cosmos-sdk/x/capability/keeper/keeper.go

490 lines
18 KiB
Go

package keeper
import (
"fmt"
"strings"
"github.com/tendermint/tendermint/libs/log"
"github.com/cosmos/cosmos-sdk/codec"
"github.com/cosmos/cosmos-sdk/store/prefix"
sdk "github.com/cosmos/cosmos-sdk/types"
sdkerrors "github.com/cosmos/cosmos-sdk/types/errors"
"github.com/cosmos/cosmos-sdk/x/capability/types"
)
type (
// Keeper defines the capability module's keeper. It is responsible for provisioning,
// tracking, and authenticating capabilities at runtime. During application
// initialization, the keeper can be hooked up to modules through unique function
// references so that it can identify the calling module when later invoked.
//
// When the initial state is loaded from disk, the keeper allows the ability to
// create new capability keys for all previously allocated capability identifiers
// (allocated during execution of past transactions and assigned to particular modes),
// and keep them in a memory-only store while the chain is running.
//
// The keeper allows the ability to create scoped sub-keepers which are tied to
// a single specific module.
Keeper struct {
cdc codec.BinaryCodec
storeKey sdk.StoreKey
memKey sdk.StoreKey
capMap map[uint64]*types.Capability
scopedModules map[string]struct{}
sealed bool
}
// ScopedKeeper defines a scoped sub-keeper which is tied to a single specific
// module provisioned by the capability keeper. Scoped keepers must be created
// at application initialization and passed to modules, which can then use them
// to claim capabilities they receive and retrieve capabilities which they own
// by name, in addition to creating new capabilities & authenticating capabilities
// passed by other modules.
ScopedKeeper struct {
cdc codec.BinaryCodec
storeKey sdk.StoreKey
memKey sdk.StoreKey
capMap map[uint64]*types.Capability
module string
}
)
// NewKeeper constructs a new CapabilityKeeper instance and initializes maps
// for capability map and scopedModules map.
func NewKeeper(cdc codec.BinaryCodec, storeKey, memKey sdk.StoreKey) *Keeper {
return &Keeper{
cdc: cdc,
storeKey: storeKey,
memKey: memKey,
capMap: make(map[uint64]*types.Capability),
scopedModules: make(map[string]struct{}),
sealed: false,
}
}
// ScopeToModule attempts to create and return a ScopedKeeper for a given module
// by name. It will panic if the keeper is already sealed or if the module name
// already has a ScopedKeeper.
func (k *Keeper) ScopeToModule(moduleName string) ScopedKeeper {
if k.sealed {
panic("cannot scope to module via a sealed capability keeper")
}
if strings.TrimSpace(moduleName) == "" {
panic("cannot scope to an empty module name")
}
if _, ok := k.scopedModules[moduleName]; ok {
panic(fmt.Sprintf("cannot create multiple scoped keepers for the same module name: %s", moduleName))
}
k.scopedModules[moduleName] = struct{}{}
return ScopedKeeper{
cdc: k.cdc,
storeKey: k.storeKey,
memKey: k.memKey,
capMap: k.capMap,
module: moduleName,
}
}
// Seal seals the keeper to prevent further modules from creating a scoped keeper.
// Seal may be called during app initialization for applications that do not wish to create scoped keepers dynamically.
func (k *Keeper) Seal() {
if k.sealed {
panic("cannot initialize and seal an already sealed capability keeper")
}
k.sealed = true
}
// InitMemStore will assure that the module store is a memory store (it will panic if it's not)
// and willl initialize it. The function is safe to be called multiple times.
// InitMemStore must be called every time the app starts before the keeper is used (so
// `BeginBlock` or `InitChain` - whichever is first). We need access to the store so we
// can't initialize it in a constructor.
func (k *Keeper) InitMemStore(ctx sdk.Context) {
memStore := ctx.KVStore(k.memKey)
memStoreType := memStore.GetStoreType()
if memStoreType != sdk.StoreTypeMemory {
panic(fmt.Sprintf("invalid memory store type; got %s, expected: %s", memStoreType, sdk.StoreTypeMemory))
}
// create context with no block gas meter to ensure we do not consume gas during local initialization logic.
noGasCtx := ctx.WithBlockGasMeter(sdk.NewInfiniteGasMeter())
// check if memory store has not been initialized yet by checking if initialized flag is nil.
