carry (C).

Flags

Flags affected by execution: Fiags affecling execution:

ZF | CF | HG | DD DD
» . L]
| Codes/Cycles |
CODE CYCLES
ob]j BYTE INT | INT E:; E¥ «— obj
1 2 3 4 5 & INF|EX | INT|EX | ~—otiN,
T T

A
N,
] 20+N | A3 Ny 7] —1]—114
PSWH A2 A3 Ny E e
PSWL A3 A3 Ny 712l —-]|—
ofl Ny C4 Na A3 Ny 9| —]-—-j17
Ny cs Ny A3 Ny 9 [14]—§ —
[DF) c2 A3 Ns 9 | 14] 11|16
+N'JUSP) c3 Ny A3 Ny 104§15§12] 17
N [X1} co N, Ny A3 Na 11] 16|13 18
N1e[X2)) N Ny A3 Ng TR EFN E<N ED

3-162

Chapter 3 Details of Instructions
Instruction Set

SUBB ob)], #Ng 8-bit Subtract

ob)

M, PSWH, PSWL, off N'g, N'g, [DP], $N'g[USP], Nyg[X1], N1glX2)

| Function |
| Description |

obj - obj - #Ng (byte long)

This instruction sublracts the 8-bil immediate vaiue (#Ng) from the addressing object
(byte long).

The resulting difference (8 bits} is stored in Ihe addressing object. The borrow that
occurs during the subltraction is stored in the carry (C).

| Fiags |
g Flags afiecied by execution: Flags aftecting execution:
IF | CF | HC | DD 810
- * »
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 [INT EXT
A
Ny
N 20+N | AD Ny 8 11
PSWH A2 A Ny [-
PSWL A3 A0 Ng § -
off N'y C4 Ny A0 Ny 8 14
N'g Cs N AD Ny 8 -
[oP] c2 A0 Ny 8 13
N USP] fox] Ny A0 Ny 8 14
Ny g[X1] Cco N Ny AD Ny 10 15
N, gfX2] Ci N_ Ny A0 Ma 10 15

3-163

Chapter 3 Detalls of Instructions

Instruction Set
SWAP 16-bit Swap
| ob) |
| Function |
l A J A — A
15—8 70
[A 1 An]
18 87 [+]

[Description |

This instruction exchanges the upper byte (AL) and the lower byte {Ay) of the

accumuiator.

This instruction is altected by the data descripier (DD).

For this instruction to ba executed comeactly, it Is necessary 1o set DD=1. When

DD=0, the instruction actually execuled becomes "SWAPB".
I Flags |

Flags affected by execution: Flags affecting execution:

ZF | CF | HC | DD o]0]
1
[Codes/Cycies }
CODE CYCLES
obj BYTE
1) 3 4 5 6 INT EXT
83 2 —

A.1R4A

Chapter 3 Dstalls of instructions

Instruction Set

SWAPB 8-bit Swap
| obj |
I Function |

Ara—Aso

l DOSCTEIIOH l

This instruction exchanges the upper 4 bits and the lower 4 bits of the lower byle of
the accumulator (Ay).

This instruction is affected by the data descriptor {DD}.

For this instruction to be executed comectly, it is necessary to set DD=0. When
DDa1, the instruction actually executed bacomes "SWAP™,

Flags
Flags aftected by execution: Flags affecting execution:
ZF | CF { HG | DD DD
0
Codas/Cycles
COOE § crcues
obj BYTE |

1 2 3 4 5 6 | wr | ExT
5] P 2 —

3-165

Chepter 3 Details of Instructions

instruction Set
TBR obj Test Bit (Register Indirect Bit Addressing)
L__ob |
N, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP], N1g[X1]. Nqs[X2]
Function

IF obj.bit (As—p) =0 THENZ «— 1
ELSEZ —0

1 Description |

This instruction 1ests the conents of the specified bit of ihe the addressing object
(byte long}.

The location of the bit is specified by the conlents of tha lowar 3 bits of tha
accumuialor (Az.p) al the execution time of the instruction.

if the speciiied bit is 0, the zero flag (Z) is set to 1; otherwise the zero Hlag is sel to 0.

[Fiags]

Flags atfected by execution: Flags alfecting execution:
ZF } CF | HC | DD DD
-
Codes/Cycles
CODE CYCLES
obj ayTe
1 2 3 4 5 6 INT EXT

A

#Ny

N 20+N 13 4 6
PSWH A2 13 4 —
PSWL Al 13 4 —
off Ny c4 Ny 12 5 9
Ng cs ™ 13) —
{DP] c2 13 6 []
*NyUSP) c3 Ns 13 7 9
NislX1] co N Ny 13 8 10
N, [%2) Ct N | My 13 8 10

3-166

Chapter 3 Details of Instructions

instruction Set
VCAL table-address Vector Call
ob]
[Function]
{SSP) ~— PC + 1
S5P «— S5P-2
SF—40

PC +— (tabla-address)

whare “table-address™ must be an even-numbered address of the VCAL table space
(28=-37H).

I Description |

This instruction calls the vector address in the VCAL space.

After the return address is saved in Ihe system stack and SSP is revised, the
contants of the ROM at the address specified by “able-address” is stored in the lower
8 bits of tha PC, while the contents of the ROM whose address follows Lhe first ROM
address is storad in the upper 8 bits of the PC.

This instruction clears the slack flag (5F) by selting it t0 0.

Flags
Flags affected by execution: Flags atfecting execution:
ZF {CF [HC | DD DD
| Codes/Cycles |
CODE { cvcies
obj BYTE |

1 2 3 4 5 6 B INT | EXT
10+n [JEE 15

[NOTE] The value of n varies with the “table-address™ as shown in the following table.

1able-address n table-address n
0028y 0 0030y 4
002Ay 1 0032y 5
002Gy 2 0034 [}
002Ey 3 0036y 7

R.-1R7

Chapter 3 Detells of Instructions

Instruction Set
XCHG A, obj 16-bit Exchange
w .
e\, DP, X1, X2, USP, SSP, LRB, oft Nag. Ng, [DP], tNag[USP}, Nyg{X1], N1slX2]
Function

A+ obj (word long)

| Descrgllon |
This instruction exchanges ihe contents of the addressing object and the accumulator
in a word long operation.

This Instruciion is affected by the data descripior (DD).
For this Instruction 1o be executed correctly, i is necassary 1o set DD=1.

I Flags I

Fiags affecied by execution: Flags aftecting execution:
ZF JCF | HC | DD oD
1
CODE CYCLES
obj BYTE

1 2 3 4 5 6 ﬂlilN'T EXT
A
#Nyg
orN 444N 10 5 13
DP 92 10 5 -_
X1 90 10 5 —
X2 U]l 10 5 -
USP Al 10 5 -_
s5pP AD 10 5 —
LAB A 10 5 —
oft Ny B4 ™™ 10 7 16
Ng Bs Ng 10 7 -
[DP} B2 10 7 15
NJUSP} 83 N 10 8 15
NyelX1] BO N, Ny 10 [17
NqeX2] B1 Ny Ny 10 8 17

a 120

Chapter 3 Details of Instructions
Instruction Set

XCHGB A, obj 8-bit Exchange

Lo |

rN, PSWH, PSWL, off Na, Ng, [DF], tNg[USF], N1gX1]. N1gfX2]

| Function |

AL+ ob} (byte long)

I DCSCI‘IEHOII l

This instruction axchanges the contents of the addressing cbject and the lowar byte
of the accumulalor (Ag) in a byle long operalich.

This instruction is alfacted by tha data description (DD).
For this instruction to be executed correcity, it is nacessary to set DD=0.

| Flags]

Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
0
Codes/Cycles
CODE CYCLES
obj BYTE
1 2 3 4 5 5 INT EXT

A
#Ny
N 204N | 10 5 9
PSWH A2 10 5 -
PSWL A3 10] -_
off Ny c4 Ny 10 7 12
Ng cs Ng 10 7 _—
[oP] cz2 10 7 11
NG[USP] ca Ny 10 8 12
NqelX1] co N My 1o 9 13
N,gX2) ct N My 10 9 13

a1ea

Chapter 3 Detalls of instructions

‘Instruction Set
XNBL A, off Ng 4-bit (Nibble) Exchange
l Function |
Az g+ ofiNg3 o
[Doscrglbn |
This instruction exchanges the lower 4 bits of the data memaory specified by direct
addressing (off Ng) and the lower 4 bis of the accumulator,
Flags
Flags affected by execution: Flags affacting execution;
ZF { GF | HC | DD DD
Codes/Cycles
CCDE CYCLES
obj BYTE
1 2 3 4 5 8 INT | EXT
84 Ng 5 10

3-170

Chapter 3 Detalls of Instructions

Instruction Set

XOR A, obj

16-bit Exclusive OR

obj

#Nqg, orN, DP, X1, X2, USP, SSP, LRB, off Ng, Ng, [DP], tNg[USP], N1g{X1], N1g{X2]

| Function |

A « A ¥ obj (word long}
I Description |

This instnuction performs an exclusive OR operation on the conlents of the

accumulator and the addressing object. The result (16 bils) is stored in the

accumulator.

This instruction is affected by the data dascriptor (DD).

For this instruction 10 be execuled correctly, it is necessary to set DD=1.

Flags
Flags affected by execution: Flags affecting execution:
ZF | CF | HC | DD DD
- 1
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 s INT | EXT

A

N,y F& N, Ny 6 -
orN 68+N 4]
opP 92 F2 4 —_
X1 90 F2 4 -_
X2 91 F2 4 —
usp Al F2 4 -
SSP AQ F2 4 —
LRB Ad F2 4 _
off Ny F7 N, 4 9
Ny es Ny F2 & -
[DP) B2 F2 [10
+NgUSP} B3 Na F2 7 1
NyelX1) B0 N, N4 F2) 12
N, X2} 81 N N,y F2) 12

3171

Chapter 3 Detalls of Instructions 1
Instruction Set

XOR obj, A 16-bit Exclusive OR

0
e, DP, X1, X2, USP, S5P, LRB, off Ng, Ng, [DP], 2Ng[USP], N1 g{X1], Nyg[X2]

I Function l

obj «—obj YA (word long)

| Description |

This instruction performs a word long exclusive OR operation on the contents of the
addressing object and the accumulator.

The rasult {16 bits) is stored in the addressing objed.

Flags
Flags affectad by execution: Flags affecting execution:
ZF | CF | HC | DD (8]3)
-
l Codeslszcles |
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT

A

N,y

orN 444N F1 5 13
DP 92 Ft 5 -
X1 90 F1 5 _
x2 2] F1 5 -_—
usp At F1 L —
&5P AD F1 5 —
LRB Ad F1 5 —
off Ny B4 Ny F1 7 16
Ny BS Ny F1 7 —
[BP) B2 F1 7 18
+NJUSP] a3 Ny F1 8 18
NafX1] BO Ny Ny F1 9 17
Nyg[%2] B1 Ny Ny F1 9 17

3-172

Chapter 3 Details of Instructions
Instruction Set

XOR obj, off Ng 16-bit Exclusive OR

[obj]
| Function |
| Descripiion |

erN, DP, X1, X2, USP, SSP, LRB, off N'g, N'g, [DP], tNg[USP], Nyg[X1], Nqg[X2]

obj +— obj v off Ng (word long)

This instruction performs a word long exclusive OR operation on the contents of the
addressing object and the data memory specified by direct page addressing (ofl Ng).

Tha rasult (16 bits) is stored in the addressing objed.

Fiags

Fiags affected by execution: Flags affecting execution:

ZF { CF | HC | DD oD
-
[[Codes/Cycies |
CODE CYCLES
obij BYTE INT | INT E¥ E)Tt ~ obj
1 2 3 4 5 [INTJEX | INT]EX | »—otiNy
T T

A
Ny
arN 44+N F3 Np 71 —-]—1]120
oP 92 F3 Mg 7]} —] -
X1 90 F3 Ny 7]l -] -
X2 Y [Ng 71| —]~—
usp A F3 Ny 7]lw]-1]-
SSP AD Fa Ng 71w =] —
LRB Ad F3 Ng 7]l -] —
off N'g B4 Ny F3 N, s | —| —1}23
Ny BS N Fa ™ 9 |18 =1 —
[BP) B2 Fa Ny 9 J18]13| 22
1IN [USP] 83 N's F3 1019|1423
NyalX1) BO N Ny F3 Hy 1nj2]15] 24
Ny sX2) B1 Ny Nyt Fa Ny DR IECR R ED

2.1713

Chapter 3 Detalls of Instructions

instruction Set
XOR obj, #N1e 16-bit Exclusive OR
oo |} ‘
erN, DP, X1, X2, USP, SSP, LRB, oft Ng. Ng, [DP], tNg[USP], N"1¢[X1], N'yg[X2}
[Funciion |
obj +— obj ¥ #N1g (word long)
| Descripiion |
This instruction pertorms an exclusive OR operation on the conlents ol the
addressing object (word long) and the 16-bit iImmediate value (#N1g).
The resutt is siored in the addressing oblect.
Flags
Flags alfacted by exacution: Flags affecting execution:
ZF | CF | HC | DD oD
Codes/Cycies
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT | EXT
A
e
orN 444N | FO M. Ny 8 17
DP 92 Fo Ny My 8 -
X1 90 Fo Ny Ny a -
x2 1 Fo N, Ny a —-
uspP Al Fo Ny Ny 8 -
s5p AD Fo Ny ™ 8 -
LAB A4 Fo N Ny B -
off Ng B4 Ny Fo Ny Ny 10 20
Ng Bs Ny Fo Ny Ny 10 —
[DP] B2 Fo Ny Ny 10 19
N USP] B3 Ny Fo N Ny 1 20
N'1e{X1) Bo N N Fo N, Nu 12 21
Nl X2 B1 N Ny Fo N My 12 21

2174

Chapter 3 Details of instructions
instruction Sat

XORB A, obj 8-bit Exclusive OR

obj
#Ng, TN, PSWH, PSWL, off Ng, Ng, [DP], +Ng[USP], N1g[X1], Nqg[X2]

| Funhetion I

AL ALV obj {byle long)

{__Description |

This instruction performs an exclusive OR opearation on the contenls of the lower byte
of the accurnuialor (A} and the addressing object (byte long).

The result (8 bits) is stored in the kower byte of the accumulator (A().

This instruction is affected by the data descriptor (DD).
Far this instruction 1o be execuled correctly, #t is necessary to set DD=0.

I Flags ’

Fiags aflected by execution: Flags afiecting execulion:
2F | CF | HC | DD DD
-]
| Codes/Cycles]
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT
A
#N, F& Na 4 —_
i3 20+N F2 4 6
PSWH A2 F2 4 —
PSWL A3 F2 4 -
off Ny 7 Ny 4 7
Ny cs Ng F2 [—
[DF} c2 F2 [-
NLUSP) ca N F2 7 [
Nigx1) co N, Ny F2 8 10
N, s[X2} ¢1 N Ny Fz 8 10

3-175

Chapter 3 Details of Instructions

Instruction Set
XORB obj}, A 8-bit Exclusive OR
| obj] S
N, PSWH, PSWL, off Ng, Ng, [DP], tNg[USP), N1g[X1]. N1g[X2]
| Functlon | o
00} «— obj ¥ Ay (byte long)
| Daacription I
This instruction performs an exclusive OR operalion on the contents of the lower bylg
of the accumuialor (A } and the addrassing object (byle iong).
Tha result (B bits) is stored in the addressing object.
| Flags |
Flags affected by execution: Fiags affecting execution:
ZF { CF | HG | DD DD
Codes/Cyclas
CODE CYCLES
obj BYTE
1 2 3 4 5 6 INT EXT
A
#Ng
N 20+N 5 9
PSWH AR 5 —
PSWL A3 F1 5 —_—
olf Ny c4 Na F1 7 12
Ng o1 Ne F1 7 —
(DP] c2 | R 7 11
1N[USP] c3 N F1 8 12
Ny efX1] co N, Ny Fi 9 13
N,gfX2] c1 N, Ny F1) 13

3176

Chepter 3 Detalls of Instructions

Instruction Set
XORB obj, off Ng 8-bit Exclusive OR
| obj |

™, PSWH, PSWL, off N'g, N'g, [DP], tN's]USP), N1gIX1], N1giX2]

| Function |

obj «— obj V off Ng (byte long)

| Description |

This instruction performs a byle iong exclusive OR operation on the contents of the
addressing object and the dala memory specified by direci page addressing (off Na).

