wormhole/sdk/vaa/structs.go

1046 lines
28 KiB
Go

package vaa
import (
"bytes"
"crypto/ecdsa"
"encoding"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"math/big"
"strings"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
)
type (
// VAA is a verifiable action approval of the Wormhole protocol
VAA struct {
// Version of the VAA schema
Version uint8
// GuardianSetIndex is the index of the guardian set that signed this VAA
GuardianSetIndex uint32
// SignatureData is the signature of the guardian set
Signatures []*Signature
// Timestamp when the VAA was created
Timestamp time.Time
// Nonce of the VAA
Nonce uint32
// Sequence of the VAA
Sequence uint64
/// ConsistencyLevel of the VAA
ConsistencyLevel uint8
// EmitterChain the VAA was emitted on
EmitterChain ChainID
// EmitterAddress of the contract that emitted the Message
EmitterAddress Address
// Payload of the message
Payload []byte
}
BatchVAA struct {
// Version of the VAA schema
Version uint8
// GuardianSetIndex is the index of the guardian set that signed this VAA
GuardianSetIndex uint32
// SignatureData is the signature of the guardian set
Signatures []*Signature
// EmitterChain the VAAs were emitted on
EmitterChain ChainID
// The chain-native identifier of the transaction that created the batch VAA.
TransactionID common.Hash
// array of Observation VAA hashes
Hashes []common.Hash
// Observations in the batch
Observations []*Observation
}
// ChainID of a Wormhole chain
ChainID uint16
// Action of a VAA
Action uint8
// Address is a Wormhole protocol address, it contains the native chain's address. If the address data type of a
// chain is < 32bytes the value is zero-padded on the left.
Address [32]byte
// Signature of a single guardian
Signature struct {
// Index of the validator
Index uint8
// Signature data
Signature SignatureData
}
SignatureData [65]byte
Observation struct {
// Index of the observation in a Batch array
Index uint8
// Signed Observation data
Observation *VAA
}
TransferPayloadHdr struct {
Type uint8
Amount *big.Int
OriginAddress Address
OriginChain ChainID
TargetAddress Address
TargetChain ChainID
}
// Attestation interface contains the methods common to all VAA types
Attestation interface {
encoding.BinaryMarshaler
encoding.BinaryUnmarshaler
serializeBody()
signingBody() []byte
SigningMsg() common.Hash
VerifySignatures(addrs []common.Address) bool
UniqueID() string
HexDigest() string
AddSignature(key *ecdsa.PrivateKey, index uint8)
GetEmitterChain() ChainID
}
)
const (
ConsistencyLevelPublishImmediately = uint8(200)
ConsistencyLevelSafe = uint8(201)
)
func (a Address) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%s"`, a)), nil
}
func (a Address) String() string {
return hex.EncodeToString(a[:])
}
func (a Address) Bytes() []byte {
return a[:]
}
func (a SignatureData) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%s"`, a)), nil
}
func (a SignatureData) String() string {
return hex.EncodeToString(a[:])
}
func (c ChainID) String() string {
switch c {
case ChainIDUnset:
return "unset"
case ChainIDSolana:
return "solana"
case ChainIDEthereum:
return "ethereum"
case ChainIDTerra:
return "terra"
case ChainIDBSC:
return "bsc"
case ChainIDPolygon:
return "polygon"
case ChainIDAvalanche:
return "avalanche"
case ChainIDOasis:
return "oasis"
case ChainIDAurora:
return "aurora"
case ChainIDFantom:
return "fantom"
case ChainIDAlgorand:
return "algorand"
case ChainIDNear:
return "near"
case ChainIDAptos:
return "aptos"
case ChainIDSui:
return "sui"
case ChainIDKarura:
return "karura"
case ChainIDAcala:
return "acala"
case ChainIDKlaytn:
return "klaytn"
case ChainIDCelo:
return "celo"
case ChainIDMoonbeam:
return "moonbeam"
case ChainIDNeon:
return "neon"
case ChainIDTerra2:
return "terra2"
case ChainIDInjective:
return "injective"
case ChainIDArbitrum:
return "arbitrum"
case ChainIDOptimism:
return "optimism"
case ChainIDPythNet:
return "pythnet"
case ChainIDWormchain:
return "wormchain"
case ChainIDXpla:
return "xpla"
case ChainIDBtc:
return "btc"
default:
return fmt.Sprintf("unknown chain ID: %d", c)
}
}
func ChainIDFromString(s string) (ChainID, error) {
s = strings.ToLower(s)
switch s {
case "solana":
return ChainIDSolana, nil
case "ethereum":
return ChainIDEthereum, nil
case "terra":
return ChainIDTerra, nil
case "bsc":
return ChainIDBSC, nil
case "polygon":
return ChainIDPolygon, nil
case "avalanche":
return ChainIDAvalanche, nil
case "oasis":
return ChainIDOasis, nil
case "aurora":
return ChainIDAurora, nil
case "fantom":
return ChainIDFantom, nil
case "algorand":
return ChainIDAlgorand, nil
case "near":
return ChainIDNear, nil
case "sui":
return ChainIDSui, nil
case "aptos":
return ChainIDAptos, nil
case "karura":
return ChainIDKarura, nil
case "acala":
return ChainIDAcala, nil
case "klaytn":
return ChainIDKlaytn, nil
case "celo":
return ChainIDCelo, nil
case "moonbeam":
return ChainIDMoonbeam, nil
case "neon":
return ChainIDNeon, nil
case "terra2":
return ChainIDTerra2, nil
case "injective":
return ChainIDInjective, nil
case "arbitrum":
return ChainIDArbitrum, nil
case "optimism":
return ChainIDOptimism, nil
case "pythnet":
return ChainIDPythNet, nil
case "wormchain":
return ChainIDWormchain, nil
case "xpla":
return ChainIDXpla, nil
case "btc":
return ChainIDBtc, nil
default:
return ChainIDUnset, fmt.Errorf("unknown chain ID: %s", s)
}
}
const (
ChainIDUnset ChainID = 0
// ChainIDSolana is the ChainID of Solana
ChainIDSolana ChainID = 1
// ChainIDEthereum is the ChainID of Ethereum
ChainIDEthereum ChainID = 2
// ChainIDTerra is the ChainID of Terra
ChainIDTerra ChainID = 3
// ChainIDBSC is the ChainID of Binance Smart Chain
ChainIDBSC ChainID = 4
// ChainIDPolygon is the ChainID of Polygon
ChainIDPolygon ChainID = 5
// ChainIDAvalanche is the ChainID of Avalanche
ChainIDAvalanche ChainID = 6
// ChainIDOasis is the ChainID of Oasis
ChainIDOasis ChainID = 7
// ChainIDAlgorand is the ChainID of Algorand
ChainIDAlgorand ChainID = 8
// ChainIDAurora is the ChainID of Aurora
ChainIDAurora ChainID = 9
// ChainIDFantom is the ChainID of Fantom
ChainIDFantom ChainID = 10
// ChainIDKarura is the ChainID of Karura
ChainIDKarura ChainID = 11
// ChainIDAcala is the ChainID of Acala
ChainIDAcala ChainID = 12
// ChainIDKlaytn is the ChainID of Klaytn
ChainIDKlaytn ChainID = 13
// ChainIDCelo is the ChainID of Celo
ChainIDCelo ChainID = 14
// ChainIDNear is the ChainID of Near
ChainIDNear ChainID = 15
// ChainIDMoonbeam is the ChainID of Moonbeam
ChainIDMoonbeam ChainID = 16
// ChainIDNeon is the ChainID of Neon
ChainIDNeon ChainID = 17
// ChainIDTerra2 is the ChainID of Terra 2
ChainIDTerra2 ChainID = 18
// ChainIDInjective is the ChainID of Injective
ChainIDInjective ChainID = 19
// ChainIDSui is the ChainID of Sui
ChainIDSui ChainID = 21
// ChainIDAptos is the ChainID of Aptos
ChainIDAptos ChainID = 22
// ChainIDArbitrum is the ChainID of Arbitrum
ChainIDArbitrum ChainID = 23
// ChainIDOptimism is the ChainID of Optimism
ChainIDOptimism ChainID = 24
// ChainIDPythNet is the ChainID of PythNet
ChainIDPythNet ChainID = 26