if !k.IsInitialized(noGasCtx) {
prefixStore := prefix.NewStore(noGasCtx.KVStore(k.storeKey), types.KeyPrefixIndexCapability)
iterator := sdk.KVStorePrefixIterator(prefixStore, nil)
// initialize the in-memory store for all persisted capabilities
defer iterator.Close()
for ; iterator.Valid(); iterator.Next() {
index := types.IndexFromKey(iterator.Key())
var capOwners types.CapabilityOwners
k.cdc.MustUnmarshal(iterator.Value(), &capOwners)
k.InitializeCapability(noGasCtx, index, capOwners)
}
// set the initialized flag so we don't rerun initialization logic
memStore := noGasCtx.KVStore(k.memKey)
memStore.Set(types.KeyMemInitialized, []byte{1})
}
}
// IsInitialized returns true if the keeper is properly initialized, and false otherwise.
func (k *Keeper) IsInitialized(ctx sdk.Context) bool {
memStore := ctx.KVStore(k.memKey)
return memStore.Get(types.KeyMemInitialized) != nil
}
// InitializeIndex sets the index to one (or greater) in InitChain according
// to the GenesisState. It must only be called once.
// It will panic if the provided index is 0, or if the index is already set.
func (k Keeper) InitializeIndex(ctx sdk.Context, index uint64) error {
if index == 0 {
panic("SetIndex requires index > 0")
}
latest := k.GetLatestIndex(ctx)
if latest > 0 {
panic("SetIndex requires index to not be set")
}
// set the global index to the passed index
store := ctx.KVStore(k.storeKey)
store.Set(types.KeyIndex, types.IndexToKey(index))
return nil
}
// GetLatestIndex returns the latest index of the CapabilityKeeper
func (k Keeper) GetLatestIndex(ctx sdk.Context) uint64 {
store := ctx.KVStore(k.storeKey)
return types.IndexFromKey(store.Get(types.KeyIndex))
}
// SetOwners set the capability owners to the store
func (k Keeper) SetOwners(ctx sdk.Context, index uint64, owners types.CapabilityOwners) {
prefixStore := prefix.NewStore(ctx.KVStore(k.storeKey), types.KeyPrefixIndexCapability)
indexKey := types.IndexToKey(index)
// set owners in persistent store
prefixStore.Set(indexKey, k.cdc.MustMarshal(&owners))
}
// GetOwners returns the capability owners with a given index.
func (k Keeper) GetOwners(ctx sdk.Context, index uint64) (types.CapabilityOwners, bool) {
prefixStore := prefix.NewStore(ctx.KVStore(k.storeKey), types.KeyPrefixIndexCapability)
indexKey := types.IndexToKey(index)
// get owners for index from persistent store
ownerBytes := prefixStore.Get(indexKey)
if ownerBytes == nil {
return types.CapabilityOwners{}, false
}
var owners types.CapabilityOwners
k.cdc.MustUnmarshal(ownerBytes, &owners)
return owners, true
}
// InitializeCapability takes in an index and an owners array. It creates the capability in memory
// and sets the fwd and reverse keys for each owner in the memstore.
// It is used during initialization from genesis.
func (k Keeper) InitializeCapability(ctx sdk.Context, index uint64, owners types.CapabilityOwners) {
memStore := ctx.KVStore(k.memKey)
cap := types.NewCapability(index)
for _, owner := range owners.Owners {
// Set the forward mapping between the module and capability tuple and the
// capability name in the memKVStore
memStore.Set(types.FwdCapabilityKey(owner.Module, cap), []byte(owner.Name))
// Set the reverse mapping between the module and capability name and the
// index in the in-memory store. Since marshalling and unmarshalling into a store
// will change memory address of capability, we simply store index as value here
// and retrieve the in-memory pointer to the capability from our map
memStore.Set(types.RevCapabilityKey(owner.Module, owner.Name), sdk.Uint64ToBigEndian(index))
// Set the mapping from index from index to in-memory capability in the go map
k.capMap[index] = cap
}
}
// NewCapability attempts to create a new capability with a given name. If the
// capability already exists in the in-memory store, an error will be returned.
// Otherwise, a new capability is created with the current global unique index.
// The newly created capability has the scoped module name and capability name
// tuple set as the initial owner. Finally, the global index is incremented along
// with forward and reverse indexes set in the in-memory store.