The result (8 bits) is stored in the addressing object.

Flags

Flags aftected by execution: Flags altecting execution:

ZF | GF | HC | DD oD
.
Codes/Cycies
CODE CYCLES
obj BYTE INT | INT E_); E¥ — obf
1 2 3 4 5 3 INTFEX JINT|EX | «—off Ny
T T

A
#Ny
™ 204N | F3 Ny 7 —]—] 14
PSWH A2 Fa Ng 7|2l -=-1-—
PSWL A3 F3 N, 7 1w2f—=}§~—
off Ny c4 N'g Fa Ny 9 —1—1717
N'g cs N F3 Ng 9 {1a] —| —
[DP] c2 F3 Ng g |14ty] 18
+N'JUSP] c3 N'g F3 Ng 1w|15]12] 17
Ny gfX1] co N Ny F3 Ng 11|t]1a]s
Nye[X2) c1 N Ny Fa Na 1116 12|18

Chapter 3 Delalls of instructions
instruction Set

XORB obj, #Ng 8-bit Exclusive OR
oo}

‘ Function I

1N, PSWH, PSWL, off N'g, N'g, [DP], tN'glUSP], Nyg{X1], Nyg[X2]

obj +— obj ¥ #Ng (byle long)

Dascription

This instruction performs an exclusive OR operation on the contents (byte long) of the

addrassing object and the 8-bit immediate value (#Ng).

The rasult {8 bits) is stored in the addressing object.

Flags
Flags affected by execution: Flags affecting execution:
ZF [CF | HC | OD DD
| Codes/Cycles |
CODE CYCLES
obj BYTE
1 2 3 4 5 & INT EXT

A
#Ng
™ 20«N | FO Ne 8 11
PSWH A2 Fo Ng 8 —
PSWL A3 Fo Ng 8 -
off N'g C4 Ny Fo Ny 8 14
Ny Cs Ny Fo Ny [.
] cz | Fo g B 13
£N'5JUSP] c3 N Fo Ny 9 14
N, o[X1] co N, Ny Fo N, 10 15
NP2 (3] N, Ny Fo Ny 10 15

3-178

Instruction List.

Chapter 3 Details of Instructions

*2 - the second operand

*1 - the first operand

Data Transfer Instructions (1)

TABLE 3-1.

IRRERKRRE |

55
155
155
155
155
155
155

158
156
156
156
156
156
156

M RRRRRRRRRRR .WQQEEQEEEEQEEE BEBNBBEN B
nDu Ll ol o R R e woﬂnoouoom mcl‘-l.l....lclal.l.il.lq-m
|2
s
- M o
556
..m.mm, S]]l)e | xeee
W”_mm lelllo|mag jerjonoa mso_asnn M..r_svaa _Ws______u_nunem
- & ou : : : : H
W.l.mﬁw. WONNNT ¢ SN D m.‘2444556 m244‘555 m2444556 M4.444444565?BE %4222444566783
.m M...umm M.u.w. mﬂ.lm m.ﬂ. m.ﬂ. MAAAAAAAAAAAAA
= B i, £ ol 4 5% i 2 - b
i {3axns 28222 2. F,0232 "muwmwww mmw&mumm mmxnwwma&mddw SAASARRERELER
R R N R R R R R A R R SRR RR NN RN .or _BEF
(LA < LLILITIL cca« LI LTLL << €« wwwmmw«wmmﬁmwmm
8 = 5 i &= | e
(] : — i M..I. : =y v.mm L4 o _:
m EEAPIEI AR A L FNRVYE s O
857 335 5% £ 3 oB702 TacnbBlE BTRT <co it
Mm mmmxuw WWWW WMMWWWMM MMWWWMM MNWAMMM A.A.MA.A.A.AA.AAAWM. mwxnwwmmﬁmw z|
uuuuuuuuﬁu 199939999 Bhhhhht haehbbl 3333853553308 mmmmmmmmmmmmm
s |- ™ ‘R) ‘3
= : : :

_

I

3-179

Chapter 3 Details of Instructions

Instruction List

TABLE 3-2. Data Transfer Instructions (2)

‘1 - the first operand

‘2 - the second operand

Int t|int Y |Ear JExt Y

No. Minemanics Opaeration Int "2 |Ext "2|int "2 |Ext 2| Byle Flags FPage
Cyc | Cyc | Cyc | Cyc | no. JZF |[CF|HC|DOD

O | MOV e, mm arl — ﬂu a % 4 &
MOV DP, #N, oP — My [— 3 a
MOV X1, BNy X1 — Mg | s - 3 4
MOV X2, 'H“ x2 — Ny L] - 3 &
MOV US’. "N-|. usp -— ﬂ,. [} —_ 4 .4
MOV SSP, '“‘. 5% ~— m“ .} -_— 4 &
MOV LRB, #Ny LRe — My [- 3 &
MOV ofi Ny 8 yg off Ng — Ny | © w 5 w
MOV Ng, #Nyg Ng — My © _— 5 -4
MOV [DP], #Ng |0F} — N]) 4 L4
MOV tNoUSP}, #8,g [INgIUSP] — Mg | 1 % s g
MOV NyalX1], 8Ny [NGaX1) — g | 12) [«
MOV N1gfK2]). 8y | Na[X2] +— SNy 2 LY € L
73 MOV e, A o A 4 — - © 2 84
MOV arN, #N,q oN — Ny, 8 |- |—-1]= 4 o
MOV N, arN' ol — otV 4 — — ©» 2 B
MOV arié, OP aN — [P 4 - 8 - 2 a4
MOV i, X1 N «Xi 4 — a - 2 B4
MOV er, X2 oN -2 4 — L] —_ 2 -]
MOV N, USP wN — USP R NN o
MOV ari, 55P o «— SSP 4 _ 8 -_ 2)
MOV orN, LRB oN «— LRB 4 | = 8 - 2 Bl
MOV N, off Ng o« ofiNg [- - L] 3 3
MOV eril, Ng N — Ny 6 — 0 — 3 o
MOV arN, [DP) o — |OF} 6 v | 0|« 2 ot
MOV aiN, tNg[USP] | wN + tNpfUSP] 7 1" 1" 5 3 o
MOV e, NyglX1) a e NygXi] 8 12|]s 4 o
MOV orN, NygfX2) N — NyglX2) & eln2 % 4)
s | 1w TS [

© —] - L] a8

6 — — -] k] [

] - 1" — 3 8

L] _ u _ 3 []

L] - n - 3 -]

6 -—_ 1" - 3 -]

6 —_ n - 3 -]

8 —_ 1" _— 3 -]

8 -1 =1m= 4 8

a - 13 —_ # L]

8 12 3 7 3 B

9]] ® 4 a8

0 i} 15] 5 []

© 1w 1§ -] 5 =

103 | MOV DP, A P — A 2 - 1 o
MOV DP, .‘1‘ P .N1° [—_ 3 ®
MOV DP, arfN 0P — N 4 8 2 <]
MOV DP,DP DP +« [P 4 — 2
MOV DP, X1 P~ X! 4 — 2 L)
MOV DP, X2 DP = X2 4 — 2 -]
MOY DP, USP P «— USP 4 — 2 o
MOV DP, SSP OP ~ S5P 4 — 2 o
MOY DP,LR8 OP « LRB 4 — 2]
MOV DP, ot Ng 0P+ offNg & n 3 @
MOV DP_ Ny P — Ny & - 3 ']
MOV DP, [OP] P« [DP) & 0 ? 0
MOV DP, £NglUSH] [P «— iNgUSF] 7 1 3 <}
MOV DP, NygfX1] P e HygX1) s 2 4 a
MOV DP. Nvsf%2| P o Nyglx2] & 1© 4 @

3-180

Instruction List

Chapter 3 Detalls of Instructions

“1 - the first operand
*2 - 1he sacond oparand

Data Transfer Instructions (3)

TABLE 3-3.

.m. T T T T T AL L LL) wmmmmmamummaammm mmmnmmmmmmmmmmmm mm:wwu:uwsum
m m...........-
- oo
389
..Hzmm. [tz Rzpy m__s______n_nnﬁﬂ W__I______n_nn.uw M.a______n_nnﬁﬁ
5 Bry Beg L, ... 82T fgg
J EINOTLIE - P L AT HEC P £
& | Uittt R IR NS ey
SR RREARAERRRS AR _Quavgnanenoonvy SRBRDR0B0R8430% FERRERERAENE
. . Bzg h
1 [onameser® srecomnet 5358 dsncutnaf6r2 sacannat, el
§ |sxssxsssssasiss yYIINANAd ANy BORRAIRDRRY0NNS FRRRRREEAEEE
mmmmmmmmmmwm g8 mmmmmmmmmmmmmmm 983303833530085 Ba35303§T5353
g |2 8 L 3

HE

3181

Chapter 3 Details of Instructions

Instruction List

‘1 - the first operand
*2 - tha second operand

TABLE 3-4. Data Transler Instructions (4)

P TTYILL

» SRIRNNSHEERRERE HENNKBSBBOYEEERB MGGQGSEGGS GRS
.”.._u_,._...._“ ! - “NN w
mw” " | m.__.._n.. m
m,_n._m,_T..:____n_nnmnM__a_.____n_nunums__o_sownw ma__nanauu
WMW.W. A KA EE R L AN X N1 W ¥ md.el.n‘ll“.ei.o?!s M.slls.eﬁ....ll mllds_.b.u?-l m._._.uﬁtl!iﬂﬁ
) PP s PRI | SR TPON A rienaspebdiaktbttih
& ::::E:Zw:::h::::r:.ﬂwmﬂm Teg | B
389%85559955843 B85 88RE888888 E22722222, "mmmm&mwwm mmmmwmmwwm_
- i : 4
2 % X _.w.ﬁ <« AAA. » Lm.i
g Am.m.mjﬁww.m.u.&m.mw‘.w .Ammwxnwwmmhmwmw mmmﬁ&mwww w MALWMM ﬂm.wwﬂmwmu
2 18B3%220002000000 LT EEEEEEE S TR L LLLLL 3BRI2 eplu Byl
13533840888 4000 HA0RRARATTINN 484833399 499988888 (858584888
5 |® '8 wu Y §

3-182

Instruction List

Chapter 3 Details of Instructions

*1 -1he first operand
*2 - the secornd operand

Data Transfer Instructions (5)

TABLE 3-5.

.m 888888388888 mmss:smasms wmmm:mmmmwﬁ mmmmwwwmnmmm
B Rrrrey
F_.& e e s e e e e
__FJ Ch w e s a b e aow
www I lo||=|@=Ny _ lo | |5 | 9=
qml.w.m o jow | wee R as jeo |veale
me 111 |eaae M_______annn m__s__a_sonn m__e__n_.:.nn
§ |w.mm mammmmmmmwww T«mmnwﬁmwmw Tﬁmmmamnwﬂw
w Aﬁmmmw&wbmmm:::::h Ll m:::h::
eeerezezes S33iiifEf BEEMBREEREE imimiimim
- &= - ..u.lmm u.ﬂ
m MMM m.uﬂ.m Ammmmmmmmwm Am_m mmhmmww.ﬂﬁmmm MMﬂWW
P |aiesiee fiiiien AT HiiinG
mmmmmmmmm 85888883848 mmmmmmmm mmmwm%
$ E

3-183

Chapter 3 Details of Instructions

tnstruction List
TABLE 3-6. Clear and Exchange Instructions "1 - the first operand
*2 - the second operand
Int *|int "V |Ext V[Ext
Na. Mnemonics Oparation Int "2 |Ext "2 it "2 |Ext 2| Byte Flags Page
Cye | Cye | Cye | Eye | no. |2F [CF|HC]DD
T |CWR A A +~—0 2 1 1 1{:
DD —1

278 | CLR o N —0) 12 2 »

CLR OP pe -0 4 - z =

CLR X1 X1 —0] - 2 2

CLR X2 x2 —0 4 - 2 2

CLA USP usP —0] - 2 z

CLR S5P sSSP —0] - 2 2

CLA U8 Lre —0] — 2 3

CLR ot Ng ofNg ~—0 & 15 3 ®»

CLR Ny Ny —0 6 - 3 x

CLR 0P [oFy -0 5) 2 ®

CLR 2NgUsP| -0 7 18 3 ®

CLR NygXi] NigiXfl 0] % 4 2z

CLR Nyalx2| NigX3] =0 8 % 4 »

291 | CLRB A A —0 2 1} ¢l =

22 |CLRB ¢ ™ —0 4 8 2 x

CLRAB PSWH PSWH +G 4 - 2 M

CLRB PSWAL PSWL «0 4 - 2 Y

CLRS ol Ny ofiNg +—0 ¢ n 3 =

CLF8 Ny Ny —0 6 - 3 L}

CLRB [OP] [oF] —0 e] 2 M

CLAB NyJUSP] INSJLISP} «— 0 7 1 3 M

CLRB NygXi] NygX1} +—0] 12 4 n

CLRB NygX2 MgX2] 0 (] 12 4 3
01 | SWAP Aiga+— Azp 2 1 165
SWAPB Are s Ago 2 1 186
203 | XCHG A o A — aN s | o 2 169
XCHG A, DP A — [P 5 | - 2 169
XCHG A, X1 A — X 5 | - 2 168
XCHG A, X2 A X2 5 | - 2 169
XCHG A USP A+ USP s | — 2 169
XCHG A, SSP A ++ SSP s | -~ 2 168
XCHG A, LRB A +s LRB 5 | — 2 166
XCHG A, off Ny A =+ offNy T | ® 3 168
XCHG A Ng A = Ny 7 |- 3 169
XCHG A, [DP] A~ [OP] 7 | s 2 169
XCHG A, NglUSP] |A s 2NgUSP) g | % 3 160
XCHG A, NygfX1) A e+ NyglXi] B |7 4 169
XCHG A, NygiX2] A — NyglX2]] 17 4 150
316 [XCHGB AN A N 5 |9 2 17
XCHGB A, PSWH A +—+ PSWH 5 | - 2 170
XCHGB A, PSWL A — PSWL 5) — 2 120
XCHGB A, off Ny A s OliNg 7 i 3 170
XCHGE A, Ny A = Ny 7 | - 3 170
XCHGB A, [DPY A s |DP] 7 | 2 17
XCHGB A iNgUSP] |A o iNgUSP] 8 | 3 170
XCHGB A NiglX1] |A e MNyglx1] ? | w 4 17
XCHGB A, N2 |A +— Ntz 9 | B 4 170
325 [XNBL A off Ng Agg s ot Ng3p § { o 2 200

3-184

Chapter 3

Details of Instructions
Instruction List

TABLE 3-7. Stack Operation Instructions

*1 -the first operand

*2 - the second operand

tnt 1 Jint "V {Ext t[Ext
No. Mnemonics Operation Int "2 |Ext 2] Int 2 |Ext "?| Byte Flags Page
Cyc | Cye | Cye | Cyc | no. [ZFJCFHC DD
326 | PUSHS A {S5P) « o {word) 3 T 1 114
PUSHS LR S5pP - USP-2 3 7 1
o Vrees s T PR R SUUS S R S T
A+ (SSP)(word)
oD 1
i Toces o et IO T S e B R A A o
(F8 — (SSP)

3-185

Chapter 3 Detalls of Instructions

Instruction List

*1 -the first operand
*2 - the second oparand

Rotate Instructions

TABLE 3-8.