// ChainIDXpla is the ChainID of Xpla
ChainIDXpla ChainID = 28
//ChainIDBtc is the ChainID of Bitcoin
ChainIDBtc ChainID = 29
//ChainIDWormchain is the ChainID of Wormchain
ChainIDWormchain ChainID = 3104
// Minimum VAA size is derrived from the following assumptions:
// HEADER
// - Supported VAA Version (1 byte)
// - Guardian Set Index (4 bytes)
// - Length of Signatures (1 byte) <== assume no signatures
// - Actual Signatures (0 bytes)
// BODY
// - timestamp (4 bytes)
// - nonce (4 bytes)
// - emitter chain (2 bytes)
// - emitter address (32 bytes)
// - sequence (8 bytes)
// - consistency level (1 byte)
// - payload (0 bytes)
// BATCH
// - Length of Observation Hashes (1 byte) <== minimum one
// - Observation Hash (32 bytes)
// - Length of Observations (1 byte) <== minimum one
// - Observation Index (1 byte)
// - Observation Length (1 byte)
// - Observation, aka BODY, aka Headless (51 bytes)
// From Above:
// HEADER: 1 + 4 + 1 + 0 = 6
// BODY: 4 + 4 + 2 + 32 + 8 + 1 + 0 = 51
// BATCH: 1 + 32 + 1 + 1 + 1 + 51 = 88
//
// More details here: https://docs.wormholenetwork.com/wormhole/vaas
minHeadlessVAALength = 51 // HEADER
minVAALength = 57 // HEADER + BODY
minBatchVAALength = 94 // HEADER + BATCH
SupportedVAAVersion = 0x01
BatchVAAVersion = 0x02
InternalTruncatedPayloadSafetyLimit = 1000
)
// UnmarshalBody deserializes the binary representation of a VAA's "BODY" properties
// The BODY fields are common among multiple types of VAA - v1, v2 (BatchVAA), etc
//
// WARNING: UnmarshallBody will truncate payloads at 1000 bytes, this is done mainly to avoid denial of service
// - If you need to access the full payload, consider parsing VAA from Bytes instead of Unmarshal
func UnmarshalBody(data []byte, reader *bytes.Reader, v *VAA) (*VAA, error) {
unixSeconds := uint32(0)
if err := binary.Read(reader, binary.BigEndian, &unixSeconds); err != nil {
return nil, fmt.Errorf("failed to read timestamp: %w", err)
}
v.Timestamp = time.Unix(int64(unixSeconds), 0)
if err := binary.Read(reader, binary.BigEndian, &v.Nonce); err != nil {
return nil, fmt.Errorf("failed to read nonce: %w", err)
}
if err := binary.Read(reader, binary.BigEndian, &v.EmitterChain); err != nil {
return nil, fmt.Errorf("failed to read emitter chain: %w", err)
}
emitterAddress := Address{}
if n, err := reader.Read(emitterAddress[:]); err != nil || n != 32 {
return nil, fmt.Errorf("failed to read emitter address [%d]: %w", n, err)
}
v.EmitterAddress = emitterAddress
if err := binary.Read(reader, binary.BigEndian, &v.Sequence); err != nil {
return nil, fmt.Errorf("failed to read sequence: %w", err)
}
if err := binary.Read(reader, binary.BigEndian, &v.ConsistencyLevel); err != nil {
return nil, fmt.Errorf("failed to read commitment: %w", err)
}
// Make sure to only read the payload if the VAA has one; VAAs may have a 0 length payload
if reader.Len() != 0 {
payload := make([]byte, InternalTruncatedPayloadSafetyLimit)
n, err := reader.Read(payload)
if err != nil {
return nil, fmt.Errorf("failed to read payload [%d]: %w", n, err)
}
v.Payload = payload[:n]
} else {
v.Payload = []byte{}
}
return v, nil
}
// Unmarshal deserializes the binary representation of a VAA
func Unmarshal(data []byte) (*VAA, error) {
if len(data) < minVAALength {
return nil, fmt.Errorf("VAA is too short")
}
v := &VAA{}
v.Version = data[0]
if v.Version != SupportedVAAVersion {
return nil, fmt.Errorf("unsupported VAA version: %d", v.Version)
}
reader := bytes.NewReader(data[1:])
