Arduino-PID-Library/PID_v1.h

158 lines
6.6 KiB
C++

#ifndef PID_v1_h
#define PID_v1_h
#define LIBRARY_VERSION 1.1.1
class PID
{
public:
//Constants used in some of the functions below
#define AUTOMATIC 1
#define MANUAL 0
#define DIRECT 0
#define REVERSE 1
//commonly used functions **************************************************************************
PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and
double, double, double, int); // Setpoint. Initial tuning parameters are also set here
void SetMode(int Mode); // * sets PID to either Manual (0) or Auto (non-0)
bool Compute(); // * performs the PID calculation. it should be
// called every time loop() cycles. ON/OFF and
// calculation frequency can be set using SetMode
// SetSampleTime respectively
void SetOutputLimits(double, double); //clamps the output to a specific range. 0-255 by default, but
//it's likely the user will want to change this depending on
//the application
//available but not commonly used functions ********************************************************
void SetTunings(double, double, // * While most users will set the tunings once in the
double); // constructor, this function gives the user the option
// of changing tunings during runtime for Adaptive control
void SetControllerDirection(int); // * Sets the Direction, or "Action" of the controller. DIRECT
// means the output will increase when error is positive. REVERSE
// means the opposite. it's very unlikely that this will be needed
// once it is set in the constructor.
void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which
// the PID calculation is performed. default is 100
//Display functions ****************************************************************
double GetKp(); // These functions query the pid for interal values.
double GetKi(); // they were created mainly for the pid front-end,
double GetKd(); // where it's important to know what is actually
int GetMode(); // inside the PID.
int GetDirection(); //
private:
void Initialize();
double dispKp; // * we'll hold on to the tuning parameters in user-entered
double dispKi; // format for display purposes
double dispKd; //
double kp; // * (P)roportional Tuning Parameter
double ki; // * (I)ntegral Tuning Parameter
double kd; // * (D)erivative Tuning Parameter
int controllerDirection;
double *myInput; // * Pointers to the Input, Output, and Setpoint variables
double *myOutput; // This creates a hard link between the variables and the
double *mySetpoint; // PID, freeing the user from having to constantly tell us
// what these values are. with pointers we'll just know.
unsigned long lastTime;
double ITerm, lastInput;
unsigned long SampleTime;
double outMin, outMax;
bool inAuto;
};
class integerPID
{
public:
//Constants used in some of the functions below
#define AUTOMATIC 1
#define MANUAL 0
#define DIRECT 0
#define REVERSE 1
//commonly used functions **************************************************************************
integerPID(long*, long*, long*, // * constructor. links the PID to the Input, Output, and
byte, byte, byte, byte); // Setpoint. Initial tuning parameters are also set here
void SetMode(int Mode); // * sets PID to either Manual (0) or Auto (non-0)
bool Compute(); // * performs the PID calculation. it should be
// called every time loop() cycles. ON/OFF and
// calculation frequency can be set using SetMode
// SetSampleTime respectively
void SetOutputLimits(long, long); //clamps the output to a specific range. 0-255 by default, but
//it's likely the user will want to change this depending on
//the application
//available but not commonly used functions ********************************************************
void SetTunings(byte, byte, // * While most users will set the tunings once in the
byte); // constructor, this function gives the user the option
// of changing tunings during runtime for Adaptive control
void SetControllerDirection(byte); // * Sets the Direction, or "Action" of the controller. DIRECT
// means the output will increase when error is positive. REVERSE
// means the opposite. it's very unlikely that this will be needed
// once it is set in the constructor.
void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which
// the PID calculation is performed. default is 100
//Display functions ****************************************************************
byte GetKp(); // These functions query the pid for interal values.
byte GetKi(); // they were created mainly for the pid front-end,
byte GetKd(); // where it's important to know what is actually
int GetMode(); // inside the PID.
int GetDirection(); //
private:
void Initialize();
byte dispKp; // * we'll hold on to the tuning parameters in user-entered
byte dispKi; // format for display purposes
byte dispKd; //
byte kp; // * (P)roportional Tuning Parameter
byte ki; // * (I)ntegral Tuning Parameter
byte kd; // * (D)erivative Tuning Parameter
int controllerDirection;
long *myInput; // * Pointers to the Input, Output, and Setpoint variables
long *myOutput; // This creates a hard link between the variables and the
long *mySetpoint; // PID, freeing the user from having to constantly tell us
// what these values are. with pointers we'll just know.
unsigned long lastTime;
long ITerm, lastInput;
unsigned long SampleTime;
long outMin, outMax;
bool inAuto;
};
#endif