Page|.

< DRI BADE D | e bl orll ool
T JRETSEZZEZZ222)8 I ANNNGSSES| N | DANQUANNARERN| Y | A8RSARARS
Q
[=]
=2
P EREE T CECE e T N N
W
o]
“ .
m-m - HMNMNNNNOID N Y Y - NN O N T " - MONMNNNNNOG S MM w v - NNNOIPOBONOY Y
- ™ o
535 9]
& o
5z 3 giltll1gigens IREREXT T AN ENREE NE-E 31 BRENETT-T-
ul
T
b
E50
- M o

Operation

4

Mnemaonice

ROL A

mwmnwwmm&mw

AOL NyD1
ROL NyglX2)

ROLB A

mmmmmmwww

FOR A

aanBBEs 28
GEGBEBEERS

ROA tNgIUSP]
ROR Nygh(1]

RORB A

1fX1]

mmmm&MWuW

d9gggdgdag

EEEERERE
3

1
g

3-186

Chapter 3 Detalls of instructions

instruction List

TABLE 3-9. Shift instructions (1)

*1 - the tirst operand
*2 -1he second operand

Int " int Y |Ext [Ext
No. Mnemonics Oparation Int “2|Ext "2|int 2 |Ext "2| Byta Flags Paga
Cyc | Cyc | Cyc | Cyc | no. |ZF {CFIHCIDD
373 | 5L A [Elsa Jeo 2 1 . 143
C o Ap
Ay — Ay
(n=15—1)
Ag 0
37 S e .-—-c- 15 oY g+-0 5 <] 2 ' 144
SUL DP <] ; s - 2 . 144
SiL X1 ; 5 — 2 . 14
s X2 :’m . m’ 5 - 2 . 144
TR n 1 5 — 2 . 144
SLL 5SP (n=15--1) 5 — 2 . 144
sil LR objy «— O 5 - 2 . 144
SLL olf Ny 7 % 3 - 144
SLL Ng 7 - 3 . 144
Sl [oF 7 15 2 - 144
SLL $NgUSP) 8] 3 . 1
SLL NyaiX1) g 17 4 . 144
SLL N,gX2) ® 17 4 . 144
392 | SULB A el A o 2 1 . 145
C — Az
Ay = Agy
{n=7—1)
Ag &~ C
383 |SUB N ..—- [, obi o H] 2 - 146
SILB PSWH c] 5 — 2 . 148
SULB PSWL . 5 — 2 . 146
SULB off Na C i oby 7 12 3 . 145
SULB Ng ©jn ; 1°"h1 ? - 3 . 148
SLLB {OP| {(n=7—1) 7 n 2 . 145
SLER #NglLISP] objp «— 0 s] 3 . 146
SLLB N X1} 9 1 4 . 146
SLLB NygfXa) 9 3] . 148
402 [SRL A LB P o [2 1 . 151
C - Ay
An — Anst
{n=14—0)
A‘é -0
403 | SAL arN 5 13 2 . 152
SRL DP 0-,5 obj | 5 — 2 . 152
SAL X1 5 - 2 . 152
SAL X2 C +—oby 5 - 2 : 152
SAL USP : i 5 - . 152
SRL SSP °::""_ e wm et 5 - 2 . 152
SAL LP8 . § = 2 : 152
SRL off Ng obj;s <0 7 % 3 . 152
SR Ny ? - 3 . 152
SAL [DF] 7 B 2 - 152
SRL 2NgUSP| 8 % a . 152
SAL Nyg[X1] 9 17 4 . 152
SRL N,aX2] 9 17 4 . 152

3-187

Cheapter 3 Details of Instructions

Instruction List

TABLE 3-10. Shift Instructions {2)

*1 -the first operand

*2 - the saecond operand

Int V]t V[Ext E_ﬂ‘?
No. Mnemonics Oparation Int "2 |Ext *2| int "2 |Ext *2| Byte Flags Page
Cye | Cye | Cyc | Cye | no. JZF|CFIHC|DD
418 | sRB A om-@_‘] z 1 . 153
C -— Ay
An — Anet
(n =60}
AT = 0

a7 | sAB W , - 5 9 2 . 154
SALE PSWH ¢ B g .] s - 2 . 154
SALB PSWL obj, +— 0bin, 5 — 2 - 154
SALD off Ny {n=6—0) 7 2 3 - 154
SALB Ny objy -0 7 - 3 . 154
SALB |003 7 n 2 - 154
SRLB NgUSP) 8 2 3 . 154
SALB M,gf%1] 9 19 4 . 154
SALB NyglX2] 9 19 4 - 154

426 | SARLA %ﬂ-@ 2 1 . 151

C — Ay

An han Anﬂ
{n= 14--0)

Aig = A

427 | SRA aN 5] 2 ' 148
SRA DP l'. 5 —_ 2 . 148
SRA X1 5 - 2 . 148
SRA :%P C «— obig 5 -— 2 . 148
SRA ; ; 5 — 2 . 148
SRA SSP obin 1o Obine1 5 - 2 . 148
SRA LFB (n=14—0) 5 — 2 . 148
SRA ol Ng objys +— objss 7 16 3 . 148
SRA N 7 — 3 - 148
SRA [DP) 7 15 2 - 148
SRA $NgUSP] 8 » 3 - 14
SAA NyglX1] 9 17 4 . 148
SRA NygX2l 8 7 4 . 148

440 | sRAB A m 2 1 . 149

[— Ay

Ay — A,
(n = 6—0)

A',r -— A-’

441 | sSRAB M 5 2 2 . 150
SRAB PSWH rm [C] 5 - 2 . 150
SRAB PSWL 5 - 2 . 150
SRAB off Ny C —obj 7 12 a . 150
SRAB Ny obj, + Objn,y 7 - 3 : 150
SRAB [DF] (1 v &0} 7 n 2 * 150
SRAB tNgltISP] objy = obj; B 12 k] * 150
SAAB N,glX1] % 1 4 - 150
SRAB N,g[X2 ® 1 4 . 150

3-188

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-11. Increment/Decrement Instructions *1 - 1he first operand
*2 -1he second operand

Int 7 [int F|Ext T [Ext
No. Mnamanics Oparation Int 2 |Ext 2| Int "2 |Ext 2| Byte Flags Page
Cyc | Cye | Cye | Cye | no. |ZF{CFIHCIOD
450 | INC e i — aN+1 5 3 2 " . [}
INC DP oF —DP+1 3 — 1] .)
NG Xt x —Xle1 3 - 1] . o
NG X2 -] — X241 3 _— 1 . . o
NG USP USP — USP+1 5 - 2 | . o
INC 3SP S5P — SSP 41] — 2 * . 1)
INC LRB LB — LRB +1 3 e 1 * * [:]
INC off Ny oitNg —oltNg 1 | 7 ® 3 |- . o
G Ny ™ —Ng+1 7 - 3 |- -]
INC [DP] [oP] — [DP] 21 7 1% 2 * * [4
ING tNgJUSP) INgJUISP] +— 8 % s |- . ™)
SMUSP] + 1
INC N, gX1} NygdX1] +— NyglX1+ 1] 9 17 . . o
INC Njai%2] NqyglX2] +— NyglX21+ 1] 9 17 4 |- . o
463 | INCB N L] — M1 3 1 1 . .]
INCB PSWH PSWH +— PSWH .1 -] — 2 M . &1
INCB PSWL PSWL +— PSWL+1 H - 2 - . &
INCB off Ng ofiNg +—oiNg +1 | 7 2 a - . &
INCB Ny Ny — Ngel 7 - 3 |- . &
INCB [DP DM — [DF+ 1 7 1" 2 " . &
INCB tNgLSP] NI USP] e~ q 2 3 |- . ol
+1
INCB N,gfX1] NygX1] — NyglX1] +1} @ <] 4 . 2]
INCB NgX2] Nyel¥2] — NyglX2) + 1} 9 1< a |-)
472 DEC N ol — aN+1 - 3 2 N * &
DEC OP v —DP .1 3 —_ 1 - v &
DEC X1 X1 — X141 3 — 1 * " -3
DEC X2 2 — X241 3 -— 1 . . &
DEC usp USP +— USSP a1 5 -_— 2 - " &
DEC sSSP SS5P — S5P W1 5 -— 2 . M &
DEC LRB LRE — A8+ 2 -_— 1 * . &
DEC off Ng otlg «—ofNg+1 | 7 % 3 |- . &
DEC Ng Ny —Ng+1 7 — 3 |- . []
DEC [DF} O] — [DP+1 7 15 2 |- . -3
DEC +NgUSP) NGJUSP] +— 8 % a|- . &
tNgJUSP] + 1
DEC NygfX1} NyglX1) o= NyglX1)+ 1] 9 17 4 1 . &8
DEC NglX2] NiglX2) — Nygl2Fe 1] 9 7 4 |- . &
485 |DECB ™N ™ — N+l K] 7 1 o * =
DECB PSWH PSWH +~— PSWH+1 5 — H * o L]
DECB PSWL PSWL +— PSWL +1 5 — 2 . . L)
DECE off Ng offNg +—offNg+1 | 7 12 3 |- . =
DECB Ng Ne — Ngs+t 7 _— 3 - M =
DECB [DP] [DF) «— [OP)+1 7 n 2 |- . =
DECE tNyJLISP] Hhg[USP] — 8 12 3 * * 5
N[USP] + 1
DECB NyglX1] NyglX1) = NyglX1]+1] B 9 4 I s
DECB N,_éx.?I NLQ_IXZI -— priz] +1] 8 3 4 * . =

3-189

Chapter 3 Doetails of Instructions
Instruction List

TABLE 3-12. ROM Table Reference Instructions (1) °1 -the lirst operand
"2 -tha second operand

int V[t "1 [Ex T FEn **
No. Mnemonics Operation int 2 [Ext "2} i1 "2 [Ex1 ?|Byte Flags Page
cye | oyc | cye | cye | no. [ZF[CFHGIDD]
494 |LC ANy A — N°yqtword) 5 15 4 | -]
496 JLC A [ark] A — M) 1 -] 1 s 2 . k)
LC A [OPF] A «~— [DF) n - i — 2 . n
chit:g A o D1 " - n — 2 . k<]
LC A A — [X2 "nh—qin |- 2 |]
LcAlng:{ A~ {UsP| nj—-—{nl-1z21"- »
LC A A — [S5P] nf—-—Jnj|-—- 2 1 n
LG A.[UBI A — [LRB] " — 1 - 2 : E:]
LG A, {off Ny A +— [oftNg] B |win] ate n
LG A N A +«— |[Ng B — <] — 3 * k<]
LC A, [[OP] A «~ |IDOP Bn|lrv|ov 7 2 |- n
LC A, [INglUSP]) A = [tNglUSP] u|®e | u] 3| n
LC A [NyafX1]) A — [NIXI] 15 w 15 » 4 I n
LC A [N oiX2] A — [NgIx2] 15] -]] 4 |- 7
58 [LC A, N'1al0P] A +— NyDF] 1% -_ 15 — 4 . 74
LC A, Ny gfX1) A = N X1] 51— |- 4 |]
LG A, N"gX2) A — N X2 5 i — 35| — 4 |- L
LC A N p[USP]| A — Ny gUSP B | — § 8 | - 4 |- k)
LC A, N*ygfoll Np) A — N glofi Ny 72 Y |2 s |- *
LC A, Ny giNal A — NygiNg 7w~ 1117 |- s |)
514 |LCB A Ny A — Ny lbnm) 3 13 4 * =2
515 | LCB A, fark] A — [eN] o # H 1 2 |- %
LCB A, [DF] A +— [OP) [-] - 2 | %
LCB A [X1) N o— D] [-] - 2 |- %
LCB A X2 N — [x2] 9 - 9 - 2 | %
LCB A ISP A+ [USP| 9 -] - 2 |- ®
LCB A, [SSP] A+~ {SSP] $ — 9 - 2 |- F
LCB A, [LRB] A+~ [LAB]] — ? — 2 |- %
LCB A, jolf Nyl AL+~ [0l Ng] i s | 1 % a |- *
LCB A [Ny A — [Ny " -] - a |- ®
LCB A, [[DP) A — [IDP] 1 5 | n] 2 |-]
LCB A, [£NgUSP) A — [tNglUSP]) 2| 8 | 2 ® 3]- %
LCB A, [NyalX1]] A — [N4glX1] &) 7 B3| 4 |- %
LCB A, [N, gX2R A — (Nqgix2]) a|iz || 4 |- %
LCB A, N*,olDP] A — N3P B |-]v |- 4 - 7
LCB A, N yaiX1] A — N X1] Bnl—-1v |- 4a }° ”
LCB A N"yglX2| A — NP2 Bl—-—fn]|-— 4 | 7
LCB A, N (glUsP) A — Ny JUSHt Bl-f8]|- 4« |- i
LCB A N (glof Ngl |A «— N-jalofi Ng] 7wja v |2 s | 7
LCB A, N*;alMa) A +— NygiNgl 7wy {7 |- 5 7
534 | CMPC ANy A - N" g (word)) 5 15 ; . -4
535 | CMPC A, feriN] A-[orN] 1 5 11] 2 |11]
CMPC A- [DP} n|—-—1u]- 2 {1]
CMPG A, X1] A-{xi1] n|—-J]1uj— 211" o
CMPC A PX2) A-x2| n|-—-]1n|-—- 2 {-1- “
CMPC A, [USP] A-jusP #]l—-—in — 2 11 “
CMPC A, [SSP) A-[SSP] ni—1_1mn|-— 2 11 -
CMPC A, {LRB] A-{LRB} nf—1m1v1- 2 1| “
CMPC A, [off Ny A- {olt NeJ n|lw]nije 3 |} “
CMPC A, [Ng) A-[Ngl Bv|l-]wt- a1 o
CMPC A, [OF] A-[[CP]) L= T v - T I v ¢ 2|1 -
CMPC A, [tNyJUSP] | A - [2NgIUSP]| "] " " EO R o
CMPC A, [NygX1] A-[NygX1l 15 B |is{® 4+ 1 -
CMPC A, [Nygix2] A-[Ngx2] 15 v |15 9 4 11" o

3-190

|

Chapter 3 Details of Instructions
Instruction List

TABLE 3-13. ROM Table Reference Instructions (2) *1 -the first operand
"2 - the second operand

It " fint 7V [Ext 1[Ea
Na. Mnemonics Oparaticn Int "2 {Ext 2| Int "2 }Exa 2| Byto Flags Page
Cyc | Cyc | Cyc | Cyc | no. [ZFCFIHCIDD

548 [CMPC A, N\ giDP] . A - N'1elDF] B =18 1<=14 : r
CMPC A, N X1} A - N yafX1] 5~ 1B |- |41]
CMPC A, N*yg[X2) A - N4elx2| 15 |~ 18§ = 4 1-1- &
CMPC A N*\gJUSP] | A- Ny uUSP] B} — 1| -]« -1 &
CMPC A N ol Ng] | A - N glott Ng) 7|2 |72 s [+ |- '
CMPC A N"igiNg A - N 15Ng) 7| —-|v}|- s |]- &

554 |CMPCB A Ny AL - N"1q (byta) 13 3 4 1]]

555 | CMPCB A, ferM] Ay - jork]] 11] 1 2 b I o
CMPCE A, [DF) A - [OP) o | =8 [~]2}-1- &
CMFCB A, X1 A -[X1) e | -] - 2 11 a
CMPCB A, X2 A-DXy e — 19)— 2 1] Q
CMPCB A, [USP! Ay - [USP] 9 — 9 — 2] &
CMPCB A [SSP) A -[SSP| 8 | - s [—f121]+]- &
CMPCE A, [LRB] A -[LRB) ® — ® — 2 "1 7
CMPCB A, [off Nyl A - [oft Ngl n B |t % 3| |- <
CMPCB A, [NaJ A - Mo "nl—-—1ni-— al-|- o
CMPCB A, [DP] A -[OP] n s |1 -] 2 {1 o
CMPCB A, NQIUSPE | A - ENg[USP] 12 % 12 € 3 f+q- a
CMPCB A [NysD1] | A - [NyJX 1] B |7 !ln|w 4 []" q
CMPCB A [NyglX2l] | A - [NygIX2]) wlwv s |w]| . o