if err := binary.Read(reader, binary.BigEndian, &v.GuardianSetIndex); err != nil {
return nil, fmt.Errorf("failed to read guardian set index: %w", err)
}
lenSignatures, er := reader.ReadByte()
if er != nil {
return nil, fmt.Errorf("failed to read signature length")
}
v.Signatures = make([]*Signature, lenSignatures)
for i := 0; i < int(lenSignatures); i++ {
index, err := reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("failed to read validator index [%d]", i)
}
signature := [65]byte{}
if n, err := reader.Read(signature[:]); err != nil || n != 65 {
return nil, fmt.Errorf("failed to read signature [%d]: %w", i, err)
}
v.Signatures[i] = &Signature{
Index: index,
Signature: signature,
}
}
return UnmarshalBody(data, reader, v)
}
// UnmarshalBatch deserializes the binary representation of a BatchVAA
func UnmarshalBatch(data []byte) (*BatchVAA, error) {
if len(data) < minBatchVAALength {
return nil, fmt.Errorf("BatchVAA.Observation is too short")
}
v := &BatchVAA{}
v.Version = data[0]
if v.Version != BatchVAAVersion {
return nil, fmt.Errorf("unsupported VAA version: %d", v.Version)
}
reader := bytes.NewReader(data[1:])
if err := binary.Read(reader, binary.BigEndian, &v.GuardianSetIndex); err != nil {
return nil, fmt.Errorf("failed to read guardian set index: %w", err)
}
lenSignatures, er := reader.ReadByte()
if er != nil {
return nil, fmt.Errorf("failed to read signature length")
}
v.Signatures = make([]*Signature, int(lenSignatures))
for i := 0; i < int(lenSignatures); i++ {
index, err := reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("failed to read validator index [%d]", i)
}
signature := [65]byte{}
if n, err := reader.Read(signature[:]); err != nil || n != 65 {
return nil, fmt.Errorf("failed to read signature [%d]: %w", i, err)
}
v.Signatures[i] = &Signature{
Index: uint8(index),
Signature: signature,
}
}
lenHashes, err := reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("failed to read hashes length [%w]", err)
}
numHashes := int(lenHashes)
v.Hashes = make([]common.Hash, numHashes)
for i := 0; i < int(lenHashes); i++ {
hash := [32]byte{}
if n, err := reader.Read(hash[:]); err != nil || n != 32 {
return nil, fmt.Errorf("failed to read hash [%d]: %w", i, err)
}
v.Hashes[i] = common.BytesToHash(hash[:])
}
lenObservations, err := reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("failed to read observations length: %w", err)
}
numObservations := int(lenObservations)
if numHashes != numObservations {
// should never happen, check anyway
return nil, fmt.Errorf(
"failed unmarshaling BatchVAA, observations differs from hashes")
}
v.Observations = make([]*Observation, numObservations)
for i := 0; i < int(lenObservations); i++ {
index, err := reader.ReadByte()
if err != nil {
return nil, fmt.Errorf("failed to read Observation index [%d]: %w", i, err)
}
obsvIndex := uint8(index)
obsvLength := uint32(0)
if err := binary.Read(reader, binary.BigEndian, &obsvLength); err != nil {
return nil, fmt.Errorf("failed to read Observation length: %w", err)
}
numBytes := int(obsvLength)
// ensure numBytes is within expected bounds before allocating arrays
// cannot be negative
if numBytes < 0 {
return nil, fmt.Errorf(
"failed to read Observation index: %v, byte length is negative", i)
}
// cannot be longer than what is left in the array
if numBytes > reader.Len() {
return nil, fmt.Errorf(
"failed to read Observation index: %v, byte length is erroneous", i)
}
obs := make([]byte, numBytes)
if n, err := reader.Read(obs[:]); err != nil || n == 0 {
