speeduino/speeduino/maths.cpp

30 lines
789 B
C++
Raw Permalink Normal View History

Performance: optimize division (#1082) * Add udiv_32_16 * Apply udiv_32_16() where possible * Convert udiv_32_16 to assembler It's worth 20 loop/s * Remove unused functions * Remove degreesPeruSx2048 - unused * Remove angleToTime - replace with direct calls 1. Drop angleToTime() It's slow, only partially implemented and adds zero value (and has MISRA violations) 2. Consistent function naming 3. Doxygen * triggerPri_Nissan360 shouldn't set timePerDegree. It will be overwritten every loop by doCrankSpeedCalcs() * Use angleToTimeMicroSecPerDegree() instead of timePerDegree No loss in performance Increased injection open/close time accuracy (so unit test values must change) Can remove timePerDegree global. * Hide (encapsulate) crank math globals. * Base all angle to time conversions on decoder computed variables. This is within 2us of the revolution based method and is much faster - which is essentially zero percent change. * Performance: move calculation of degreesPeruSx32768 into decoders. Remove doCrankSpeedCalcs() - it's doing nothing at the moment. * Apply libdivide to triggerSetEndTeeth functions. Since triggerToothAngle is set once at initialization time, we can generate the libdivide struct once and reuse it many times. * Remove lastToothCalcAdvance - unused * Replace 16-bit division with shift * Replace 32-bit divison with 16-bit division * Avoid 32-bit division; use div100() * inline percentage() * Optimize div100() * MISRA fixes * Replace magic numbers with #defs * Replace libdivide structs with inline constants No perf or memory changes * Use fixed types for PWM max count variables * Accurate rounded integer division * Formalise rounding behavior (DIV_ROUND_CORRECT) * Apply DIV_ROUND_CORRECT to DIV_ROUND_CLOSEST(), UDIV_ROUND_CLOSEST(), div100(), div360(), percentage() & halfPercentage() * Add, fix & improve unit tests * Add udiv_32_16_closest() * Perf: Limit percentage calculations to 16-bits * MISRA fixes * Add compare_executiontime() to encapsulate common perf testing code * Signed to unsigned division * Convert ignitionLimits() to an inline function. Slight speed up, probably due to removing multiple evaluations of macro arguments. * Split unit tests up. * udiv_32_16 - check for valid parameters
2023-11-05 14:10:08 -08:00
#include <Arduino.h>
2017-01-18 16:31:05 -08:00
#include "maths.h"
//Generates a random number from 1 to 100 (inclusive).
//The initial seed used is always based on micros(), though this is unlikely to cause an issue as the first run is nearly random itself
//Function requires 4 bytes to store state and seed, but operates very quickly (around 4uS per call)
Performance: optimize division (#1082) * Add udiv_32_16 * Apply udiv_32_16() where possible * Convert udiv_32_16 to assembler It's worth 20 loop/s * Remove unused functions * Remove degreesPeruSx2048 - unused * Remove angleToTime - replace with direct calls 1. Drop angleToTime() It's slow, only partially implemented and adds zero value (and has MISRA violations) 2. Consistent function naming 3. Doxygen * triggerPri_Nissan360 shouldn't set timePerDegree. It will be overwritten every loop by doCrankSpeedCalcs() * Use angleToTimeMicroSecPerDegree() instead of timePerDegree No loss in performance Increased injection open/close time accuracy (so unit test values must change) Can remove timePerDegree global. * Hide (encapsulate) crank math globals. * Base all angle to time conversions on decoder computed variables. This is within 2us of the revolution based method and is much faster - which is essentially zero percent change. * Performance: move calculation of degreesPeruSx32768 into decoders. Remove doCrankSpeedCalcs() - it's doing nothing at the moment. * Apply libdivide to triggerSetEndTeeth functions. Since triggerToothAngle is set once at initialization time, we can generate the libdivide struct once and reuse it many times. * Remove lastToothCalcAdvance - unused * Replace 16-bit division with shift * Replace 32-bit divison with 16-bit