568 | CMPCB A, N"yglDP] | AL - N"(4[DP] Bl -]l —-]47-] ®
CMPCB A N"yglX1] | A - N gix1] | —-1ln]- 4 ("] &
CMPCE A N'ygX2] |A -N, |- -141"]"]
CMPCB A N1gJUSP] 1A - N*,gUSP] T N I ~ N, g 4 11" -
CMPCB A, N";ploff Ny | AL - N*y ol Ng! LA -2 Y B 5 |1 L]
CMPCB A N'iglNgt | A - N"1afNg] e N I 5 f-1- o

3-191

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-14. Arithmetic Calculation Instructions (1) °

1 -the first operand
2 - tha second operand

int {int [Ext IE:I.t i
Na. Mnemonics Opaeration Int 2 [Ext 2] Int "2 |Ext "?| Byte Flags Page
Cyc | Cyc | Cyc | Cyc | no. |ZF|CFHC|DD
574 | MUL (o1 A) o Axed z B F4 i 101
575 | LB A = MAxr 19 2 2 M 102
sms | Dw (BMOA) sm{oOA)+ 02 | © 2 |] -]
o1 +— (r0.A) MOD ar2
577 | ivB A — A+l 2 n 2 1 =
ro— AMOU
578 | ADD A, #hyg A Asthyg s | = a |1 T- n
ADD A orN A — A.aN 3 7 1 . . . n
ADD A, DP A ~— A.DP 4 - 2 ¢ i <)
ADD A, X1 A — AsXi 4 — 2 * * * <)
ADD A X2 A — A+X2 4 - 2 . 1 <)
ADD A USP A — AsUSP 4 — 2 N <)
ADD A, SSP A +=— A+SSP 4 —_ 2 i <]
ADD A LRB A +— A+LRB 4 -— 2 i B <)
ADD A, off Ng A — A+oliNy 4 |9 2 {11 3
ADD A Ng A +— A+Ng 6 - 3 * * * Q9
ADD A, [DP} A «— A+[DP] 6 © 2 W I ¢)
ADD A, tNa[USP] A +— A+ 3NglUSP] 7 1 3 . . * 3
ADD A, NygXi1] A — A+Nygkt] 8 | © 4 |11 B
ADD A Nyg¥2| A — AsNyglX2 8 | = 4« |-1-1- 0
805 [ADD o, off Ny N —aisatthg] 7 - | =]2]3| ["]" “
ADD DP, off Ng x — DP +olf Ng 7 a _ _ 3 1] "
ADD X1, ot Ng X1 +— X1 +0llNg 7 =] -_ -_ 3 =yt]]
ADD X2, oft Ny x2 — X2+ ol Ng 7 1 -_ -_ 3 11 W
ADD USP, off Ng USP + USP+oftN 7 a -_ - 3 11 "
ADD SSP, oif Ny S5P o-SSl'-"a-oﬁN:I 7 0 -— —_ 3 . 1" |
ADD LRB, off Ny IRB «— LRB+oktNg| 7 | 2 | = | = | 2 [-1"-]" “
ADD oft Ng, oif Ng off N’y «—] e - 4 |11 “
off Ng + off Ny
ADD Ng, ol Ny Ny +—NgeoiNgf 9 18] — 1 —Ja]]"]" “
ADD [DF), off Ng [OP] —[DPl+ofiNg ¢ { 8 {3 22} a3 |-]]" H
ADD tNg[USP) olf Ny | NoUSF] o e |uwizta]|} u
N JUSP] olf Ny
ADD NygIX1]. ot Ng | Nigli1}e— NyglX1} n|la]ls | a}]s ||} u
+ ot
ADD N,gX2] off Ng | NygX2] — N, gX2] n]laojs fas |-] M
+ oft Ng
618 | ADD orN, #M,g e — oNe#N,g | B 7 I RN I %
ADD DP, #N,g DP +— DPs+ssny | 8 — P A I 5
ADD X1, PNyq X! e~ XladNy | 8 - a {-1-1- 5
ADD X2, #Nqg ? — X2+ #Ng a — 4 * A S -]
ADD USP, #Nyg USP +~— USP.#N;z| 8 _— L} ' ‘ * B
ADD SSP #Nqg SSP « SSP+#Ng| 8 — 4 L N -3
ADD LR8, #N.y LRB « LRAB +#Nyy] — 4 b - ' -]

3-192

Chapter 3 Datalls of Instructions

Instruction List

TABLE 3-15. Arithmetic Calculation Instructions (2) °

1 - the first operand
2 - the second operand

It Vet |Ext ViEN
Ne. Mnemonics Oparation It "2{Ext 2| It "2 |Ext "2| Byte Flags Page
Cyc { Cyc § Cyc | Cyc | no. |2F CFIHC]DD
625 | ADD off Ng, #Nyg ofl Ng +— 0 F) s 1'1°'1° 3
' oft Ng + BN,y
ADD Ng, Sy Ny = Ng+#Nyy © -— 5 W A 5
ADD [DF], #N g [OF] + [DPl+sN;y| 10 L L IR T T =
ADD NJUSPL N,y |NBA 1 o s |* 1] =
Nl USP)s 88,4
ADD NyglX1) #hhe | W0yaiX1] = N gDt 12 21 6 |11 3
+ 8N
ADD Ng[X2). Sip | N'\afX2] +— N', X2 12 4] e 111 %
+Nyy
......... . [RUNRUUIOUVUUN NN DUUURUSY RUUSURIOY SEUUINUE JOPROUIN UUU IOUURY SURRSY NUSY OSSN
B31 [ADDS A, #Ng AL — AQo BNy L] — 2 M I I %
ADOB AN A = AL+ 3 5 T A B %
ADDE A PSWH A o— A +PSWH 4 — 2 b I B
ADDB A, PSWL AL~ A +PSWL 4 - 2 b I B %
ADDS A, olf Ng A e A roiNg 4 7 2z <11 %
ADDE A, Ny A — A +Ng & | — s 1] %
ADDEB A, [OP] A — A +[DP) € - e 11" 1 bl
ADDB A, tNyJUSP} AL ~— A +HNgUSP]] 7 8 3 M)]
ADDB A, Miglt1] A= ANt | 8 | o a1 1I ®
ADDB A, N,gD(2) AL = AN dX2 a 0 4 11} %
641 | ADDB N, A M — N+ A 5 2 * L 17
ADDB PSWH, A POAH «— PSWH+ AL 5 _ 2 * L I 7
ADDB PSWL, A PSWL «— PSWL +A(5 —_ 2 * L I 17
ADDB off Ng, A oftMg +— ofNg+ A, | 7 2 a |11 7
ADDE N, A Mg +— Ng+Ay 7 - a1t 7
ADDB [DP] A {DP] +— [OP] + A, 7 n z |11 v
ADOB tNyJUSPL A | tNglBPl—tNgLEPh A 8 2 a |1 7
ADDE NygXi], A NyglX1] +— NydXil A] @ <) a 111" 7
ADDB N,giX2), A NygfX2] »- NygDZl AL] 9 B « |11 v
650 1 ADDB N, off Ng ™ «— N + cif Ng 7 — — H 3 11)]
ADDB PSWH, off Ng PSWH «— PSWHOlfNg| 7 2 — -_— 3 . A ”
ADDB PSWL.oiNy [PSWL — PowLoling] 7 [2 | — F =] 3 |-]|"|" "
ADDE off Ny, ot Ng |oft Ny o YN R iy Y IR VIR R A I "
ol Ng + o Ny
ADDB Ny, o Ny Ny «—Ng+ofiNg}] ¢ | W]| =§ 14 [|"]|"]"]
ADDB [DP], oft Ny [oP] :m:']mm,,ﬁ 'SR EEEEEENEAE "
ADDS INJUSPL ol Ng | tNgEP) o~ 0w |sfetwtls |-}]
HNQUSP]+ off Ng
ADDE NygfX1), Of Ny | NjgPXt] e— Ny glx1] wluwn|luwlefs |||]
+olf
ADDE NyglX2]. off Ny | NygX2] — MqoX2] nlalowlw]s]| »
+0of Ng
655 [ADDB N, #Ny L, = N+ #Ny & 1" 3 L I |]
ADDE PSWH, #Ng PSWH «— PSWH + s - s l-1-1 ®»
ADDR PSWL N, PSWL «— PSWL+ [—_ 3 L B T »
ADDE off Ny, #Ng ANy +— 8 " FEN BN I i »
olf Ny + g
ADDB N'.. 'N. N'. -— N'gt“ [] — 4 * ' * »
ADDB [DF]. #Ng [DP] o [DPlettiy | 8) a [-{1 o
ADDE tN'gUSP] 8Ny |tNgUF]]) 4 11 o
N gUSPs #hly
ADOB NigX1). 8Mg | NyglX1]+— MyaX1] 0 “ s |1 »
-
ADDB NyglX2Z]. #Ng | NyalX2] «— Nyof¥2| © L] s 11" »
+IN§_

3193

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-16. Arithmetic Calculation Instructions (3)

1 -the first operand

2 - the second operand

Int ' fie T {Ext t[Ext
No. Mnemonics Oparation It “23Ex 21 It 2 |Ext "2] Byte Flags Page
Cye | Cye | Cye | Cye | no. 1ZF|CF]HC|DD
868 {ADC A, #N,g A —Artg+C s | — sl 5
ADC A oM A +—AsoN+C 3 7 1 1] 5
ADC A DP A —A+DP.C 4 _ 2 11 5
ADC A X1 A —A+X14C L) - 2 11 5
ADC A, X2 A —A+X240C 4 —_— 2 11 5
ADC A, USP A —A+USP+C 4 — 2 L 5
ADC A SSP A o+ A+SSP.+C 4 - 2 W B s
ADC A LRB A —As+RB+C L} - 2 11 5
ADC A, cif Ng A —A+oliNg+C 4 9 2 M B H
ADC A, Ng A —AtNgsC s | - a |pe] 5
ADC A, [OF) A +~—A+[DP]+C et | © e |11 5
ADC A, tNgJUSP| A —AutiguAec| 7T | 1 a -]] 5
ADC A, NyglX1) A —AsNsG| 8 | 2 a | f 5
ADC A, Npy[X3) A e=AeNgXq+C| 8 12 4 11 5
682 | ADC arN. A oN +—aN+A+C [-] 2 ‘11 L]
ADC DP A P +~—DP+A+C 5 — 2 11]
ADC X1, A X1 +— XieA+C 5 s 2 - . * [
ADC X2, A X2 o+ X2+AeC 5 - 2 111" 5
ADC USP,A USP + ISP +A+C 5 -_ 2 11]
ADC SSP. A S5P +~— SSP+A+C 5 — 2 11 &
ADC LRB A LRR +— LAB+A+C 5 _— 2 1] [
ADC citNg A oltNg —ATNg+A+C | 7 1 af-1-1- 6
ADC Ng A Ny +—NesAsC | 7 - a |-1{-1 6
ADC [OP] A [OP] »— [DF1+A+C 7 -] 2 M B 8
ADC iNJUSPLA | NS~ 8) a |11 6
NAEF A +C
ADG NyoXil A Myl —HeDpAC| ® 7 « |1t 6
ADC Nyg¥%2] A Ny DR —MiadBeA+C| 9 7 a 11 6
695 | ADC arN, off Ny N —arlN + oFNg+C T - _ D 3 {i 7
ADC DP, ot Ng OPF «+— DPF+OoRNg+C} 7 L) - —_— 3 LR B T 7
ADC X1, oft Ng X1 +— X1.ofNg+C} 7 B - _ i . " * T
ADC X2, oMt Ng 2 e X2ecifgec] 7 | B | | =13 ||| 7
ADC USF, off Ny USP «USP +ollNg+C| 7 <] — - 3 * L H
ADC SSP, off Ny SsPe-SPeoliNg+d 7 | B | - -] ||| 7
ADG LRB, off Ny tro—tRa+otthgec| 7 {8 | -1 {3 |- || 7
ADC off Ny off Ng ot Ny ~— - — - 2 4 i1 7
ey +oliNg+C
ADG N, off Ng Nege-NgsolitgsC | 0 | 9 | =] =14 |"]"1|" 7
ADC [DP]. oft N OP| ~DPl+oiNg+d 2 | @ | m f2] 3 |- || 7
ADC N'gUSP), of Ng | tNglsF] o v | v w]ad |+ || 7
INQUSPls ot Ng + C
ADG NyglX1} off Ng | MygdX1] e—HygiX1] nlafslafjs -]} 7
« olf Ng «C
ADC Noa[%2) off Ny | N;ofX2] Ny giX2] nla|s{a]s |°]']" 7
v olfNg+C
708 | ADC wei, 8R4 wN —aNeMg+d B 7 al O I 8
ADC DP, #hisg DP « DP+#Nyg+Cl & - 4 M 8
ADGC X1, #Nqyg X1 = X{+Ng+Cl 8 —_] b IR B []
ADC mm“ @ '—xz"ﬁ.#c [} -_ 4 * . * 8
ADC USF, #Nyg USP - USP+#Nyg+¢] 8 - « 11 :
ADC SSP, #hy SSP «—SSP .+ C| 8 - « |-]1 N
ADC LRB, BNy LRB —LRB+#Ng+C| 8 - 4« |11 s
ADC off Ng. #Nyg ofiNg — 0 » s 111" :
off Ky + Mg+ C|
ADG N, By N o NgedtigeCl - s 1-1°|: s
ADC [OP], #H,y [DP] {DF] +#M,g+C| 10 » N e e s
ADC NgUSPL #Nyg |NAER 1 s |1 (1] ']
NgLISP]+ #My + C

3-194

Chaptar 3 Detalls of Inatructions
instruction List

TABLE 3-17. Arithmetic Calculation Instructions (4)