return nil, fmt.Errorf("failed to read Observation bytes [%d]: %w", n, err)
}
// ensure the observation meets the minimum length of headless VAAs
if len(obs) < minHeadlessVAALength {
return nil, fmt.Errorf(
"BatchVAA.Observation is too short. Index: %v", obsvIndex)
}
// decode the observation, which is just the "BODY" fields of a v1 VAA
headless, err := UnmarshalBody(data, bytes.NewReader(obs[:]), &VAA{})
if err != nil {
return nil, fmt.Errorf("failed to unmarshal Observation VAA. %w", err)
}
// check for malformed data - verify that the hash of the observation matches what was supplied
// the guardian has no interest in or use for observations after the batch has been signed, but still check
obsHash := headless.SigningMsg()
if obsHash != v.Hashes[obsvIndex] {
return nil, fmt.Errorf(
"BatchVAA Observation %v does not match supplied hash", obsvIndex)
}
v.Observations[i] = &Observation{
Index: obsvIndex,
Observation: headless,
}
}
return v, nil
}
// signingBody returns the binary representation of the data that is relevant for signing and verifying the VAA
func (v *VAA) signingBody() []byte {
return v.serializeBody()
}
// signingBody returns the binary representation of the data that is relevant for signing and verifying the VAA
func (v *BatchVAA) signingBody() []byte {
buf := new(bytes.Buffer)
// add the VAA version
MustWrite(buf, binary.BigEndian, v.Version)
// create the hash array from the Observations of the BatchVAA
hashes := v.ObsvHashArray()
MustWrite(buf, binary.BigEndian, hashes)
return buf.Bytes()
}
// SigningMsg returns the hash of the signing body.
func SigningMsg(data []byte) common.Hash {
// In order to save space in the solana signature verification instruction, we hash twice so we only need to pass in
// the first hash (32 bytes) vs the full body data.
return crypto.Keccak256Hash(crypto.Keccak256Hash(data).Bytes())
}
// SigningMsg returns the hash of the signing body. This is used for signature generation and verification
func (v *VAA) SigningMsg() common.Hash {
return SigningMsg(v.signingBody())
}
// SigningMsg returns the hash of the signing body. This is used for signature generation and verification
func (v *BatchVAA) SigningMsg() common.Hash {
return SigningMsg(v.signingBody())
}
// ObsvHashArray creates an array of hashes of Observation.
// hashes in the array have the index position of their Observation.Index.
func (v *BatchVAA) ObsvHashArray() []common.Hash {
hashes := make([]common.Hash, len(v.Observations))
for _, msg := range v.Observations {
obsIndex := msg.Index
hashes[obsIndex] = msg.Observation.SigningMsg()
}
return hashes
}
func VerifySignatures(data []byte, signatures []*Signature, addresses []common.Address) bool {
last_index := -1
signing_addresses := []common.Address{}
for _, sig := range signatures {
if int(sig.Index) >= len(addresses) {
return false
}
// Ensure increasing indexes
if int(sig.Index) <= last_index {
return false
}
last_index = int(sig.Index)
// Get pubKey to determine who signers address
pubKey, err := crypto.Ecrecover(data, sig.Signature[:])
if err != nil {
return false
}
addr := common.BytesToAddress(crypto.Keccak256(pubKey[1:])[12:])
// Ensure this signer is at the correct positional index
if addr != addresses[sig.Index] {
return false
}
// Ensure we never see the same signer twice
for _, signing_address := range signing_addresses {
if signing_address == addr {
return false
}
}
signing_addresses = append(signing_addresses, addr)
}
return true
}
// VerifySignatures verifies the signature of the VAA given the signer addresses.