//
// Note, namespacing is completely local, which is safe since records are prefixed
// with the module name and no two ScopedKeeper can have the same module name.
func (sk ScopedKeeper) NewCapability(ctx sdk.Context, name string) (*types.Capability, error) {
if strings.TrimSpace(name) == "" {
return nil, sdkerrors.Wrap(types.ErrInvalidCapabilityName, "capability name cannot be empty")
}
store := ctx.KVStore(sk.storeKey)
if _, ok := sk.GetCapability(ctx, name); ok {
return nil, sdkerrors.Wrapf(types.ErrCapabilityTaken, fmt.Sprintf("module: %s, name: %s", sk.module, name))
}
// create new capability with the current global index
index := types.IndexFromKey(store.Get(types.KeyIndex))
cap := types.NewCapability(index)
// update capability owner set
if err := sk.addOwner(ctx, cap, name); err != nil {
return nil, err
}
// increment global index
store.Set(types.KeyIndex, types.IndexToKey(index+1))
memStore := ctx.KVStore(sk.memKey)
// Set the forward mapping between the module and capability tuple and the
// capability name in the memKVStore
memStore.Set(types.FwdCapabilityKey(sk.module, cap), []byte(name))
// Set the reverse mapping between the module and capability name and the
// index in the in-memory store. Since marshalling and unmarshalling into a store
// will change memory address of capability, we simply store index as value here
// and retrieve the in-memory pointer to the capability from our map
memStore.Set(types.RevCapabilityKey(sk.module, name), sdk.Uint64ToBigEndian(index))
// Set the mapping from index from index to in-memory capability in the go map
sk.capMap[index] = cap
logger(ctx).Info("created new capability", "module", sk.module, "name", name)
return cap, nil
}
// AuthenticateCapability attempts to authenticate a given capability and name
// from a caller. It allows for a caller to check that a capability does in fact
// correspond to a particular name. The scoped keeper will lookup the capability
// from the internal in-memory store and check against the provided name. It returns
// true upon success and false upon failure.
//
// Note, the capability's forward mapping is indexed by a string which should
// contain its unique memory reference.
func (sk ScopedKeeper) AuthenticateCapability(ctx sdk.Context, cap *types.Capability, name string) bool {
if strings.TrimSpace(name) == "" || cap == nil {
return false
}
return sk.GetCapabilityName(ctx, cap) == name
}
// ClaimCapability attempts to claim a given Capability. The provided name and
// the scoped module's name tuple are treated as the owner. It will attempt
// to add the owner to the persistent set of capability owners for the capability
// index. If the owner already exists, it will return an error. Otherwise, it will
// also set a forward and reverse index for the capability and capability name.
func (sk ScopedKeeper) ClaimCapability(ctx sdk.Context, cap *types.Capability, name string) error {
if cap == nil {
return sdkerrors.Wrap(types.ErrNilCapability, "cannot claim nil capability")
}
if strings.TrimSpace(name) == "" {
return sdkerrors.Wrap(types.ErrInvalidCapabilityName, "capability name cannot be empty")
}
// update capability owner set
if err := sk.addOwner(ctx, cap, name); err != nil {
return err
}
memStore := ctx.KVStore(sk.memKey)
// Set the forward mapping between the module and capability tuple and the
// capability name in the memKVStore
memStore.Set(types.FwdCapabilityKey(sk.module, cap), []byte(name))
// Set the reverse mapping between the module and capability name and the
// index in the in-memory store. Since marshalling and unmarshalling into a store
// will change memory address of capability, we simply store index as value here
// and retrieve the in-memory pointer to the capability from our map
memStore.Set(types.RevCapabilityKey(sk.module, name), sdk.Uint64ToBigEndian(cap.GetIndex()))
logger(ctx).Info("claimed capability", "module", sk.module, "name", name, "capability", cap.GetIndex())
return nil
}
// ReleaseCapability allows a scoped module to release a capability which it had
// previously claimed or created. After releasing the capability, if no more
// owners exist, the capability will be globally removed.
func (sk ScopedKeeper) ReleaseCapability(ctx sdk.Context, cap *types.Capability) error {
if cap == nil {
return sdkerrors.Wrap(types.ErrNilCapability, "cannot release nil capability")
}
name := sk.GetCapabilityName(ctx, cap)
if len(name) == 0 {
return sdkerrors.Wrap(types.ErrCapabilityNotOwned, sk.module)
}
memStore := ctx.KVStore(sk.memKey)
// Delete the forward mapping between the module and capability tuple and the
// capability name in the memKVStore
memStore.Delete(types.FwdCapabilityKey(sk.module, cap))
// Delete the reverse mapping between the module and capability name and the
// index in the in-memory store.
memStore.Delete(types.RevCapabilityKey(sk.module, name))
// remove owner
capOwners := sk.getOwners(ctx, cap)
capOwners.Remove(types.NewOwner(sk.module, name))
prefixStore := prefix.NewStore(ctx.KVStore(sk.storeKey), types.KeyPrefixIndexCapability)
indexKey := types.IndexToKey(cap.GetIndex())
if len(capOwners.Owners) == 0 {
// remove capability owner set
prefixStore.Delete(indexKey)
// since no one owns capability, we can delete capability from map
delete(sk.capMap, cap.GetIndex())
} else {
// update capability owner set
prefixStore.Set(indexKey, sk.cdc.MustMarshal(capOwners))
}
return nil
}
// GetCapability allows a module to fetch a capability which it previously claimed
// by name. The module is not allowed to retrieve capabilities which it does not
// own.
