cosmos-sdk/x/auth/ante.go

310 lines
9.7 KiB
Go

package auth
import (
"bytes"
"encoding/hex"
"fmt"
sdk "github.com/cosmos/cosmos-sdk/types"
"github.com/tendermint/tendermint/crypto"
"github.com/tendermint/tendermint/crypto/ed25519"
"github.com/tendermint/tendermint/crypto/secp256k1"
)
const (
memoCostPerByte sdk.Gas = 1
ed25519VerifyCost = 59
secp256k1VerifyCost = 100
maxMemoCharacters = 100
// how much gas = 1 atom
gasPerUnitCost = 1000
)
// NewAnteHandler returns an AnteHandler that checks
// and increments sequence numbers, checks signatures & account numbers,
// and deducts fees from the first signer.
func NewAnteHandler(am AccountMapper, fck FeeCollectionKeeper) sdk.AnteHandler {
return func(
ctx sdk.Context, tx sdk.Tx, simulate bool,
) (newCtx sdk.Context, res sdk.Result, abort bool) {
// This AnteHandler requires Txs to be StdTxs
stdTx, ok := tx.(StdTx)
if !ok {
return ctx, sdk.ErrInternal("tx must be StdTx").Result(), true
}
// Ensure that the provided fees meet a minimum threshold for the validator, if this is a CheckTx.
// This is only for local mempool purposes, and thus is only ran on check tx.
if ctx.IsCheckTx() && !simulate {
res := ensureSufficientMempoolFees(ctx, stdTx)
if !res.IsOK() {
return newCtx, res, true
}
}
newCtx = setGasMeter(simulate, ctx, stdTx)
// AnteHandlers must have their own defer/recover in order
// for the BaseApp to know how much gas was used!
// This is because the GasMeter is created in the AnteHandler,
// but if it panics the context won't be set properly in runTx's recover ...
defer func() {
if r := recover(); r != nil {
switch rType := r.(type) {
case sdk.ErrorOutOfGas:
log := fmt.Sprintf("out of gas in location: %v", rType.Descriptor)
res = sdk.ErrOutOfGas(log).Result()
res.GasWanted = stdTx.Fee.Gas
res.GasUsed = newCtx.GasMeter().GasConsumed()
abort = true
default:
panic(r)
}
}
}()
err := validateBasic(stdTx)
if err != nil {
return newCtx, err.Result(), true
}
// charge gas for the memo
newCtx.GasMeter().ConsumeGas(memoCostPerByte*sdk.Gas(len(stdTx.GetMemo())), "memo")
// stdSigs contains the sequence number, account number, and signatures
stdSigs := stdTx.GetSignatures() // When simulating, this would just be a 0-length slice.
signerAddrs := stdTx.GetSigners()
// create the list of all sign bytes
signBytesList := getSignBytesList(newCtx.ChainID(), stdTx, stdSigs)
signerAccs, res := getSignerAccs(newCtx, am, signerAddrs)
if !res.IsOK() {
return newCtx, res, true
}
res = validateAccNumAndSequence(ctx, signerAccs, stdSigs)
if !res.IsOK() {
return newCtx, res, true
}
// first sig pays the fees
if !stdTx.Fee.Amount.IsZero() {
// signerAccs[0] is the fee payer
signerAccs[0], res = deductFees(signerAccs[0], stdTx.Fee)
if !res.IsOK() {
return newCtx, res, true
}
fck.AddCollectedFees(newCtx, stdTx.Fee.Amount)
}
for i := 0; i < len(stdSigs); i++ {
// check signature, return account with incremented nonce
signerAccs[i], res = processSig(newCtx, signerAccs[i], stdSigs[i], signBytesList[i], simulate)
if !res.IsOK() {
return newCtx, res, true
}
// Save the account.
am.SetAccount(newCtx, signerAccs[i])
}
// cache the signer accounts in the context
newCtx = WithSigners(newCtx, signerAccs)
// TODO: tx tags (?)
return newCtx, sdk.Result{GasWanted: stdTx.Fee.Gas}, false // continue...