// Returns true if the signatures were verified successfully.
func (v *VAA) VerifySignatures(addresses []common.Address) bool {
if len(addresses) < len(v.Signatures) {
return false
}
return VerifySignatures(v.SigningMsg().Bytes(), v.Signatures, addresses)
}
// VerifySignatures verifies the signature of the BatchVAA given the signer addresses.
// Returns true if the signatures were verified successfully.
func (v *BatchVAA) VerifySignatures(addresses []common.Address) bool {
if len(addresses) < len(v.Signatures) {
return false
}
return VerifySignatures(v.SigningMsg().Bytes(), v.Signatures, addresses)
}
// Marshal returns the binary representation of the BatchVAA
func (v *BatchVAA) Marshal() ([]byte, error) {
buf := new(bytes.Buffer)
MustWrite(buf, binary.BigEndian, v.Version)
MustWrite(buf, binary.BigEndian, v.GuardianSetIndex)
// Write signatures
MustWrite(buf, binary.BigEndian, uint8(len(v.Signatures)))
for _, sig := range v.Signatures {
MustWrite(buf, binary.BigEndian, sig.Index)
buf.Write(sig.Signature[:])
}
// Write Body
buf.Write(v.serializeBody())
return buf.Bytes(), nil
}
// Serializes the body of the BatchVAA.
func (v *BatchVAA) serializeBody() []byte {
buf := new(bytes.Buffer)
hashes := v.ObsvHashArray()
MustWrite(buf, binary.BigEndian, uint8(len(hashes)))
MustWrite(buf, binary.BigEndian, hashes)
MustWrite(buf, binary.BigEndian, uint8(len(v.Observations)))
for _, obsv := range v.Observations {
MustWrite(buf, binary.BigEndian, uint8(obsv.Index))
obsvBytes := obsv.Observation.serializeBody()
lenBytes := len(obsvBytes)
MustWrite(buf, binary.BigEndian, uint32(lenBytes))
buf.Write(obsvBytes)
}
return buf.Bytes()
}
// Verify is a function on the VAA that takes a complete set of guardian keys as input and attempts certain checks with respect to this guardian.
// Verify will return nil if the VAA passes checks. Otherwise, Verify will return an error containing the text of the first check to fail.
// NOTE: Verify will not work correctly if a subset of the guardian set keys is passed in. The complete guardian set must be passed in.
// Verify does the following checks:
// - If the guardian does not have or know its own guardian set keys, then the VAA cannot be verified.
// - Quorum is calculated on the guardian set passed in and checks if the VAA has enough signatures.
// - The signatures in the VAA is verified against the guardian set keys.
func (v *VAA) Verify(addresses []common.Address) error {
if addresses == nil {
return errors.New("No addresses were provided")
}
// Check if VAA doesn't have any signatures
if len(v.Signatures) == 0 {
return errors.New("VAA was not signed")
}
// Verify VAA has enough signatures for quorum
quorum := CalculateQuorum(len(addresses))
if len(v.Signatures) < quorum {
return errors.New("VAA did not have a quorum")
}
// Verify VAA signatures to prevent a DoS attack on our local store.