func (sk ScopedKeeper) GetCapability(ctx sdk.Context, name string) (*types.Capability, bool) {
if strings.TrimSpace(name) == "" {
return nil, false
}
memStore := ctx.KVStore(sk.memKey)
key := types.RevCapabilityKey(sk.module, name)
indexBytes := memStore.Get(key)
index := sdk.BigEndianToUint64(indexBytes)
if len(indexBytes) == 0 {
// If a tx failed and NewCapability got reverted, it is possible
// to still have the capability in the go map since changes to
// go map do not automatically get reverted on tx failure,
// so we delete here to remove unnecessary values in map
// TODO: Delete index correctly from capMap by storing some reverse lookup
// in-memory map. Issue: https://github.com/cosmos/cosmos-sdk/issues/7805
return nil, false
}
cap := sk.capMap[index]
if cap == nil {
panic("capability found in memstore is missing from map")
}
return cap, true
}
// GetCapabilityName allows a module to retrieve the name under which it stored a given
// capability given the capability
func (sk ScopedKeeper) GetCapabilityName(ctx sdk.Context, cap *types.Capability) string {
if cap == nil {
return ""
}
memStore := ctx.KVStore(sk.memKey)
return string(memStore.Get(types.FwdCapabilityKey(sk.module, cap)))
}
// GetOwners all the Owners that own the capability associated with the name this ScopedKeeper uses
// to refer to the capability
func (sk ScopedKeeper) GetOwners(ctx sdk.Context, name string) (*types.CapabilityOwners, bool) {
if strings.TrimSpace(name) == "" {
return nil, false
}
cap, ok := sk.GetCapability(ctx, name)
if !ok {
return nil, false
}
prefixStore := prefix.NewStore(ctx.KVStore(sk.storeKey), types.KeyPrefixIndexCapability)
indexKey := types.IndexToKey(cap.GetIndex())
var capOwners types.CapabilityOwners
bz := prefixStore.Get(indexKey)
if len(bz) == 0 {
return nil, false
}
sk.cdc.MustUnmarshal(bz, &capOwners)
return &capOwners, true
}
// LookupModules returns all the module owners for a given capability
// as a string array and the capability itself.
// The method returns an error if either the capability or the owners cannot be
// retreived from the memstore.
func (sk ScopedKeeper) LookupModules(ctx sdk.Context, name string) ([]string, *types.Capability, error) {
if strings.TrimSpace(name) == "" {
return nil, nil, sdkerrors.Wrap(types.ErrInvalidCapabilityName, "cannot lookup modules with empty capability name")
}
cap, ok := sk.GetCapability(ctx, name)
if !ok {
return nil, nil, sdkerrors.Wrap(types.ErrCapabilityNotFound, name)
}
capOwners, ok := sk.GetOwners(ctx, name)
if !ok {
return nil, nil, sdkerrors.Wrap(types.ErrCapabilityOwnersNotFound, name)
}
mods := make([]string, len(capOwners.Owners))
for i, co := range capOwners.Owners {
mods[i] = co.Module
}
return mods, cap, nil
}
func (sk ScopedKeeper) addOwner(ctx sdk.Context, cap *types.Capability, name string) error {
prefixStore := prefix.NewStore(ctx.KVStore(sk.storeKey), types.KeyPrefixIndexCapability)
indexKey := types.IndexToKey(cap.GetIndex())
capOwners := sk.getOwners(ctx, cap)
if err := capOwners.Set(types.NewOwner(sk.module, name)); err != nil {
return err
}
// update capability owner set
prefixStore.Set(indexKey, sk.cdc.MustMarshal(capOwners))
return nil
}
func (sk ScopedKeeper) getOwners(ctx sdk.Context, cap *types.Capability) *types.CapabilityOwners {
prefixStore := prefix.NewStore(ctx.KVStore(sk.storeKey), types.KeyPrefixIndexCapability)
indexKey := types.IndexToKey(cap.GetIndex())
bz := prefixStore.Get(indexKey)
if len(bz) == 0 {
return types.NewCapabilityOwners()
}
var capOwners types.CapabilityOwners
sk.cdc.MustUnmarshal(bz, &capOwners)
return &capOwners
}
func logger(ctx sdk.Context) log.Logger {
return ctx.Logger().With("module", fmt.Sprintf("x/%s", types.ModuleName))
}