package types import ( "fmt" "regexp" "sort" "strings" ) //----------------------------------------------------------------------------- // Coin // Coin hold some amount of one currency. // // CONTRACT: A coin will never hold a negative amount of any denomination. // // TODO: Make field members private for further safety. type Coin struct { Denom string `json:"denom"` // To allow the use of unsigned integers (see: #1273) a larger refactor will // need to be made. So we use signed integers for now with safety measures in // place preventing negative values being used. Amount Int `json:"amount"` } // NewCoin returns a new coin with a denomination and amount. It will panic if // the amount is negative. func NewCoin(denom string, amount Int) Coin { mustValidateDenom(denom) if amount.LT(ZeroInt()) { panic(fmt.Errorf("negative coin amount: %v", amount)) } return Coin{ Denom: denom, Amount: amount, } } // NewInt64Coin returns a new coin with a denomination and amount. It will panic // if the amount is negative. func NewInt64Coin(denom string, amount int64) Coin { return NewCoin(denom, NewInt(amount)) } // String provides a human-readable representation of a coin func (coin Coin) String() string { return fmt.Sprintf("%v%v", coin.Amount, coin.Denom) } // IsZero returns if this represents no money func (coin Coin) IsZero() bool { return coin.Amount.IsZero() } // IsGTE returns true if they are the same type and the receiver is // an equal or greater value func (coin Coin) IsGTE(other Coin) bool { if coin.Denom != other.Denom { panic(fmt.Sprintf("invalid coin denominations; %s, %s", coin.Denom, other.Denom)) } return !coin.Amount.LT(other.Amount) } // IsLT returns true if they are the same type and the receiver is // a smaller value func (coin Coin) IsLT(other Coin) bool { if coin.Denom != other.Denom { panic(fmt.Sprintf("invalid coin denominations; %s, %s", coin.Denom, other.Denom)) } return coin.Amount.LT(other.Amount) } // IsEqual returns true if the two sets of Coins have the same value func (coin Coin) IsEqual(other Coin) bool { if coin.Denom != other.Denom { panic(fmt.Sprintf("invalid coin denominations; %s, %s", coin.Denom, other.Denom)) } return coin.Amount.Equal(other.Amount) } // Adds amounts of two coins with same denom. If the coins differ in denom then // it panics. func (coin Coin) Add(coinB Coin) Coin { if coin.Denom != coinB.Denom { panic(fmt.Sprintf("invalid coin denominations; %s, %s", coin.Denom, coinB.Denom)) } return Coin{coin.Denom, coin.Amount.Add(coinB.Amount)} } // Subtracts amounts of two coins with same denom. If the coins differ in denom // then it panics. func (coin Coin) Sub(coinB Coin) Coin { if coin.Denom != coinB.Denom { panic(fmt.Sprintf("invalid coin denominations; %s, %s", coin.Denom, coinB.Denom)) } res := Coin{coin.Denom, coin.Amount.Sub(coinB.Amount)} if res.IsNegative() { panic("negative count amount") } return res } // IsPositive returns true if coin amount is positive. // // TODO: Remove once unsigned integers are used. func (coin Coin) IsPositive() bool { return coin.Amount.Sign() == 1 } // IsNegative returns true if the coin amount is negative and false otherwise. // // TODO: Remove once unsigned integers are used. func (coin Coin) IsNegative() bool { return coin.Amount.Sign() == -1 } //----------------------------------------------------------------------------- // Coins // Coins is a set of Coin, one per currency type Coins []Coin // NewCoins constructs a new coin set. func NewCoins(coins ...Coin) Coins { // remove zeroes newCoins := removeZeroCoins(Coins(coins)) if len(newCoins) == 0 { return Coins{} } newCoins.Sort() // detect duplicate Denoms if dupIndex := findDup(newCoins); dupIndex != -1 { panic(fmt.Errorf("find duplicate denom: %s", newCoins[dupIndex])) } if !newCoins.IsValid() { panic(fmt.Errorf("invalid coin set: %s", newCoins)) } return newCoins } func (coins Coins) String() string { if len(coins) == 0 { return "" } out := "" for _, coin := range coins { out += fmt.Sprintf("%v,", coin.String()) } return out[:len(out)-1] } // IsValid asserts the Coins are sorted, have positive amount, // and Denom does not contain upper case characters. func (coins Coins) IsValid() bool { switch len(coins) { case 0: return true case 1: if err := validateDenom(coins[0].Denom); err != nil { return false } return coins[0].IsPositive() default: // check single coin case if !