*1 -the first operand

‘2 -the second operand

int Jint T|Ext [Ext
Mo, Mnemonics Oparation Int 2|Ext 2| int "2 |Ext "2{ Byta Flags Page
Cyc | Cye | Cye | Cyc | no. [ZF {CF|HC|DD
710 | ADG NyalX1). N,y | WalX1] =N 2 ¢ {11 8
+ W+
ADC N1g[X2). Mg | NroalX2) Ny 5X2) a2 § ||} 8
* m|;¢c
721 | ADCE A #Ny A — M +Ng+C 4 — 2 11 9
ADCB A, N AL — A +N+C 3 [s RN RN R 9
ADCB A PSWH AL == AL +PSWH . C 4 — 2 1t 9
ADCE A PSWL A +— A +PSWL.C 4 -_— 2 - ‘ * 9
ADCB A, off Ng AL —A+oRNg+C | 4 | ? z [+] 9
ADCB A, Ng Al s— A +Ng +C § | — s+] 9
ADCS A, {DF} A +— A +[DP}+C s | — 2z {1 9
ADCB A sNgUSPl | A +—A saNgusPlac] 7 | o 3 <] 9
ADCB A, NqgXil Al — A sNgijac| 8 | © 4 - |- 9
ADCB A, NygbX2) AL — A sNigA+cl 8 | © 4 |- ®
731 | ADCB N, A ™ — N O 5 '] 2 - * v] n
ADCB PSWH, A POV +— PSWHsALHG 5 —— 2 * " - n
ADCB PSWL A PSWL — PSWL«A] 5 — 2 " " - 0
ADCE off by, A oftNg +— ofNgeAC| 7 12 a 1t 0
ADCB Ng A Ny — NgwA<C 7 - a |1 i)
ADCS [DPL A [DP] «— PPpASC | 7 n 2 |-}t 0
ADCE HNUSPL A INGRISP] o— 2 3 11 0
+C
ADCB MgfX1} A NyglX1) +—) %) « {11 n
HyglX 1l AL
ADCB MN1gl%2Z} A NyglX2] — ™ 13 a {11 ©
NyglX2)s A +C
740 | ADCB N, off Ng N Nt | T |- [- O K n
ADCB PSWH, off Mg PSWH «PSWHothNgC| 7 12 — — 3 ¢ ¢ * 1"
ADCB PSWL ofiNg |PSWL—PswWeatingc] 7 |2 }J— | -] 3 |-]] 1
ADCH of Ny olt Ny | ot By — g | =3 —|o]+ 111 1
off Ngsoft Ny
ADCB Mg, off Ny Ng —NgoiNgsC] 0 fraa | — 1 a4 }-I"]" f
ADCE [DP), off Ny [DP] —[DPlctibigegd 0 | w v | {3 ["] 1"
ADCE +NpUSP] offNg | NP =~ vl |lslie|lw]laf]]| n
ENGUSP|+ off Ng+C
ADCB Nyg[X1] 0 Ng | N glX1] Ny gX1) nlonjr|le|s]| 1
+ off Ng+C
ADCB NygDi2 off Ny | NyglX2) —NyglX2] wioslaeal|lw]|s |11 1
+olf Ny O
743 | ADCB N, BNy N NaBNgsC 6 1 a 11 1
ADCB PSWH, 8Ny PO +—PSWHaNgC| 6 — af-!-1 "
ADCE PSWL, #Ng PSWL —PSWL+sNg:C] 6 — a |- . 1n
ADCB off N'g, #Ng ot Ny — 8 " a |- - 1
off Ngs#hig+C
ADCB Ng #Ng Ny +— Ng,igC [} - 4 L B n
ADCB [DP), #hg {OP] « [DPj+Ng.C] 8 13 K] 11 L]
ADCB iNgUSP], #Ng | iNUF] '] 4 4 11 n
N USPl+ hgsC
ADCH KygfX1), #g | NyaX1] e=Nygfx1) 0 s 1«11 1
+ Bhg+C
ADCE NiglX2, #Ng | N1glX2] N1 giX2] 0 5 s - 1
» #g+C

3-195

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-18. Arithmetlc Caleculation Instructions (5) "1 -ihe firsi operand
*2 -the second operand

int '{int |Ext V{Ex ?
No. Mnemonics Operation Int 2 |Ext "2} Int "2 [Ext 2| Byte Flags Page
Cyc | Cyc | Cyc | Cyc | no. |ZF {CFHC|OD
758 |SUB A, #Ng A — A—.N“ & —_ 3 - - . 157
SUB A e A +— A-oN i 7 1 -1 187
SUB A.DP A~ A-DP 4 - 2 i 157
SUB A X1 A — A-X1 4 - 2 11 157
SUB A X2 A — A-X2 4 - 2 ‘11 187
SUB A USP A o~ A-USP 4 - 2 11 187
SUB A SSP A e« A-SSP 4 - 2 11 157
SUB A LRB A — A-LRB 4 —_ 2 N . . 157
SUB A, off Ng A — A-cifNg 4 9 2 L 157
SUB ANy A — A-Nyg] - 3 L A 187
SUB A, [OF) A «— A-[DP]] 0 2 11 157
SUB A, tNgJUSF] A A-iNgJUSP} 7 1" 3 11 157
SUB A N,oX1] A A-NygIX1] 8 2 4 b O 187
SUB A N,oDX2] A — A-Nyglx2] & ©° 4 A B 157
772 | SUB ari A aN +— aN-A 5 &) 2 M B 158
SUB DP, A P +~ DP-A 5 — 2 W B 158
SUB X1. A X1 — X1-A 5 — 2 11 158
SUB X2 A x — N2-A 5 - 2 1Tl 158
SUB USP. A USP «— USP-A 5 — 2 11 158
SUB SSP.A SSP ~— SSP.A 5 - 2 |11 158
SUB LRD, A LAB «— LRB-A 5 - ? 11 158
SUB off Ny A OffNg +— oiNy-A 7 13 A b B 158
SUB Ny A Ny — Ng-A 7 — k| 11 158
SUB {OP], A [DP] + [DP]-A 7 % 2 W B 158
SUB tNJUSP] A NS —2Ng[USFH-A | 8 3 3 11 158
SUB Nqg[X1L A Ny X1] +— NqyglX1} A 9 17 4 L I 158
SUB NygX21 A NyalX2] — NygiX2} A 9 17 4 b I 158
785 | SUD eri, ot Ng aN — aN-oftMg | 7 — - kg 3 11 156
SUB DP, olff Ny v J — DP -oll Ny 7] - - 3 11 158
SUB X1, ot Ny X — X1-oft Ny 7 <] - - 3 11 158
SUB X2, off Ng x — X2-oft Ny 7 <] - — 3 171 158
SUB USP, off Ny USP o+ USP-olfNg| 7 <] —_ 3 11 159
SUB SSP. off Ny SSP +— SSP-offiNg| 7 <] - 3 1 I 159
SUB LRB off Ny (RB « LRB-ofiNg| 7 el - - 3 b I 159
SUB off Ny, off Ny off Ny +— 9 — <] 4 11 159
off Ng - off Np
SUB Ng off Ng Ny +— Np-off Ng)) — —_ 4 L I 15¢
SUB [DP]. off Ng [DP] +— [OP]-cifNg|f @ ® < 2 3 11 159
SUB tNJUSP], olf Ng | tNgUTF] «— © » “" i 4 L A I 158
+N'gJUSPY cf Ng
SUB NygX1]. olf Ng NyalX1] +— N, ofX1] " X 15 F] L I 2 158
- ol Ng
SUB Ny gPX2], off Ny N glX2] «— N;g[X2) " - 15 N 5 A S 159
- off Ng
708 | SUB erN. iiNyg ol — oN-BNg | 8 17 « |11 160
SUB DP, 'N1° oP — Dp'm1° -] — 4 . = * 160
SUB X1, #Nq X1 — X1- 8Ny 8 - 4 11 160
SUB X2, #Nyg X2 e X2-#Nyg | ® - PR RN RN & 160
SUB USP, s, USP «+— USP-#N;s| 8 - 4 11 150
SUB SSP, #hyy SSP e« SSP-$Niy | 8 - 4 L R 180
SUB LRB, #Ny LRB + LRB-#Ng L] - 4 - . * 160
SUB ol Ny, #N,q ot Ng — 0 o) 5 11 160
off Ng - BNy
SUB Ny #Nys Ny — Ny-diy 0 - 5 ‘i1 160
SUB [DP] 8N, g [DP) «~— |DP]-2Ng § W » 4 11 160
SUB tNp[USP], #N,g | tNgASA) +~ n F. 5 L A I 160
m;_{usﬂ- By

3-196

Chapter 3 Details of Instructions

Instruction List

TABLE 3-19. Arithmetic Calculation Instructions (6) X

1 -the first operand

2 -1he second operand

Int " Jint 7 [Ext |Ext i
No. Mnemonics Oparation Int *2 i€ ?}int 2 |Exa 2| Byte Flags Paga
Cyc { Cyc | Cyc | Cye | no. |ZF|CFI|HCIDD
800 | SUB N'ygfX1] #Myg | NyafX1) — NryglX1] 12 s |11 150
.ﬂ'
SUB N'a[X2], #Nsg N’ o[X2} +— Ny gX2) 12 4l] b I 180
~8Ny
B11 | SUBE A N, Ao A - 4 | - 2111 164
SUBA A, ™N A — A-N 2 5 LI I A B 161
SUBB A, PSWH A = AN -PSWH 4 — 2 1ttt 151
SUBB A, PSWL A — AL-PSWL 4 - 2 11 81
SUBB A ol Ng A — AC-oflNg 4 7 2 |11 151
SUBB A, Ny A — NNy e | ~ 3 |1 181
SUBB A, [DF] M ~— A -[DP L} — 2 111 181
SUBB A iNgUSP] | AL «— A -thgusPy| 7 ® al-1-1 181
SUBB A, NygX1] AL — A -Ngfi) 8 0 4 [t]- 181
SUBB A, NyglX2) AL A-Ngl2 I8 [0 e l-1-1- 11
821 [SURB N, A ™ — N-A 5 [} 2 11 162
SUBB PSWH, A PSAWH «— PSWH-A 5 _ 2 1] 162
SUBE PSWL A PSWL « PSWL.A -1 - 2 1] 162
SUBE olf Ng, A off Mg +— ot Ng- Ay 7 12 3l q1 162
SUBB Ng A M — Ne-AL 7 - a {1 162
SUBR [DF). A {OP] « [DP|-A 7 1 2 |1f-)- 162
SUBB tNJUSF). A N Ml @ 2 I L B 182
SUBB N,gX1) & NigX1j e NygdX1HA | @ 13 « 111 162
SUBB NglX2} A NyglX2] +— NyglX2p A | 9 13 4 || 162
830 | SUBB ™, off Ny N o N-olthy I S R 3 [11- 163
SUBB PSWH, off Ng PSWH +— PSWHoNy| 7 2 — _ 3 11 163
SUBB PSWL ofiNg fPSWML —PsWlaitN] 7 |2 1 — | - | a |-1-1" 163
SUBB off Ng, ol Ng [oN Ny e ¢ {—]l -]z]ajf}-] 163
off N"- DHN'
SUBE Ny, off Ny Ny — Nyg-off Ng ° “ — — 4 LN B 163
SUBB [DP), off Ny [DP] —[DPj-oiNg| | 4 | 1t | ®m | 3 J-] 1" 163
SUBB iNWUSP| ofiNg | tNglEP] w |]|e]|«a a [11" 153
AN'glUSP} off Ny
SUBB NyglX1). off Ng | NigXt] +— N,gX1] 1 uln El1-1" %3
- off
SUBB NigfX2), off Ny | NyalX2] «— NygfX2] nn|a s 11 163
- ol Ng
639 § SUBB N, Ny L,] — N- 8 n 3 11 184
SUBB PSWH, Mg POWH « PSWH-#,] & - a [-[-]" 154
SUBB PSWL, #N, PSWL «— PSWL-#| 6 —_ 3 1] 164
SUBB off N'g, BNy off N)g «—] b | 4 11" 164
off N';-m.
SUBE Ny #Ny Ng + Ng-#Ng 8 - 4§11 164
SUBE [DP), #Ng [OP] — [DPF]-sNg | 8 3 al-1-1- 154
SUBS tNg[USP] #Ng | tNglEF] [] H 4 L I 184
N USP] sty
SUBE NgX1| #Ng | NyglX1} — N, gX1) © 15 s 11" 164
- #Ng
SUBB NygfX2], #Ny | NiglX2] — Ny glX2] 10 15 s |1 184
L
848 1SBC A, #Nyg A — A-#Nyy-C 6 | — atl-i- 129
58C A el A +— A-afN-C 3 7 1 11 129
58C A DP A +«— A-DP-C 4 -— 2 L I 129
SBC A, X1 A ~— A-X1-C 4 -_ 2 L N I 128
SBC A X2 A — AX2-C 4 — 2 111 128
SBC A, UsSP A +— A-USP.C 4 — 2 11 28
SBC A 55p A +~— A-S5P-C 4 - 2 e 129
58C A LAB A — A-LRB-C 4 — A I 129

3-197

Chapter 3 Detalls of instructions
instruction List
TABLE 3-20. Arithmetic Calculation Instructions (7) °t -thefirst operand
*2 - the second operand
int T[int ' [Ex T[Ea
No. Mnsmonics Oparation int 2[Ext 2| It *2 € 2| Byte Flags Fage
cye | cyc | cye | Cye | na. |ZF|CF|HC|DD
858 | s8C A 0Ny A = A-olNg-C 4« {9 -3 R L I 129
SBC A Ny A —A-N-C & | — O R R 129
SBC A, [DP] A +—A-DP]-C [0 2 L I 12
SBC A, NgUSP) A —aNgec| 7 | 1 s |11 128
SEC A NygdX1) A —A-Ngxij-C {8 | © « 111 120
SBC A, Nyof%2] A —ANg2-C | 8 | @ a1 11 12
862 | SBC el A oN +—wN-A-C| 6 n 2 {11 130
SBC DP, A 0P+ DP-A-C 5 - 2 {11 130
SBC X1, A X — Xi-A-C 5 - 2y 11 120
SBC X2 A 2 X2-A-C 5 - 2 {+|° |- 130
S8C USP. A USP «— USP-A-C| & - 2 {11 130
S8C 5SP A SSP « SSP-A-C| & - 2 111" 130
SBC LRB. A LR o~ LAB-A-C | & - 2111 120
SBC ol Ng. A ofNg +— ofNg-A-C| 7 -] a |1 130
SEC Ne. A Ny +— Ng-A-C 7 - O I R 120
5BC [DP], A [OP] « [DP-A-C | 7 15 P I R 130
SBC tMJUSPL A NP = 8 -] 3 |11 130
HAEF} A-C
SBC NyglXi)l A NyalXi] —NigXIFAC| @ 7 « |11 130
SBG NygXzl A NygX2] s—NygDZFAC| @ 7 4 |11 10
875 | SBC s, off Ny ol —o-ofibg-C|l 7 1= |-t] a |-} 13
SBC DP, olf Ny P —DP-aibg-C| 7 Bl —-—]~123 ||| 3
S8C X1, ol Ny X —Xt-othg-c | 7] |-Vt —-]a ||| 131
SBC X2, olf Ng @ —x2-cibg-c | 7T B8] -1 -3} |} 131
SBC USP, off Ny weusp-cibg-Cl 7 |8 | -1~ ||} 3
SBC SSP, off Ny ssPe—SsP-olitg-c] 7 fBaf—| -3])"[|"] 131
SBC LRB. off Ny We—LRB-oiNg-C|l 7 JB b — | |3 |11 131
SBC off N'g, off Ny off Ny +~— s {— |- a 1] 1
ot Ny -olf Ny - C
S0C Ny off Ng My Ng-oiNg-C | 9 1 @ 8 — | = | ¢ |"]"}" 13
S8C [DP). off Ny [OP) «iDP]-oiNg-C| @ } @ f B 2|3 || " 131
SBC tHJUSP) oif Ng | tNoUTR) vwiwlw]|la |« "} 131
NUSP] ol Ng- G
SBC NyglXiLofiNg | NyglX1] +—NyX1] nfof[s |au]s [*1°]" 131
Y [
SBC NyalX2) off Ng | MyglX2] —NyglX2] nto|w|x]|s ||t 131
-oliNg-C
888 | SBC e, BNy oN —aN-sNy-C| 8 7 s |1 132
SBC DP, #Nyy 0P —DP-MN-C| 8 — a i1 =
SBC X1, 8y X! —Xi-sg-C|l 8 - a |11 132
SBC X2, 8Ny 2 —X2-MNg-C| 8 - 4 |11 132
SBC USP, #Ny USP +—USP-#Ng-C| 8 - 4 |1 132
SBC SSP, Ny SSP —SSP-sNyy-C| 8 —_ $ |11 132
SBG LRB, Ny LRB —1RB-#;s-C | 8 - 4 |11 132
SBC off Ng. $N1g offtly +— 1 D s 1|1 132
ot Ng- PNy -C
SBC Mg, SNy Ng +— Ng-Ny-C 0 —_ 5] . 132
SBC [DP], #hyg [OP] «DP|-#g-C | ® » 4 111 132
SBC thglISPL #N,y — " = s 111 132
NJUSP} #Nyg- C
SBC N X1 BNy | NalX1] —N'1elX1] 12 a s |~ 1 132
- #Ny-C
SBC N\afX2] #Nyg | Nygial e 2] s ||| 132
- e C