if !v.VerifySignatures(addresses) {
return errors.New("VAA had bad signatures")
}
return nil
}
// Marshal returns the binary representation of the VAA
func (v *VAA) Marshal() ([]byte, error) {
buf := new(bytes.Buffer)
MustWrite(buf, binary.BigEndian, v.Version)
MustWrite(buf, binary.BigEndian, v.GuardianSetIndex)
// Write signatures
MustWrite(buf, binary.BigEndian, uint8(len(v.Signatures)))
for _, sig := range v.Signatures {
MustWrite(buf, binary.BigEndian, sig.Index)
buf.Write(sig.Signature[:])
}
// Write Body
buf.Write(v.serializeBody())
return buf.Bytes(), nil
}
// implement encoding.BinaryMarshaler interface for the VAA struct
func (v VAA) MarshalBinary() ([]byte, error) {
return v.Marshal()
}
// implement encoding.BinaryUnmarshaler interface for the VAA struct
func (v *VAA) UnmarshalBinary(data []byte) error {
vaa, err := Unmarshal(data)
if err != nil {
return err
}
// derefernce the stuct created by Unmarshal, and assign it to the method's context
*v = *vaa
return nil
}
// implement encoding.BinaryMarshaler interface for BatchVAA struct
func (b BatchVAA) MarshalBinary() ([]byte, error) {
return b.Marshal()
}
// implement encoding.BinaryUnmarshaler interface for BatchVAA struct
func (b *BatchVAA) UnmarshalBinary(data []byte) error {
batch, err := UnmarshalBatch(data)
if err != nil {
return err
}
// derefernce the stuct created by Unmarshal, and assign it to the method's context
*b = *batch
return nil
}
// MessageID returns a human-readable emitter_chain/emitter_address/sequence tuple.
func (v *VAA) MessageID() string {
return fmt.Sprintf("%d/%s/%d", v.EmitterChain, v.EmitterAddress, v.Sequence)
}
// BatchID returns a human-readable emitter_chain/transaction_hex
func (v *BatchVAA) BatchID() string {
if len(v.Observations) == 0 {
// cant have a batch without Observations, but check just be safe
panic("Cannot create a BatchID from BatchVAA with no Observations.")
}
nonce := v.Observations[0].Observation.Nonce
return fmt.Sprintf("%d/%s/%d", v.EmitterChain, hex.EncodeToString(v.TransactionID.Bytes()), nonce)
}
// UniqueID normalizes the ID of the VAA (any type) for the Attestation interface
// UniqueID returns the MessageID that uniquely identifies the Attestation
func (v *VAA) UniqueID() string {
return v.MessageID()
}
// UniqueID returns the BatchID that uniquely identifies the Attestation
func (b *BatchVAA) UniqueID() string {
return b.BatchID()
}
// GetTransactionID implements the processor.Batch interface for *BatchVAA.
func (v *BatchVAA) GetTransactionID() common.Hash {
return v.TransactionID
}
// HexDigest returns the hex-encoded digest.
func (v *VAA) HexDigest() string {
return hex.EncodeToString(v.SigningMsg().Bytes())
}
// HexDigest returns the hex-encoded digest.
func (b *BatchVAA) HexDigest() string {
return hex.EncodeToString(b.SigningMsg().Bytes())
}
/*
SECURITY: Do not change this code! Changing it could result in two different hashes for
the same observation. But xDapps rely on the hash of an observation for replay protection.
*/
func (v *VAA) serializeBody() []byte {
buf := new(bytes.Buffer)
MustWrite(buf, binary.BigEndian, uint32(v.Timestamp.Unix()))
MustWrite(buf, binary.BigEndian, v.Nonce)
MustWrite(buf, binary.BigEndian, v.EmitterChain)
buf.Write(v.EmitterAddress[:])
MustWrite(buf, binary.BigEndian, v.Sequence)
MustWrite(buf, binary.BigEndian, v.ConsistencyLevel)
buf.Write(v.Payload)
return buf.Bytes()
}
func (v *VAA) AddSignature(key *ecdsa.PrivateKey, index uint8) {
sig, err := crypto.Sign(v.SigningMsg().Bytes(), key)
if err != nil {
panic(err)
}
sigData := [65]byte{}
copy(sigData[:], sig)
v.Signatures = append(v.Signatures, &Signature{
Index: index,
Signature: sigData,
})
}
// creates signature of BatchVAA.Hashes and adds it to BatchVAA.Signatures.