(Coins{coins[0]}).IsValid() { return false } lowDenom := coins[0].Denom for _, coin := range coins[1:] { if strings.ToLower(coin.Denom) != coin.Denom { return false } if coin.Denom <= lowDenom { return false } if !coin.IsPositive() { return false } // we compare each coin against the last denom lowDenom = coin.Denom } return true } } // Add adds two sets of coins. // // e.g. // {2A} + {A, 2B} = {3A, 2B} // {2A} + {0B} = {2A} // // NOTE: Add operates under the invariant that coins are sorted by // denominations. // // CONTRACT: Add will never return Coins where one Coin has a non-positive // amount. In otherwords, IsValid will always return true. func (coins Coins) Add(coinsB Coins) Coins { return coins.safeAdd(coinsB) } // safeAdd will perform addition of two coins sets. If both coin sets are // empty, then an empty set is returned. If only a single set is empty, the // other set is returned. Otherwise, the coins are compared in order of their // denomination and addition only occurs when the denominations match, otherwise // the coin is simply added to the sum assuming it's not zero. func (coins Coins) safeAdd(coinsB Coins) Coins { sum := ([]Coin)(nil) indexA, indexB := 0, 0 lenA, lenB := len(coins), len(coinsB) for { if indexA == lenA { if indexB == lenB { // return nil coins if both sets are empty return sum } // return set B (excluding zero coins) if set A is empty return append(sum, removeZeroCoins(coinsB[indexB:])...) } else if indexB == lenB { // return set A (excluding zero coins) if set B is empty return append(sum, removeZeroCoins(coins[indexA:])...) } coinA, coinB := coins[indexA], coinsB[indexB] switch strings.Compare(coinA.Denom, coinB.Denom) { case -1: // coin A denom < coin B denom if !coinA.IsZero() { sum = append(sum, coinA) } indexA++ case 0: // coin A denom == coin B denom res := coinA.Add(coinB) if !res.IsZero() { sum = append(sum, res) } indexA++ indexB++ case 1: // coin A denom > coin B denom if !coinB.IsZero() { sum = append(sum, coinB) } indexB++ } } } // DenomsSubsetOf returns true if receiver's denom set // is subset of coinsB's denoms. func (coins Coins) DenomsSubsetOf(coinsB Coins) bool { // more denoms in B than in receiver if len(coins) > len(coinsB) { return false } for _, coin := range coins { if coinsB.AmountOf(coin.Denom).IsZero() { return false } } return true } // Sub subtracts a set of coins from another. // // e.g. // {2A, 3B} - {A} = {A, 3B} // {2A} - {0B} = {2A} // {A, B} - {A} = {B} // // CONTRACT: Sub will never return Coins where one Coin has a non-positive // amount. In otherwords, IsValid will always return true. func (coins Coins) Sub(coinsB Coins) Coins { diff, hasNeg := coins.SafeSub(coinsB) if hasNeg { panic("negative coin amount") } return diff } // SafeSub performs the same arithmetic as Sub but returns a boolean if any // negative coin amount was returned. func (coins Coins) SafeSub(coinsB Coins) (Coins, bool) { diff := coins.safeAdd(coinsB.negative()) return diff, diff.IsAnyNegative() } // IsAllGT returns true if for every denom in coinsB, // the denom is present at a greater amount in coins. func (coins Coins) IsAllGT(coinsB Coins) bool { if len(coins) == 0 { return false } if len(coinsB) == 0 { return true } if !coinsB.DenomsSubsetOf(coins) { return false } for _, coinB := range coinsB { amountA, amountB := coins.AmountOf(coinB.Denom), coinB.Amount if !amountA.GT(amountB) { return false } } return true } // IsAllGTE returns false if for any denom in coinsB, // the denom is present at a smaller amount in coins; // else returns true. func (coins Coins) IsAllGTE(coinsB Coins) bool { if len(coinsB) == 0 { return true } if len(coins) == 0 { return false } for _, coinB := range coinsB { if coinB.Amount.GT(coins.AmountOf(coinB.Denom)) { return false } } return true } // IsAllLT returns True iff for every denom in coins, the denom is present at // a smaller amount in coinsB. func (coins Coins) IsAllLT(coinsB Coins) bool { return coinsB.IsAllGT(coins) } // IsAllLTE returns true iff for every denom in coins, the denom is present at // a smaller or equal amount in coinsB. func (coins Coins) IsAllLTE(coinsB Coins) bool { return coinsB.IsAllGTE(coins) } // IsAnyGTE returns true iff coins contains at least one denom that is present // at a greater or equal amount in coinsB; it returns false otherwise. // // NOTE: IsAnyGTE operates under the invariant that both coin sets are sorted // by denominations and there exists no zero coins. func (coins Coins) IsAnyGTE(coinsB Coins) bool { if len(coinsB) == 0 { return false } for _, coin := range coins { amt := coinsB.AmountOf(coin.Denom) if coin.Amount.GTE(amt) && !amt.IsZero() { return true } } return false } // IsZero returns true if there are no coins or all coins are zero. func (coins Coins) IsZero() bool { for _, coin := range coins { if !coin.IsZero() { return false } } return true } // IsEqual returns true if the two sets of Coins have the same value func (coins Coins) IsEqual(coinsB Coins) bool { if len(coins) != len(coinsB) { return false } coins = coins.Sort() coinsB = coinsB.Sort() for i := 0; i < len(coins); i++ { if !coins[i].IsEqual(coinsB[i]) { return