3-198

Chapter 3 Destails of Instructions
instruction List

TABLE 3-21. Arithmetic Calculation Instructions (8) *1 -the first operand
*2 -the second operand
Int]int VBV Ea Y
Na, Mnemonics Cperation int 2 |Ext 2| int 2 [Ext "2} Byte Flags Page
Cyc | Cyc | Cye | Cye | no. [ZF|CF|HC|DD
w01 | sace A sy, A — AL-BNg-C 4 |- 2 {|]- m
SACB AN A — M -MN-C a s AR RN 133
SBCB A, PSWH AL —a-PSWH-C | @ | —~ 2 (] 133
SBCB A, PSWL A —Ac-PswC | 4 | — 2z 11-1]- 133
S8CH A, of Ny A +—A-otbg-C | a7 2 ||| 1=
SBCE A Ny A +—A-Ng-C 6 | — al-11 122
SBCH A, [DF] Ay +— A -[DP}-C 8 | - 2 1|1 133
SBCB A tNgUSP| | A A -shgUsPy-Cc| 7 | o s l-1-1- 133
SBCE A, NyglX1] AL —A-Ngl-¢| e | ® e 11 123
SBCH A, NygiX2] A —AC-Ngz-c| 8 | 0 « 1] 13
911 | SBCB N, A N e A 5 z 1 T 134
SBCE PSWH, A PSWH — PswHAC| 5 - 2 1] 134
SBCB PSWL A PSWL — PSWLAC| & - 2 |-} 134
SBCH aof Ng A oMy +— cNgAC | 7 2 a |- 134
SBCE Ng A My — NeAL 7 - a |11 124
SBCB [DP). A {OP}] ~ OPIAC | 7 n 2z ||| 134
SBCB NgUSP| A | tNgsA — 2 a ||} 134
AT
SBCH NigX1] A NaghX1) — 9 9 a1 134
NyglX1} ALC
SBCB NyglX2]. A et — 0 13 4« 111" 134
Nyo{X2} AL-C
920 | SBCB ™, off Ng M — iNoll Ny T 2 [R I K 135
SBCB PSWH, offNy |PowHPowHatiNgG | 7 12 | — | - | s |- |- |- 135
SBCB PSWL oiNg [POMLPoWoliNgC | 7 f 2 1 = | ~ | 3 ||]" 125
SBCB off N'g offNg Joli Ny o [~~~]la}"]|"1|" 135
off Ng-off Ng-C
SBCH Ny, off Ny Ny —NgoliNgZ | o [| — | =14 ||} 135
SBCH [DP|oftNg [[OP] «—OProftNgC| & | w | 00 J 8 [3 ||]" 138
SOCH tNSUSP), off Ny | tNaUF) — w | |s|le]| 135
NQJUSP} off Ng
SBCB MyglX1), o Ng | NigX1] —NygX1] nin|nB s {-]11° 135
- ol Ng G
SBCB NyglX2), off Ny | NyalX2) N, ofX2] n|un|s s - |- |- 135
- of
920 | SBCE N, #N, N — N#NgC 8 1 N KN R 136
SBCE PSWH, #Ny | PowH —PswHaNgC | & - a <l 196
SBCB PSWL. #Ng PSWL —PSWLaNsC| 8 - a l-]-1]- 136
SBCE of Nia, PNy off Ny +—) " a <11 196
off Ny #hg-C
SBCB Ny, Mg Ng « Npi,{ 8 _— 4 N 2 T 136
SBCB [DP), 8Ny [DP] — [OPleNgC] 8 1B s |1-]-1- 138
SBCD NgUSPL #Ng | NP o— 9) a1} 13
NWUSP} 244 C
$BCB N, gX1) g | N DX1] o—NygX1)) 15 5 |- . 136
-
SBCH NygX2ZL #Ng | Nalx2) —H.gix2]) 15 s b1] 136
-y C

3-199

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-22. Logical Calculation Instructions (1) *1 - the first operand
*2 -the second operand

int " [int ' [Ext T[Ex
No Mnamonics Opaiation Int 2]Ext 2| bt 2 [Ext 2| Byta Flags Page
Cyc | Cye | Cye | Cyc | no. JZFJCFIHCIDD
£38 | AND A, N,y A +— AANg [- 3 |-]
AND A o A ApnoN k] ? 1 ¢]
AND A, DP A — ANDP 4 - z | F
AND A, X1 A = AAXI 4 - 2 * o)
AND A X2 A — AAXZ 4 - 2 |- D
AND A, UsP A o+ AAUSP 4 - 2]- D
AND A, SSP A +— AASSP 4 - 2 |- D
AND A LFB A +— AALRB 4 - 2 | D
AND A, off Ny A« A AoliNg 4 9 2 |- o
AND A Ng A +— AANg 6 | — a |- T
AND A, [OP] A« A A[DP] § 1 2 |- Fol
AND A, $NgJUSP] A o+ AAINgUSPI| 7 " 3] @
AND A NygfX1] A — AaNggt) | 8) P o
AND A, Nygix2 A — AANE n 2 « 1)
952 | AND arM, A al — ol AA 5 13 2 * 21
AND DP, A oP «— DP AA 5 —_ 2 - a
AND X1, A Xt~ X1AA 5 - 2 {- 2
AND X2, A X2 e XZAA 5 - 2 1{° 2
AND USP A USP « USP AA 5 -_ 2 |- 2
AND SSP. A 85P +— SSP AA 5 - 2 . 4]
AND LRB, A LRB «— LABAA 5 - 2 |- 2
AND off Ny, A off Ng +— off Ng AA 7 13 |- 2
AND Ng A Na +~— NgAA 7 - s |- 2
AND {DPL A [DP] «— [DFIAA 7 15 2 | 2
AND NGJUSP} A -— 8 <] a . a
tNgLEA AA
AND NyfX1L A NygdX1] — NigXIAAL @ 7 ‘|- 2
AND NygfX21 A NyglX2] e Nygk2)AA | 9 7 a |- 2
965 [AND erN. off Ng o +— arN Aol Ny 7 — — 3 ° 2
AND DP, olt Ng CP + DP Aol Ng 7 < I 3 |- 2
AND X1, off Ng X1 +— X1 Aol Ny 7 3 — 3 . -
AND X2, olf Ng X2+ X2 AcH Ny 7 < T S a]l 2
AND USP, olt Ng USP «— USP AcliNg| 7 3 — — 3 - z
AND SSP, olf Ng SSP — SSP ANy | 7 Q -_— — 3 - 2
AND LRB, off Ng LRB « LRB Aclthg | 7 3 |-1]- 3} z
AND off Ng, ¢fl Ng off Ny —] — - a 4 * z
off N'g Aol Ny
AND Ny, ot Ny Ny +— NgAoltNg | & 8 | — | — 4 |- 2
AND [DP], off Ng [OP] +~— [DP] ActtNg| @ 8 |13} =2 3 |- z
AND iN'p{USP), of Ng | tNplUF] v] 1 2 4 - z
SN'glUSP] Aot Ng
AND NygfX1), off Ng | NyglXt] — NyglX1) nwl|la || x5] z
Aclf
AKD Nyg%2), off Ng | HyglX2] +— Ny olX2] 1 @ 5 | = 5 |- 2
Aoif Ng
ol —oNANN,g| 8 it4 4] <}
0P - DPASNg | B — 4 1 <]
X1 —XiAsNg | 8 —_ 4 |- <}
x2 — X2 A#Nig B —_— 4 - <]
USP « USP ANl 8 - 4 |- F-<]
SS5P «— S5P AsNg| 9 - 4 b a
LRB + LRBASN,;| 2 - 4] a
off Ny «— © o] 5 {- a
off Ng ANy
Ny +— Ng APNg] -] . <)
|OP] «— [OP] ASNyg| W w 4 * 3
INGLER] -)| 5 . F+]
NalUSPIABIg

3-200

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-23. Loglcal Calculation Instructions (2) *1 -1the first oparand
*2 -1he second operanc

int ' [int TV [Ext T [Ext T
No. Mnemonics Operation Int "2 |Ext "2} Int "2 |[Ext "2| Byte Flags Page
Cyc | Cye { Cye | Cyc | no. [ZF [CF[HE]DD
889 | AND NygX1L Ny | NryglX1] — WygX1) © 2 s |- a
AN,y
AND NgDX2], #Nyg | N'pg[X2] «— Ny o2} 12 2 6 1 <]
Ay
261 | ANDB A, shy AL — A ABNg 4 | = 2 |- x
ANDB A N AL — A AN a|s 1 |- a
ANDB A_PSWH A — A APSWH a | - 2 |- i
ANDB A, PSWL AL — A APSWL i |- z |- x
ANDB A, off Ny A = A AclNg |7 z |- -
ANDB A Ng N — A ANg s | — 3| 2
ANDB A, [DF} A — A ADP] [—_ 2 ; M
ANDB A 3NgUSP] |A — A Ashguspl| 7 9 a |- ™
ANDB A, Nqg[x1] A — A ANgX1 | B 0 4 |- F
ANDB A, Nqg/X2) AL — MANGX] [8 1 ® 4 |- x
1001 J AMDB N, A ™ — N AN E ¢ 2 . >
ANDB PSWH. A PONH +— PSWH Al 5 — 2 - =
ANDE PSWL A PSWL - PSWLAA | 5 - 2 |- =
ANDB off Ng, A OiNg — ofiNg A | 7 12 al: =
ANDB Np A Ma — Ng AR 7 - al- =
ANDB [OPLA [DP] — [DP] AR 7 1 2 |- =
ANDB tNgUSP] A HNUSH}e— a3 12 3 - -]
A
ANDEB NygX1], A Ny gIX1] o— Ny IXHAAT 9 it 4 | =
ANDB Ng[X2}, A NiglX2) — NigX2IAA| 9 oy « | 5
1010 | ANDE N, off Ng ™ — M AcliNg | 7 -1 - “ a3 |- -]
AMNDD PSWH, off Ng PSWH +—PSWHAMRN | 7 74 — _— 3 ‘' F]
ANDB PSWL, off Ny PSWL «—PSWLAOT N 7] — _— K] " &
ANDB o N'g. ot Ng | ol N'g 2 | = —-]w] «]: ®
ol Ng Aoit Ng
ANDB N, off Ng Ny o Nig Aol Ny v |uw]|l -~[|-=-14]" =
ANDB [DP], off Na IOF] — [DPjActNg| 8 | w] n | B3| 3 |- =
ANDB N USP) ol Ny | s — vl e |wrw 4 |]
N'g[USP] A off Ny
ANDB Mqg[X 1], off Ny | NoglX1] — NygiX1] n|nfw|eis |- *
Aol Ng
ANDB Nygiu2), ol Ny | NygP2] - Ny X2} n|nl|ln s |]
Aot Ny
1018 JANDB 1N, Ny N — N ANy & 1 K] . z
ANDB PSWH, #iig PSWH +-PSWH ANg| 6 _ 3 . z
ANDE PSWL, 88, PSWL — PSWL A#Ng| 6 - a { z
ANDB off Ny, #Ny off N'g ~— 8 “ 4 ¢ F/4
off Ny Ay
ANDB N", 'N. Ng — N'. /\'N‘] — 4 - F/
ANDB [DP], #Ng [DF] «— [DPjAMNg | 8 B 3 |- z
ANDB tHoUSPL oNg | sgleP) o 9 “ 4 |- z
NIUSPIA#Ny
ANDB NqglXi) #Ny | NogdX1] — NyglX 1} © % s |- z
Ay
ANDB N, g[X2]. #Ng N, gfX2} o N‘dXﬂ‘c L 15 5 . zZ
A

3-201

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-24. Logical Calculation Instructions (3)

*1 -1he first operand

*2 -tha second operand

it V[int T [Ext V[Ext !
Na. Mnsmonics Qparation Int 2 {Ext "2} Int "2 |Ext 2| Byte Flags Page
Cyc § Cyc | Cye | Cyc | no. |ZF JCF[HCIDOD
1028 [OR A #N¢g A — AVNy [- 3 - 104
OR A aN A — AVEN 3 T 1 . 104
OR A DP A — AVDP 4 — 2 . 104
OR A X\ A — AVXS 4 - 2 M 104
OR A X2 A — AVX2 P 2 1 o
OH A, USP A +~— AVUSP 4 -_ 2 . 104
OR A SSP A +— AWBSP 4 - 2 - 104
OR A LRB A ~ AVLAB 4 -_ 2 . 104
OR A, ofNg A +— AVollNy 4 | 2 | 104
OR A Ny A — AVig s | - - 104
OR A [OM A +— AV[DP] s | v 2 1 104
OR A, tNg/USP] A o AviNgusPll 7 | n a |- 104
OR A NigX1] A — AVNGNI} | 8 | 2 4 {- 104
OR A, NyalX2] A = AVNIX2Z] » 4 - [+
1042 [OR erNL A N — o VA 5 13 2 * 105
OR DP.A 0P — DPVA 5 — 2 |- 105
OR X1.A pA — X1VA 5 —_ 2 - 105
OR X2.A x2 - X2 VA 5 — 2 * 105
OR USP.A USP « USPVA 5 — 2 M 105
OR S5P,. A SSP - SSPVA -] —_ 2 * 105
OR LRB, A LAB +« LABVA -] — 2 M 108
OR off Ng, A offNg = offNgVA [7] a 105
OR Ng. A Np = NgVA 7 - s |- 06
OR [DFL A (DP] «— [DP] VA 7 » 2 |- 108
OR INgJUSPL A — s n al 106
VA
OR NygX1) A NygX1) o= NyggXTIVAL 9 7 4 | 106
OR Ny X2l A Ny glX2) o= NoglX2IVAY 9 17 4+ | 108
...... WIS Y L [ETT IR R N
1055 | OR e, oft Ky o —aNvoliNgf 7 | — T — |2]| 3 |- 106
OR DP, off Ng OF +— DPVvoflNg 7 B — - 3 . 106
OR X1, 0 Ng X1 —Xivotitg | 7] —-]—1]3]" 108
OR X2, ol Ny e —XevoliNg | 7 [-]~ 3 |" 06
OR USP, olt Ny USP « USP VoltNg] 7 B -— —_ 3 * 106
OR SSP, off Ng SSP + SSPVoitNg| 7 B3 -— _— 3 * 08
OR LRB, oft Ny tR8 —LRBValiNg| 7 I B] - | -1 |" 106
OR off Ny, o Ng o Ng — 9 - - o 4 * 106
off N'g Volf N
OR Ny, off Ng Ng oNavolilg | & | ® § — | —] 4 108
OR [DPL. off Ny [OP} o—[OPjvoltby| o | B | B J 2 | a2 |- 108
OR tNlUSP)L olf Ng | iNgUF] — © » " D 4 . 108
ANJUSPIV off Ny
OR NyalX1L oliNg | NigPX1) — NygX1] nlals]aufs |- 108
Volf Ng
OR N;glX2] off Ny NygfX2} +— NygfX2] nl|lajis]x s | 108
Vol Ng
1068 | OR arl, #Nyg o — aNVNg| 7 « |- 107
CA DP, #i,y 0P «— DPVENy | 8 — 4 | 107
OR X1 #hy X +— XIVete | 8 - a |- 107
OR X2, #Nyg R —X2VaN, | B - 4 |- 107
OR USP, #N,q UsP «— usP vl 8 - « | 107
OR 5SP, My SSP o+ SSP VN, 2 —_ 4 . 107
OR LRB, IN“ LRB + LRB V'N-.. a - 4 . 107
OR off Ng. #H1g off g = 0 @ s | 107
off Ny VN
OR Ny, BNy Mg +— NgViy | - s |- 107
OR [DP], BN,y [DP] «— [DP] VN,] 4 |- 107
OR NyJUSPL fNyg - n P s |- 107
tﬂﬂUSPIVIN

3-202

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-25. Logical Calculation instructions (4)