division * Avoid 32-bit division; use div100() * inline percentage() * Optimize div100() * MISRA fixes * Replace magic numbers with #defs * Replace libdivide structs with inline constants No perf or memory changes * Use fixed types for PWM max count variables * Accurate rounded integer division * Formalise rounding behavior (DIV_ROUND_CORRECT) * Apply DIV_ROUND_CORRECT to DIV_ROUND_CLOSEST(), UDIV_ROUND_CLOSEST(), div100(), div360(), percentage() & halfPercentage() * Add, fix & improve unit tests * Add udiv_32_16_closest() * Perf: Limit percentage calculations to 16-bits * MISRA fixes * Add compare_executiontime() to encapsulate common perf testing code * Signed to unsigned division * Convert ignitionLimits() to an inline function. Slight speed up, probably due to removing multiple evaluations of macro arguments. * Split unit tests up. * udiv_32_16 - check for valid parameters
2023-11-05 14:10:08 -08:00
static uint8_t a, x, y, z;
uint8_t random1to100()
{
//Check if this is the first time being run. If so, seed the random number generator with micros()
Performance: optimize division (#1082) * Add udiv_32_16 * Apply udiv_32_16() where possible * Convert udiv_32_16 to assembler It's worth 20 loop/s * Remove unused functions * Remove degreesPeruSx2048 - unused * Remove angleToTime - replace with direct calls 1. Drop angleToTime() It's slow, only partially implemented and adds zero value (and has MISRA violations) 2. Consistent function naming 3. Doxygen * triggerPri_Nissan360 shouldn't set timePerDegree. It will be overwritten every loop by doCrankSpeedCalcs() * Use angleToTimeMicroSecPerDegree() instead of timePerDegree No loss in performance Increased injection open/close time accuracy (so unit test values must change) Can remove timePerDegree global. * Hide (encapsulate) crank math globals. * Base all angle to time conversions on decoder computed variables. This is within 2us of the revolution based method and is much faster - which is essentially zero percent change. * Performance: move calculation of degreesPeruSx32768 into decoders. Remove doCrankSpeedCalcs() - it's doing nothing at the moment. * Apply libdivide to triggerSetEndTeeth functions. Since triggerToothAngle is set once at initialization time, we can generate the libdivide struct once and reuse it many times. * Remove lastToothCalcAdvance - unused * Replace 16-bit division with shift * Replace 32-bit divison with 16-bit division * Avoid 32-bit division; use div100() * inline percentage() * Optimize div100() * MISRA fixes * Replace magic numbers with #defs * Replace libdivide structs with inline constants No perf or memory changes * Use fixed types for PWM max count variables * Accurate rounded integer division * Formalise rounding behavior (DIV_ROUND_CORRECT) * Apply DIV_ROUND_CORRECT to DIV_ROUND_CLOSEST(), UDIV_ROUND_CLOSEST(), div100(), div360(), percentage() & halfPercentage() * Add, fix & improve unit tests * Add udiv_32_16_closest() * Perf: Limit percentage calculations to 16-bits * MISRA fixes * Add compare_executiontime() to encapsulate common perf testing code * Signed to unsigned division * Convert ignitionLimits() to an inline function. Slight speed up, probably due to removing multiple evaluations of macro arguments. * Split unit tests up. * udiv_32_16 - check for valid parameters
2023-11-05 14:10:08 -08:00
if( (a == 0U) && (x == 0U) && (y == 0U) && (z == 0U) )
{
Performance: optimize division (#1082) * Add udiv_32_16 * Apply udiv_32_16() where possible * Convert udiv_32_16 to assembler It's worth 20 loop/s * Remove unused functions * Remove degreesPeruSx2048 - unused * Remove angleToTime - replace with direct calls 1. Drop angleToTime() It's slow, only partially implemented and adds zero value (and has MISRA violations) 2. Consistent function naming 3. Doxygen * triggerPri_Nissan360 shouldn't set timePerDegree. It will be overwritten every loop by doCrankSpeedCalcs() * Use angleToTimeMicroSecPerDegree() instead of timePerDegree No loss in performance Increased injection open/close time accuracy (so unit test values must