}
}
// Validate the transaction based on things that don't depend on the context
func validateBasic(tx StdTx) (err sdk.Error) {
// Assert that there are signatures.
sigs := tx.GetSignatures()
if len(sigs) == 0 {
return sdk.ErrUnauthorized("no signers")
}
// Assert that number of signatures is correct.
var signerAddrs = tx.GetSigners()
if len(sigs) != len(signerAddrs) {
return sdk.ErrUnauthorized("wrong number of signers")
}
memo := tx.GetMemo()
if len(memo) > maxMemoCharacters {
return sdk.ErrMemoTooLarge(
fmt.Sprintf("maximum number of characters is %d but received %d characters",
maxMemoCharacters, len(memo)))
}
return nil
}
func getSignerAccs(ctx sdk.Context, am AccountMapper, addrs []sdk.AccAddress) (accs []Account, res sdk.Result) {
accs = make([]Account, len(addrs))
for i := 0; i < len(accs); i++ {
accs[i] = am.GetAccount(ctx, addrs[i])
if accs[i] == nil {
return nil, sdk.ErrUnknownAddress(addrs[i].String()).Result()
}
}
return
}
func validateAccNumAndSequence(ctx sdk.Context, accs []Account, sigs []StdSignature) sdk.Result {
for i := 0; i < len(accs); i++ {
// On InitChain, make sure account number == 0
if ctx.BlockHeight() == 0 && sigs[i].AccountNumber != 0 {
return sdk.ErrInvalidSequence(
fmt.Sprintf("Invalid account number for BlockHeight == 0. Got %d, expected 0", sigs[i].AccountNumber)).Result()
}
// Check account number.
accnum := accs[i].GetAccountNumber()
if ctx.BlockHeight() != 0 && accnum != sigs[i].AccountNumber {
return sdk.ErrInvalidSequence(
fmt.Sprintf("Invalid account number. Got %d, expected %d", sigs[i].AccountNumber, accnum)).Result()
}
// Check sequence number.
seq := accs[i].GetSequence()
if seq != sigs[i].Sequence {
return sdk.ErrInvalidSequence(
fmt.Sprintf("Invalid sequence. Got %d, expected %d", sigs[i].Sequence, seq)).Result()
}
}
return sdk.Result{}
}
// verify the signature and increment the sequence.
// if the account doesn't have a pubkey, set it.
func processSig(ctx sdk.Context,
acc Account, sig StdSignature, signBytes []byte, simulate bool) (updatedAcc Account, res sdk.Result) {
pubKey, res := processPubKey(acc, sig, simulate)
if !res.IsOK() {
return nil, res
}
err := acc.SetPubKey(pubKey)
if err != nil {
return nil, sdk.ErrInternal("setting PubKey on signer's account").Result()
}
consumeSignatureVerificationGas(ctx.GasMeter(), pubKey)
if !simulate && !pubKey.VerifyBytes(signBytes, sig.Signature) {
return nil, sdk.ErrUnauthorized("signature verification failed").Result()
}
// increment the sequence number
err = acc.SetSequence(acc.GetSequence() + 1)
if err != nil {
// Handle w/ #870
panic(err)
}
return acc, res
}
var dummySecp256k1Pubkey secp256k1.PubKeySecp256k1
func init() {
bz, _ := hex.DecodeString("035AD6810A47F073553FF30D2FCC7E0D3B1C0B74B61A1AAA2582344037151E143A")
copy(dummySecp256k1Pubkey[:], bz)
}
func processPubKey(acc Account, sig StdSignature, simulate bool) (crypto.PubKey, sdk.Result) {
// If pubkey is not known for account,
// set it from the StdSignature.
pubKey := acc.GetPubKey()
if simulate {
// In simulate mode the transaction comes with no signatures, thus
// if the account's pubkey is nil, both signature verification
// and gasKVStore.Set() shall consume the largest amount, i.e.