*1 - the first operand

*2 - the second operand

Int "V [int "' [Ext T[Em
Mo. Mnamonics Operation Int 2 |Ext “2|int "2 |Ext 2] Byle Flags Page
Cyc | Cyc | Cye | Cyc | no. [ZFICFIHCIDD
1078 | OR N gi%1). #Nyq Nyl X1} = My glX1] 12 2 e |- 107
VN
OR N1alX2]. #Nyg N1gdX2] +— N'\oX2] 2 xn 6 107
VN
1081 |ORB A sy Ay — A VNG 4 — " 108
ORB A, N AL w— AlVMN al|s - 108
ORB A PSWH A — A VPSWH a | - . 108
ORB A PSWL M o— A VPSWL s | - . 108
ORB A, off Ny A — A VollNy 4 7 . 08
ORB A Ny AL — A VHy & | — . 106
ORB A, [DP} AL = A VIDP) 6 — 108
ORB A, iNJUSP) A o— A veNgusel T [9 100
ORB A, N,gX1} A — A VNygXIf | 8 © . 108
ORB A, N,g>2] AL — AL VN giX2) [4 - 108
1091 ORB N, A N —NVA 5] 2 | 109
ORB PSWH, A POV «— PSWH VA | & - 2 " 109
CRB PSWL A PSWL — PSWLVA] & —_ 2 - 109
ORB off Na. A ofig + ofiNg VA | 7 12 3 {- 109
ORA Ny A Mg — Ng VA 7 — 3 |- 109
ORB [DP}, A [OP} — [DPiva, | 7 1 2 |- 109
ORB NyJUSP] A NgUEP— 8 12 a |- 109
AV AL |
ORB MygfX1), A NglX1]) = NygIX1jval 9 13 4 * 109
OREB NygX2] A N;ioX2] «— NygD2IvAy| § 13 4 - 108
1100 | OAB M, off Ny N e—rNvotig | 7 | = F 2w 3 110
QORB PSWH, oif Ny POMH —FSWHVONg| 7 12 —_ — 3 Ho
OFB PSWL, off Ny PSWL «PSWLVOTNy| 7 2 - — 3 . 10
ORB oft N'g, o Ny | ot Ng +~— s -1 =]1wv|s«]- 10
off N'g Vot i
ORE Ny off Ny Ny — Ny Vol Ny - |l —]=147F" 110
ORB [DPY, oft Ng {DP] — [CPJVollNg] ¢ MHln|lwv]|a]- 110
ORB N'WUSP) oy | iU o |s|2)lv] a4]" 10
N'pJUSP]V el Ng
ORB NygX1], ot Ng [MyglX1] +— NyglX1) nlunln 5 |- 10
Volf Ny
ORB Nygl(2) ot Ny | N, giX2} — Ny X2} n|al|mn s |° 10
Volf Ny
1100 | ORB M, mii N — NV, [9 2 |- m
ORB PSWH, #Ny PSWH —PSWH v# s —_ 2 - 11
ORB. PSWL #Ny PSWL — PSWL viNg| & - 2 | m
ORB off N, #Ng SNy o 7 12 a |- m
off N'g V#Ng
ORB Ny, #hg My «— NgvanNg | 7 - 3| n
ORB [DP], #N, [DP} — [OPTvaNg | 7 n 2 |- 141
ORB tNp[USP], SNy [iNolUP| «— . <] 3]- 11
N'g[USP]V s,
ORB NyglX1], #Ng NyglX1] +— NygfxX1) 9 4 ["
Vg
ORB N,gfX2), N, N, elX2) — N, ofX2]] 4 |- 111
vy

3-203

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-26. Loglcal Calculation Instructions (5) “1 - the first operand
*2 -the second operand

Int Vit 1{Ex VjEx Y
No. Mnemonics Oparation Int ‘2}Ext *2| int "2 |Ext 2| Byte Flags Page
Cyc | Cye } Cyec | Cyc | no. |ZF JCFIHC]DD

118 | XOR A, Ny A =AYV Ny B -_ 3 - 172
XOR A, orN A — AVl 4] 2 . 172
XOR A DP A —AVYDP 4 -_ 2 " 172
XOR A XY A =—AV¥YXi 4 -— 2 * 172
XOR A X2 A —AYX2 P s |- s
XOR A, UsP A —AvUSP 4 — 2 |- 172
XOR A, 83P A +— AV 58P 4 — 2 . 172
XOR A LRB A —AYLRB 4 — 2 . 172
XOR A ol Ny A —AValg 4« |9 2 |- 172
XOR A, Ny A —AVNg s | - 3 1 172
XOR A, [DP] A «— AV ([DP| s | o 2 | 17
XOR A, tNgUSP} A —AVINUSPI | 7 | v a - 172
XOR A, NygXi1] A AV NyglX1) s | B a |- 172
XOR A NpaX2] A — AW NyglX2) s |l e a | 172
1132 | XOR arll, A aN — ol A 5 1<) 2 * 173
XOR DP. A oP — DPYA] — 2 * 173
XOR X1, A X1 — XIVA L] — 2 * 173
XOR X2, A x — X2YA -3 - 2 * 173
XOR USP, A USP « USPYA -3 -_ 2 . 1
XOR SSP. A SS8P + SSPYA -3 - 2 - 173
XOR LRB. A LRB «~ LRBYA 5 -— 2 b i3
XOR off Ng, A offNy — clNg¥A | 7 13 a |- 172
XOR Ng, A Ny +— NgVA 7 — al- 7
XOR [DPL A [OP] « [OPF] v A 7 % 2 | 173
XOR tNgJUSP], A -— a] 3 * 13

NalUSP] ¥ A
XOR NygX1} A NigX1)+— NygXtiv A] 9 7 4« |- 173
XOR NyglX2) A NyglX2) o Ny XS] V A} 9 7 4« |- 7
1145 | XOR erN, off Ng N — o W Ol Ny 7 d —)] a * 174
XOR DP, oif Ny 0P +DPVYollNg 7 < -_— _— 3 ¢ 174
XOR X1, oif Ny X1 +— X1V cfNg 7 <) —_ - 3 - 174
XOH X2, off Ng 2+« X2V oifNg 7 <] — — 3 * 174
XOR USP, ol Ng USP —USPYoltNgl 7 | B §j — |~ | 3 | 174
XOR SSP, off Ny SSP —SSPwolNg| 7 |t — | - |3 | 174
XOR LAB, off Ng LRB « LRBY oiNg] 7 <) —_— — a * 174
XOR o Ng cNg [o iy — s j—|—-13]4] 174

off Ng ¥ o No|

XOR Ng_ off Ng Ny ~—NgvofMg | 8 | ® | — § — 1 4 [174
XOR [DP}, off Ng (OP] —(DPjvollNg| 9 | ® | 3 2] a3 |- 7%
XOR N'gJUSP], olf Ng | +N'g{USP] ~— v | w]|w]|=z . 174

N'gUSP] v olf Ny
XOR NygXiLoffNg | MyalX1] o= NyuiX1] n|o |5 |x}s] 174

¥ ofl

XOR NigfX2), o Ng | My giX2] — Ny g% nio | |a]s |- 174

¥ off Ny
1158 | XOR er, #Nyg o —ativaNg| 7 a |- 178
XOR DP, #Nyqg OP «—DPvmg| 8 - 4 | 175
XOR X1, #Nyg x — X1V Ny] _— 4 * ;]
XOR X?,lN,. ﬂ -— XZV N,,] — 4 * 175
XOR USP, #hg USP — USPV M, 8 — + |- 175
XOR SSP, #lyg sSSP -—sspvm:ﬂ [} - 4« 1 178
XOR LRB, #tl,g LR8 «— LRBY M| ¢ - 4 [178
XCOR off Ny, #N, 5 ofiNg — © o s |- 175

oltNg ¥ PNy
XOR Ny #N4q Ny — Mgl | 0 - s |- 178
XOR [DP] #N:g [OP] « [DP] Y sy 10 » 4 |- 175
XOR :NdUSP]. m“ ﬂm -— 1 n 5 - 175

ANYJUSP] ¥ BN,

3-204

Chapter 3 Dstails of Instructions
Instruction List

TABLE 3-27. Logical Calculatlon Instructions (6) “1 -1he first operand
*2 - 1he second operand
int V]int ' [Ex V[Ext !
Mo. Mnamonics Operation int "2 |Ext 2| int "2 jExt "2| Byte Flags Page
Cyc | Cyc | Cye | Cyc | no. JZFJCFIHCIDD

1160 | XOR NygIX1] oM,y | N aIX1] — NygPXT] 12 21 s |* 175

¥ ¥y
XOR N'jg[X2), $Nyg | NalX2] — Wygl¥2] 2] e |- 175
1171 [XORS A, My A — AV 4| - . 176
XORB A, M Al — MNYN 4 [. 178
XORB A, PSWH AL — A Y PSWH 4 | - - 76
XORB A, FSWL AN o AV PSWL 4 | - . 178
XORB A, off Ny A — A VollNg 4 7 . 178
XORB A, Ny A — M VN [- M 176
XORB A, [DP] A — ALY DP e | — . 176
XORB A tNgJUSF] |AL — A v aNgJUSP] 7) . 176
XORE A, NiglX1) A~ AYNgx1] e 0 . 176
XORB A, NyolX2t N~ NYNGg2 | 8 © . 176
1181 { XORB N, A N —NYA 5] 2 |- 1
XORB PSWH, A PSWH +— PSWHY A] 5 - 2 1 177
XORS PSWL A PSWL +— PSWLY A | § - 2 |- 1
XORB ot Ng, A ofNg «— oliblgv AL | 7 12 al- 1
XCRE Ng A N NV A 7 - al- 177
XORB [DP]. A IDP] —PPIvA | 7 " 2 | 177
XORB tNgUSP], A] 12 a |- 1

i
XORB Nyg[X1], A NygdX1] o— NipfX 1] VA 8 bt} a | 17
XORB NyglX2, A Nya%2] o— NygfX2} vy & 1] 4 J . 177
1190 | XORB ™, olf Ny N +—mNvolRg| 7 | — | — | a |- 178
XORB PSWH, ot Ny | POWH +—PSWHvoliNg| 7 e |- ~-131" 17
XORB PSWL.ofNg |PSWL +—PSWLVORNg| 7 e |- -1]131" 178
XORB o Ny off Ny | off Ny o g |—-]-1m7] 4] 178

aff Ny v olf N
XOAB Ny, off Ny Ny +— Ny v ol Ny 9 Hi—|-14+1]" 17
XORS (DP). off Ny [OP] «— [OP] ¥ offNg] 9 uin]|w 3 17
XORB NglUP), oftNg | Ny w|sle|7 4 | 178
NQJLUSP] ¥ olf Ny

XORB NygiX1]. off Ny | NyglX1] +— NyglXi] wilojlns |w]|s | 178

¥ olf Ng
XORB NygfX2), off Ng | NygPX2] +— NyefX2] n L B O 5 {°* L F.)

¥ oliNg
1196 | XORB N, sy N — NV BNy [} 1 3 1" ”m
XORB PSWH, 8Ny PSWH «—PSWH Y & - s |- 1m
XORB PSWL. Ny PSWL —PSWL Y & — 3 i i
XOAB off Ny, Ny off Ny ~— 8 " 4 |- 7]

olf Ng ¥ #Ng
XORE Ny #Ny Mg +~— Navmg | 8 —_ 4« | m
XORB [DP], #Ny [DP] +— [DPiY eNg| 8 13 a |- i
XORB iNJUSP] #Ng [NP «—] " a |- 17

NJUSP]V N,
XORB NigfX1], #Ng | NiaX1) +— NyolX1] 10 15 5 {" 17

¥ g
XOREB NooX2], Ny | NyalX2] ~- Ny ofX2} © 5 s | 1

¥ Ny

3-205

Chapter 3 Details of Instructions
Instruction List

*1 -the first operand

TABLE 3-28. Comparison Instructions (1)
"2 - the second operand

Iny 1 Ilm Eat H[Eat
No. Mnaemonics Oparation It ‘2 {Ext "} Int 2 |Ext “2| Byte Flags Page|
Cyc | Cyc | Cye | Cye | no. [ZFICF|HC|OD
1288 [CMP A, Ny ANy L] _ 3 1T x
CMP A, orN A-wl 3 |z T -l =
CMP A DP A-DP 4 —_ F4 1 k]
CMP A, X1 A-X1 4 — F4 M B
CMP A X2 A-X2 4 —_ e * . k.1
CMP A USP A-USP 4 — 2 A B
CMP A 55P A-SSP PR - 4
CMP A LRB A-LRB 4 — 2 A B
CMP A, oit hg A - ol Ng 4 9 2 * * k]
CMP ANy A-Rg s | —- a |- =
CMP A [DP] A-[OP] s | © 2 |- ®
CMP A tNgJUSP) A - tNgJUSF] 7 |1 a |- ®
CMP A, NyalX1] A-NygX1) s | 2 4 1] %
CMP A, Nyghiz) A-NygX2 0 | w2 o |- x
1222 | GMP el A aN-A 5 n 2 - ®
CMP DP, A DP-A 5 — 2 i I B
CMP X1, A X1-A S - H * - k]
CMP X2 A xX2-A 5 — 2 W B
CMP USP A USP-A 5 — 2 1 B
CMP SSP A SSP-A 5 — 2 1 B
CMP LAB A LRB-A 5 —_ 2 N B
CMP oftNg A off Mg - A 7 13 3 * b B
CMP Ng A Ne-A 7 - a |- ®
CMP [DP] A 1D -A 7 15 2 |- ®
CMP INgJUSPL A NGUSFE A 3 13 3] k<]
CMP NqygX1L A N Xt} A 9 17 4 N k<]
CMP NygX2) A NaglX2k A 9 7 « |1 »
1235 [CMP e, off g ok - o Ng AN (P i S B A)
CMP DP, off Ny DP - olf Ng rlia]l—-1—|al}|-|" ¥
CMP X1, all Ny X1-oll Ny 7 <] — — 3 * . ¥
CMP X2, off Ny X2- ot Ny rial=-|-=-12]|"1| ¥
CMP USP, off Ng USP - ol Ng 7 |la]-1-0a{-] ¥
CMP SSP, off Ng SSP - ol Ng 7)lel-|-13])"]" x
CMP LRB, ot Ng LRB- off Ny o l-|-]3])‘1]" Z
CMP off N'g, oft Ny | off Ny - off Ny v f=-f-1la]a]|-I- z
CMP N‘..d& ”.-d'".] -] - _ 4 * ' k4
CMP [DPY, off Ny DP]- off Na s laflulz!s]] T
CNP NQJUSP], off Ny [1VylUSPY ot g | e |luwl|la]«el] w
CMP NigfX1) oft Ny | NyglX1]-off Ny n |2 |]afs |1 ¥
CMP NyglX2l off Ny [NygX2]- off Ny nl|la]|ls|a]|ls]-|- z
1248 | CMP e, By ok SNy » 7 PR O A]
CMP DP, g DP - Bhyg s — a |-t =
CMP X1, N, X1 -y] — 4 * * =
CMP X2, #N,g X2 - #Nyq . — |7 =
CMP USP, #Nyg USP - #Nyg 8 - « |1 ®
CMP SSP. #hyg SSP- N, s - « |- =
CMP LRB, Ny LRS- Ny a —_ 4 1 2
CMP off Ny, #Nyg off Ny - By 0 o s1°i a
CNP Ny, iNyg M- N yg 0 - s |- |- »
CMP [DPL Ny [DP] - #Nq 0 % 4 11" =
CMP 3NUSPL B,y | tNGUSP} aNyg 1 o s | »
CMP NygX1L WNyg | NoolXTF INyg 12 21 s |-1- ™
CMP N1afX2]. #Myg | igfX2] - s 12 2 s [] »

3-206

Chapter 3 Delalls of Instructions
Instruction List

TABLE 3-29. Comparison Instructions (2) *1 -the firsl operand
*2 -the second operand