func (v *BatchVAA) AddSignature(key *ecdsa.PrivateKey, index uint8) {
sig, err := crypto.Sign(v.SigningMsg().Bytes(), key)
if err != nil {
panic(err)
}
sigData := [65]byte{}
copy(sigData[:], sig)
v.Signatures = append(v.Signatures, &Signature{
Index: index,
Signature: sigData,
})
}
// NOTE: This function assumes that the caller has verified that the VAA is from the token bridge.
func IsTransfer(payload []byte) bool {
return (len(payload) > 0) && ((payload[0] == 1) || (payload[0] == 3))
}
func DecodeTransferPayloadHdr(payload []byte) (*TransferPayloadHdr, error) {
if !IsTransfer(payload) {
return nil, fmt.Errorf("unsupported payload type")
}
if len(payload) < 101 {
return nil, fmt.Errorf("buffer too short")
}
p := &TransferPayloadHdr{}
// Payload type: payload[0]
p.Type = uint8(payload[0])
// Amount: payload[1] for 32
p.Amount = new(big.Int)
p.Amount.SetBytes(payload[1:33])
reader := bytes.NewReader(payload[33:])
// Origin address: payload[33] for 32
err := binary.Read(reader, binary.BigEndian, &p.OriginAddress)
if err != nil {
return nil, err
}
// Origin chain ID: payload[65] for 2
err = binary.Read(reader, binary.BigEndian, &p.OriginChain)
if err != nil {
return nil, err
}
// Target address: payload[67] for 32
err = binary.Read(reader, binary.BigEndian, &p.TargetAddress)
if err != nil {
return nil, err
}
// Target chain ID: payload[99] for 2
err = binary.Read(reader, binary.BigEndian, &p.TargetChain)
if err != nil {
return nil, err
}
return p, nil
}
// GetEmitterChain implements the processor.Observation interface for *VAA.
func (v *VAA) GetEmitterChain() ChainID {
return v.EmitterChain
}
// GetEmitterChain implements the processor.Batch interface for *BatchVAA.
func (v *BatchVAA) GetEmitterChain() ChainID {
return v.EmitterChain
}
// MustWrite calls binary.Write and panics on errors
func MustWrite(w io.Writer, order binary.ByteOrder, data interface{}) {
if err := binary.Write(w, order, data); err != nil {
panic(fmt.Errorf("failed to write binary data: %v", data).Error())
}
}
// StringToAddress converts a hex-encoded address into a vaa.Address
func StringToAddress(value string) (Address, error) {
var address Address
// Make sure we have enough to decode
if len(value) < 2 {
return address, fmt.Errorf("value must be at least 1 byte")
}
// Trim any preceding "0x" to the address
value = strings.TrimPrefix(value, "0x")
// Decode the string from hex to binary
res, err := hex.DecodeString(value)
if err != nil {
return address, err
}
// Make sure we don't have too many bytes
if len(res) > 32 {
return address, fmt.Errorf("value must be no more than 32 bytes")
}
copy(address[32-len(res):], res)
return address, nil
}
func BytesToAddress(b []byte) (Address, error) {
var address Address
if len(b) > 32 {
return address, fmt.Errorf("value must be no more than 32 bytes")
}
copy(address[32-len(b):], b)
return address, nil
}
// StringToHash converts a hex-encoded string into a common.Hash
func StringToHash(value string) (common.Hash, error) {
var tx common.Hash
// Make sure we have enough to decode
if len(value) < 2 {
return tx, fmt.Errorf("value must be at least 1 byte")
}
// Trim any preceding "0x" to the address
value = strings.TrimPrefix(value, "0x")
res, err := hex.DecodeString(value)
if err != nil {
return tx, err
}
tx = common.BytesToHash(res)
return tx, nil
}
func BytesToHash(b []byte) (common.Hash, error) {
var hash common.Hash
if len(b) > 32 {
return hash, fmt.Errorf("value must be no more than 32 bytes")
}
hash = common.BytesToHash(b)
return hash, nil
}