change) Can remove timePerDegree global. * Hide (encapsulate) crank math globals. * Base all angle to time conversions on decoder computed variables. This is within 2us of the revolution based method and is much faster - which is essentially zero percent change. * Performance: move calculation of degreesPeruSx32768 into decoders. Remove doCrankSpeedCalcs() - it's doing nothing at the moment. * Apply libdivide to triggerSetEndTeeth functions. Since triggerToothAngle is set once at initialization time, we can generate the libdivide struct once and reuse it many times. * Remove lastToothCalcAdvance - unused * Replace 16-bit division with shift * Replace 32-bit divison with 16-bit division * Avoid 32-bit division; use div100() * inline percentage() * Optimize div100() * MISRA fixes * Replace magic numbers with #defs * Replace libdivide structs with inline constants No perf or memory changes * Use fixed types for PWM max count variables * Accurate rounded integer division * Formalise rounding behavior (DIV_ROUND_CORRECT) * Apply DIV_ROUND_CORRECT to DIV_ROUND_CLOSEST(), UDIV_ROUND_CLOSEST(), div100(), div360(), percentage() & halfPercentage() * Add, fix & improve unit tests * Add udiv_32_16_closest() * Perf: Limit percentage calculations to 16-bits * MISRA fixes * Add compare_executiontime() to encapsulate common perf testing code * Signed to unsigned division * Convert ignitionLimits() to an inline function. Slight speed up, probably due to removing multiple evaluations of macro arguments. * Split unit tests up. * udiv_32_16 - check for valid parameters
2023-11-05 14:10:08 -08:00
x = micros() >> 24U;
y = micros() >> 16U;
z = micros() >> 8U;
a = micros();
}
do
{
unsigned char t = x ^ (x << 4);
x=y;
y=z;
z=a;
a = z ^ t ^ ( z >> 1) ^ (t << 1);
}
Performance: optimize division (#1082) * Add udiv_32_16 * Apply udiv_32_16() where possible * Convert udiv_32_16 to assembler It's worth 20 loop/s * Remove unused functions * Remove degreesPeruSx2048 - unused * Remove angleToTime - replace with direct calls 1. Drop angleToTime() It's slow, only partially implemented and adds zero value (and has MISRA violations) 2. Consistent function naming 3. Doxygen * triggerPri_Nissan360 shouldn't set timePerDegree. It will be overwritten every loop by doCrankSpeedCalcs() * Use angleToTimeMicroSecPerDegree() instead of timePerDegree No loss in performance Increased injection open/close time accuracy (so unit test values must change) Can remove timePerDegree global. * Hide (encapsulate) crank math globals. * Base all angle to time conversions on decoder computed variables. This is within 2us of the revolution based method and is much faster - which is essentially zero percent change. * Performance: move calculation of degreesPeruSx32768 into decoders. Remove doCrankSpeedCalcs() - it's doing nothing at the moment. * Apply libdivide to triggerSetEndTeeth functions. Since triggerToothAngle is set once at initialization time, we can generate the libdivide struct once and reuse it many times. * Remove lastToothCalcAdvance - unused * Replace 16-bit division with shift * Replace 32-bit divison with 16-bit division * Avoid 32-bit division; use div100() * inline percentage() * Optimize div100() * MISRA fixes * Replace magic numbers with #defs * Replace libdivide structs with inline constants No perf or memory changes * Use fixed types for PWM max count variables * Accurate rounded integer division * Formalise rounding behavior (DIV_ROUND_CORRECT) * Apply DIV_ROUND_CORRECT to DIV_ROUND_CLOSEST(), UDIV_ROUND_CLOSEST(), div100(), div360(), percentage() & halfPercentage() * Add, fix & improve unit tests * Add udiv_32_16_closest() * Perf: Limit percentage calculations to 16-bits * MISRA fixes * Add compare_executiontime() to encapsulate common perf testing code * Signed to unsigned division * Convert ignitionLimits() to an inline function. Slight speed up, probably due to removing multiple evaluations of macro arguments. * Split unit tests up. * udiv_32_16 - check for valid parameters
2023-11-05 14:10:08 -08:00
while(a >= 100U);
return (a+1U);
}