// it takes more gas to verifiy secp256k1 keys than ed25519 ones.
if pubKey == nil {
return dummySecp256k1Pubkey, sdk.Result{}
}
return pubKey, sdk.Result{}
}
if pubKey == nil {
pubKey = sig.PubKey
if pubKey == nil {
return nil, sdk.ErrInvalidPubKey("PubKey not found").Result()
}
if !bytes.Equal(pubKey.Address(), acc.GetAddress()) {
return nil, sdk.ErrInvalidPubKey(
fmt.Sprintf("PubKey does not match Signer address %v", acc.GetAddress())).Result()
}
}
return pubKey, sdk.Result{}
}
func consumeSignatureVerificationGas(meter sdk.GasMeter, pubkey crypto.PubKey) {
switch pubkey.(type) {
case ed25519.PubKeyEd25519:
meter.ConsumeGas(ed25519VerifyCost, "ante verify: ed25519")
case secp256k1.PubKeySecp256k1:
meter.ConsumeGas(secp256k1VerifyCost, "ante verify: secp256k1")
default:
panic("Unrecognized signature type")
}
}
func adjustFeesByGas(fees sdk.Coins, gas int64) sdk.Coins {
gasCost := gas / gasPerUnitCost
gasFees := make(sdk.Coins, len(fees))
// TODO: Make this not price all coins in the same way
for i := 0; i < len(fees); i++ {
gasFees[i] = sdk.NewInt64Coin(fees[i].Denom, gasCost)
}
return fees.Plus(gasFees)
}
// Deduct the fee from the account.
// We could use the CoinKeeper (in addition to the AccountMapper,
// because the CoinKeeper doesn't give us accounts), but it seems easier to do this.
func deductFees(acc Account, fee StdFee) (Account, sdk.Result) {
coins := acc.GetCoins()
feeAmount := fee.Amount
newCoins := coins.Minus(feeAmount)
if !newCoins.IsNotNegative() {
errMsg := fmt.Sprintf("%s < %s", coins, feeAmount)
return nil, sdk.ErrInsufficientFunds(errMsg).Result()
}
err := acc.SetCoins(newCoins)
if err != nil {
// Handle w/ #870
panic(err)
}
return acc, sdk.Result{}
}
func ensureSufficientMempoolFees(ctx sdk.Context, stdTx StdTx) sdk.Result {
// currently we use a very primitive gas pricing model with a constant gasPrice.
// adjustFeesByGas handles calculating the amount of fees required based on the provided gas.
// TODO: Make the gasPrice not a constant, and account for tx size.
requiredFees := adjustFeesByGas(ctx.MinimumFees(), stdTx.Fee.Gas)
if !ctx.MinimumFees().IsZero() && stdTx.Fee.Amount.IsLT(requiredFees) {
// validators reject any tx from the mempool with less than the minimum fee per gas * gas factor
return sdk.ErrInsufficientFee(fmt.Sprintf(
"insufficient fee, got: %q required: %q", stdTx.Fee.Amount, requiredFees)).Result()
}
return sdk.Result{}
}
func setGasMeter(simulate bool, ctx sdk.Context, stdTx StdTx) sdk.Context {
// set the gas meter
if simulate || ctx.BlockHeight() == 0 {
return ctx.WithGasMeter(sdk.NewInfiniteGasMeter())
}
return ctx.WithGasMeter(sdk.NewGasMeter(stdTx.Fee.Gas))
}
func getSignBytesList(chainID string, stdTx StdTx, stdSigs []StdSignature) (signatureBytesList [][]byte) {
signatureBytesList = make([][]byte, len(stdSigs))
for i := 0; i < len(stdSigs); i++ {
signatureBytesList[i] = StdSignBytes(chainID,
stdSigs[i].AccountNumber, stdSigs[i].Sequence,
stdTx.Fee, stdTx.Msgs, stdTx.Memo)
}
return
}