false } } return true } // Empty returns true if there are no coins and false otherwise. func (coins Coins) Empty() bool { return len(coins) == 0 } // Returns the amount of a denom from coins func (coins Coins) AmountOf(denom string) Int { mustValidateDenom(denom) switch len(coins) { case 0: return ZeroInt() case 1: coin := coins[0] if coin.Denom == denom { return coin.Amount } return ZeroInt() default: midIdx := len(coins) / 2 // 2:1, 3:1, 4:2 coin := coins[midIdx] if denom < coin.Denom { return coins[:midIdx].AmountOf(denom) } else if denom == coin.Denom { return coin.Amount } else { return coins[midIdx+1:].AmountOf(denom) } } } // IsAllPositive returns true if there is at least one coin and all currencies // have a positive value. func (coins Coins) IsAllPositive() bool { if len(coins) == 0 { return false } for _, coin := range coins { if !coin.IsPositive() { return false } } return true } // IsAnyNegative returns true if there is at least one coin whose amount // is negative; returns false otherwise. It returns false if the coin set // is empty too. // // TODO: Remove once unsigned integers are used. func (coins Coins) IsAnyNegative() bool { for _, coin := range coins { if coin.IsNegative() { return true } } return false } // negative returns a set of coins with all amount negative. // // TODO: Remove once unsigned integers are used. func (coins Coins) negative() Coins { res := make([]Coin, 0, len(coins)) for _, coin := range coins { res = append(res, Coin{ Denom: coin.Denom, Amount: coin.Amount.Neg(), }) } return res } // removeZeroCoins removes all zero coins from the given coin set in-place. func removeZeroCoins(coins Coins) Coins { i, l := 0, len(coins) for i < l { if coins[i].IsZero() { // remove coin coins = append(coins[:i], coins[i+1:]...) l-- } else { i++ } } return coins[:i] } func copyCoins(coins Coins) Coins { copyCoins := make(Coins, len(coins)) copy(copyCoins, coins) return copyCoins } //----------------------------------------------------------------------------- // Sort interface //nolint func (coins Coins) Len() int { return len(coins) } func (coins Coins) Less(i, j int) bool { return coins[i].Denom < coins[j].Denom } func (coins Coins) Swap(i, j int) { coins[i], coins[j] = coins[j], coins[i] } var _ sort.Interface = Coins{} // Sort is a helper function to sort the set of coins inplace func (coins Coins) Sort() Coins { sort.Sort(coins) return coins } //----------------------------------------------------------------------------- // Parsing var ( // Denominations can be 3 ~ 16 characters long. reDnmString = `[a-z][a-z0-9]{2,15}` reAmt = `[[:digit:]]+` reDecAmt = `[[:digit:]]*\.[[:digit:]]+` reSpc = `[[:space:]]*` reDnm = regexp.MustCompile(fmt.Sprintf(`^%s$`, reDnmString)) reCoin = regexp.MustCompile(fmt.Sprintf(`^(%s)%s(%s)$`, reAmt, reSpc, reDnmString)) reDecCoin = regexp.MustCompile(fmt.Sprintf(`^(%s)%s(%s)$`, reDecAmt, reSpc, reDnmString)) ) func validateDenom(denom string) error { if !reDnm.MatchString(denom) { return fmt.Errorf("invalid denom: %s", denom) } return nil } func mustValidateDenom(denom string) { if err := validateDenom(denom); err != nil { panic(err) } } // ParseCoin parses a cli input for one coin type, returning errors if invalid. // This returns an error on an empty string as well. func ParseCoin(coinStr string) (coin Coin, err error) { coinStr = strings.TrimSpace(coinStr) matches := reCoin.FindStringSubmatch(coinStr) if matches == nil { return Coin{}, fmt.Errorf("invalid coin expression: %s", coinStr) } denomStr, amountStr := matches[2], matches[1] amount, ok := NewIntFromString(amountStr) if !ok { return Coin{}, fmt.Errorf("failed to parse coin amount: %s", amountStr) } if err := validateDenom(denomStr); err != nil { return Coin{}, fmt.Errorf("invalid denom cannot contain upper case characters or spaces: %s", err) } return NewCoin(denomStr, amount), nil } // ParseCoins will parse out a list of coins separated by commas. // If nothing is provided, it returns nil Coins. // Returned coins are sorted. func ParseCoins(coinsStr string) (Coins, error) { coinsStr = strings.TrimSpace(coinsStr) if len(coinsStr) == 0 { return nil, nil } coinStrs := strings.Split(coinsStr, ",") coins := make(Coins, len(coinStrs)) for i, coinStr := range coinStrs { coin, err := ParseCoin(coinStr) if err != nil { return nil, err } coins[i] = coin } // sort coins for determinism coins.Sort() // validate coins before returning if !coins.IsValid() { return nil, fmt.Errorf("parseCoins invalid: %#v", coins) } return coins, nil } // findDup works on the assumption that coins is sorted func findDup(coins Coins) int { if len(coins) <= 1 { return -1 } prevDenom := coins[0] for i := 1; i < len(coins); i++ { if coins[i] == prevDenom { return i } } return -1 }