Int V[int "V |Ext V[Ext 7
No. Mnemonics Oparation Int “2|Ext 2| int "2 |Ext 2| Byla Flags Page
Cye | Cyc | Cye | Cyc | no. J2F JCFIHCIDD

1261 | CMPB A, #Ng A - #ig | = 211 »
CMPB AN AN s | s 1 1] »
CMPB A, PSWH My - PSWH 4 - 2 M)
CMPB A PSWL A -PSWL 4 — 2 *1 k]
CMPB A, olf Ny A - Ny 4 |7 2 |- »
CMPB A, Ny A -Ny s | — a|*q{ »
CMPEB A, [DP] Ay -[OP) 6 | — 2 11" »
CMPB A, tNglUSF] | A - iNgUSP| 7 | e a {1 »
CMPB A, Nygit1) A - NyglX1) s | © a |- »
CMPB A NigX2) A -Nygx2) g8 | ® Fel ER K »

1271 JCMPB IN A N-A 5] 2 M 9
CMPB PSWH A PSWH - A 5 - F4 M I £
CMPB PSWL A PSWL-A -] — 2 b £
CMPB aoff Ny, A off Ng- A 7 12 3 L £
CMPB Ng, A MM 7 - s |+ ©
CMPB [DPL A [DP- AL ? n 2 L o
CMPB tNgUISPFL A SNSF- A a 12 3 . O
CMPB NyoX1L A NoglX 1 Ay ° n 4 . o
CMPB NygX2). A X2} A 9) a |] o

1280 | CMPB N, off Ng ™™ - of Ng ;205 I DRSS DR I T K &
CMPB PSWH, off Mg PSWH-oif Ny 7 12 — - 2 . . 41
CMPB PSWL off Ny | SWLof Ny rtel-t1-123a|"]" P
CMPB off Ny ot Ny |oft By - ol Ny s |-t —-1w]s]] «
CMPB Ny, off Ny Nia-off Ng s luw i —-F -4 4]]| "
CMPB [DF), olf Ng | {OP]-ofl Ny g Jufulelsi]: a
CMPB N gJUSP], ol Ng| ngusprotn]l © | s 2 b |4 -] “
CMPB NyglX1], off Mg | NyglX1} off Ny ni{a]ls|le]ls]| a
CMPB NyglX2], off Ny | NygiX2] - oft Hy ulw|lwlew]|ls{-] P

1209 | CMPB N, N, N - Ny 6 u 3 M I &
CMPB PSWH, g PSWH - #Ny 6 — 3 M I [-
CMPB PSWL, Ny PSWL - BNg 6 — 3 b T 2
CMPB off Ny, #Ng off Mg - #Ng P " a |1 o
CMPB Ng, g Ny - g a — a« |1 P
CMPB [DF], #Mg [OF] - #Ng 3 1B s |1 ®
CMPB N'qUSP], #y | tNgUSPL- iy 9 u 4 |1 e
CMPB Nyg[X1) #Ng | NyglX1]-#Ny © 15 s |-]- P
GMPB NyglX2). #Ny | Nigiio} eNy 0 15 s |-] Q

3-207

Chapter 3 Detalls of Instructions

Instruction List
TABLE 3-30. Decimal Adjust Instructions *1 - the first operand
*2 -the second ocperand
Int Vfint ' [Ext '|Ext !
No, Mnemonics Operation it ‘2 |Exa 2] It "2 [Ext "2| Byte Flags Page
Cyc | Cye | Cye | Cye | no. 2ZFICFIHCIDD
1298 {DAA IF (A 30210 [1 -)
CR (HC = 1)
THEN Ay «—My +6
IF (A 74210
Cﬂ (C-I)
THEN
A zarA 748
et R TP L R . B 5
OR (HC =1}
THEN A +—A -6
IF (A 74210
OR (Ca1)
THEN
A 7g+—A 74-8
HC «—0
TABLE 3-31. Sign Extend Instructions *1 -ihe lirst operand
*2 - the second operand
Int Vit 7V |Eat T [Ext T
No. Mnamanics Oparation Int "2 [Ext 2| int "2 |[Ext “2| Byte Flags Page
Cyc | Cyc | Cye | Cye | no. |ZF {CFJHC|OD
1300 | EXTHO Asg — My] 1 1| =
L —1

3-208

Chapter 3 Daslalls of Instructions

Instruction List

TABLE 3-32. Bit Operation Instructions (1)

*1 - the first operand
*2 - the second operand

i im V{Ex V[Ext Y
No. Mramonics Opaeration Int "2 JExt "2} int ‘2 |Ext "2| Byte Flags Page
Cyc | Cye | Cyc | Cye | no. |ZF [CFIHC|DD
1301 { s8R m IF obybitfAy g} =0 7 1 2 | 137
SBR PSWH THEN 2+—1 7 - 2 |- 137
SBR PSWL ELSE 20 7 - 2 ¢ 137
SBR ol Ny ¢ % 3 |- 137
SBR Ny by bit(A.g) +=1] — 3| 137
SBR [OP)] 15 2 |- 127
SBR tNglUSF] 0 % 3 |- 137
SBA NyefX1) 1 7 4 1 137
SBRA NP2 1 7 4 1 137
1310 |RBR N IF objbitAg.g) = 0 7 n 2 {- 18
RBR PSWH THEN Z —1 7 - 2 |- 116
ABR PSWA. ELSE Z +0 7 — 2 |- 18
RBA off Ng 9 % a |- 116
RBA Ny obj bitjAz.o} +-0 9 — 3 |- 16
ABA [DF) 9 1 2 |- 18
RBR tNgUSP) 0 % a |- 1"e
ABA NyofX1| 1 ” 4 | 116
RBA N, X2 11 7 4 | 16
1319 | TBA M IF obibifAz.q) =0 4 6 2 |- 167
TER PSWH THEN Z —1 4 - 2 | 167
TBR PSWL ELSE Z 0 4 — 2 |- 167
TBR off Ng 6 ® 1 |- 187
TER Ng [- a |- 167
TBA [OF) s 8 2 |- %?
TBR NgJUSP} 7 Y a |- 167
TER NygX1) 8 0 4 |- 167
TER N,gX2} é B 4 |- 167
1326 | MBR C. N 5 7 2 .]
MER C, PSWH s | — 2 . ®
MBA C,PSWL 5 | — 2 . o
MBR C, off Ng 7| 3 . o
MBA C,Ng C e objbittAzg) 7 | - 3 . n
MBR C, [DP} Tl 2 . @
MBR C. tNaJUSP| 8 | © 3 . »
MBR C, MygX1) 9 | n 4 . n
MER C, N,gX3 8 | n 4 . o
1337 | MBA MN.C 1 % 2)
MBA P5WH, C 0 - 2 o
MBR PSWL C 0 — 2 .
MBR off Ng.C 12 % 3 "
MER Ny . C objbiths) — € | 2 — 3 s
MBR [DOF], G 12 n 2 &l
MBR tNgJUSF G n » 3 8
MBR N,gX1]C " = 4 8
MBR Nygx?] C "] 4 8
1346 |58 bt IF obj.bit - 0 7 - 2 |- 128
SB PSWH bit THEN 2«1 7 - 2 |- 128
S8 PSWLbit ELSE Z+—0 7 - 2 |- 128
S8 off Ng bit 8 ® |- 128
SB Ngbit obj bt =1 % - il 128
SB [DP}bit ¢ 15 2 | 128
SB tM{USP]bu 0 % 3 | 129
SB Ny g[X11bat 1 7 4 |- iF]
$B NygfX2] bit 1 77 ' 128

3-209

Chapter 3 Detalls of Instructions

Instruction List
TABLE 3-33. BIt Manlpulation Instructions (2) *1 - the first operand
*2 - 1ihe second oparand
lm“llni" Ext ' |Ext !
No. Mnamonics Oparation Int *2 [Ext “2]Int "2 |Ext 2| Byte Flags Pagae
cye | ¢ye | cye | cye | no. JZFJCF]HC]DD
1355 | RA ribe IF obibit=0 7 13 2 |- 115
RO PSWH.bk THEN 21 7 - 2 |- $15
RB PSWLbR ELSE Z 0 7 — 2 | 115
RB off Ny bit ¢ % |- 115
RB Ny bit oby.bit «—0) - a | 15
R8 [DPLbe 9 5 2 | ns
RB tNgUSPha 0 . il 1s
RB NyglX1}bit 1! 17 4 1s
AB N,gfX2) b n 7 4 |- 1s
1364 |MB C, bt 5 7 2 * n
MB C_PSWriba s | — 2 . »
M C. PSVL b s | — 2 ’ »
MB C, off Mg bit ? © 9 . »
MB C, Npbit C +— obibi 7 —_ 3 ' a
MB C, [DP] bit 7 $ 2 . »
ME C. tNRUSP] bi 8 | ® 3 . »
MB G, N, gfX1)bit 2 |1 4 . »
MB C, NygDi2] bit » | 1 4 . »
1373 | M8 bl G 0 % 2 »
MB PSWH.bX, & 0 - 2 »
MB PSWL DIt € 0 - 2 »
MB off Ngbit, C 12 " 3 »
MB Ny bit,C obj.bit ~— C © - a »
MB [DP).bit. C 12 B 2 »
M tNgJUSP|biL C 13 19 3 »
MB N X1]bit, C] -} & »
MB NyolX2] bt C) D 4 »
TABLE 3-34. Jump Call Instructions (1) *1 -1the first oparand

*2 - the second oparand

Int ']nt ' [Ext t[Ext T
Ko. Mnemonics Oparation int 2]Ext 2| Im 2]Ex "Z]Byte Flags Page
Cye | Cye | cye | Cye { no. [ZF|CF[HC|DD

1382 | 5J address PC +— xkiross] 2 141

3
1
R

=
338
LR

z

383
tt

e e G e e e e R

FHEL
3
!
[

Rlalitilts
NLUUNRBRRRR

E
3
t
E

w
o
N
o

———

Chapter 3 Detalls of Instructions
Instruction List

TABLE 3-35. Jump Call instructions {2) *1 - the first operand
‘2 - the second aperand

Int V[lnt 1 [Ext T]Ext 1
No. Mnemonics Operation tnt 2 |Ext 2} im 2 |Ext "2| Byte Flags Page
Cyc | Cye | Cyc | Cye | no. [ZF[CcF|HC]DD

1205 | [sNgUSPR PC +— [NgUSF]]
J [NyeX1)) PC — [NyX1])
J [NialX2]] PC o [Nyg[X2]]

1307 | JC EQ, address FZ=t
THEN PC «—acdress

5&m®
rEQ
[X
Baa

&

i

kil

v
wuuanng

a »
L T P N R
B & &8 & B &

faisa 3 o

1400 | JBR off My tit, adcress | iF (B Nght =) |
THEN PC «—adkdoss

where
PC*-128 < address
SPC*127

PC*» Haad addross of

falsa

~§ 5§
&

1404 | JBS off Ny bit, address | IF (off Ngbit = 1) rue false 3 &
THEN PG +—ackirass 0 1
wheme wue talze
PC-120 s aciduss | 6
< PCr 127
PC* a Head address of

the JBS instruction

= (aidreds of frst
byla of JBS
nsbruction) + 3

..

1406 | JRNZ DP, addrass OPL —DP -1 u 2 L]
¥ DP #0 e,
THENK PC +—adduss
where 7
PC*-128 < address DF) 0
S PC'+127

PC" = Head sddres of
the instrucion after
tha JRNZ inatruction
= [address of frst

byta of JRNZ
j 1)« 2

3-211

Chapter 3 Detalls of instructions
Instruction List

TABLE 3-36. Jump Call Instructions (3) *1 -the first oparand
*2 - the second operand
int " nt " [Ext "T{Ex
No. Mnemaonics Ogpetation int 2 |Ext 2| int 2 [Exd 2| Byte Flags Page
Cyc | Cyc | Cyc | Cyc | no. JZFICFIHCIDD
1408 | SCAL address (55F) —PC+2) 1 2 1%
SSP « S5P-2
SF «—0
PC +—address
PC*-128 < address
<PC'+127
P =Head address
of the instruction after
he SCAL insmnachon
= [addvess of frst
byw of SCAL
instruction} + 2
1407 | CAL wddress (SSP) «- PC +3 9 1 a -
S5P —55P-2
SF 0
PC —address (16 bits)
1408 § CAL [arN) (SSP) —PC +n a 2 |2]w]| 2 ko)
CAL [DF) 55P «—55P-2 B 2 — —_— 2 o)
CAL [x1) SF —0 g || =]~]2 o
CAL [PG «—obj (16 bits) 8 - — - 2 ko)
CAL USP]] R | — -1} 2 D
GAL [SSP] n is ihe number of byles] 8 12 — - 2 X
CAL [LRE] in the insruction and] ©” - — 2 1]
CAL ol Nyl varies with the L] L] 15 w 3 je 1]
AL [Ngl addressing objects. w|luw|~-]-—-123 k)
CAL [IOP] | uw|w]w]a2)
CAL ftN 1" -] L] w 3 D
CAL fNyglX1 2]|le | s || 4 k¥
CAL [NygfX2] 2|6 | s || 4 D
1421 | VCAL mble-address (SSP) —PC+ 1 1 15 1 168
SSP «—S5P-2
SF —0
PG +—({table-ackiress)
whore
table-address must
be an even-numbered
address in the VCAL
table wrea (28,37
1“2 |R S55P +S5P+2 7 1" 1 126
PC +— (SSP)
SF «—0
1423 | RN SSP — SSP+2 -3 n 1 127
PSW +— (SSP)
SSP «~— S5SP+2
LR «— (S5P)
SSP — S§5P+2
A — [SSP)
SSP - SSP.2
RS« (SSP)

3-212

Chapter 3 Details of Instructions
Instruction List

*1 - the first operand

TABLE 3-37. Other Instructlons
*2 - ihe second operand

int [t T[Ext {Ext !
No. Mnemonics Operation tnt "2 |Ext 2| It “2\Ext 2| Byte Flags Page
Cye | Cyc | Cye | Cye | no. [ZF|CF|HC]DD
C 1 2 1 1 138
Vo b S s IO O) S o i
........ A R ot o o
T S ot S R I B o o

3-213

	Title Page - OKI MSM66201 Instruction Manual
	Preface
	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3

	Chapter 1 - Overview
	1. Key Features of the MSM66201 Microcontroller
	2. Memory Configuration
	2.1 Program Memory Space
	2.2 Data Memory Space
	2.3 Concept of Segments

	Chapter 2 - Addressing Modes
	Contents
	1. RAM Addressing Modes
	1.1 Register Addressing
	1.2 Page Addressing
	1.3 Pointing Register Indirect Addressing
	1.4 Immediate Addressing

	2. ROM Addressing Modes
	2.1 Direct Addressing
	2.2 Indirect Addressing

	3. Bit Addressing Modes
	4. Logical Bit Address Space

	Chapter 3 - Details of Instructions
	Contents
	1. Classification of Instructions
	2. Instruction Set
	ADC
	ADCB
	ADD
	ADDB
	AND
	ANDB
	BRK
	CAL
	CLR
	CLRB
	CMP
	CMPB
	CMPC
	CMPCB
	DAA
	DAS
	DEC
	DECB
	DIV
	DIVB
	EXTND
	INC
	INCB
	J
	JBR
	JBS
	JC
	JRNZ
	L
	LB
	LC
	LCB
	MB
	MBR
	MOV
	MOVB
	MUL
	MULB
	NOP
	OR
	ORB
	POPS
	PUSHS
	RB
	RBR
	RC
	ROL
	ROLB
	ROR
	RORB
	RT
	RTI
	SB
	SBC
	SBCB
	SBR
	SC
	SCAL
	SJ
	SLL
	SLLB
	SRA
	SRAB
	SRL
	SRLB
	ST
	STB
	SUB
	SUBB
	SWAP
	SWAPB
	TBR
	VCAL
	XCHG
	XCHGB
	XNBL
	XOR
	XORB

	3. Summary List of Instructions

