speeduino/cancomms.ino

148 lines
5.5 KiB
C++

/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
can_comms was originally contributed by Darren Siepka
*/
/*
can_command is called when a command is received over serial3 from the Can interface
It parses the command and calls the relevant function
sendcancommand is called when a comman d is to be sent via serial3 to the Can interface
*/
//#include "cancomms.h"
//#include "globals.h"
//#include "storage.h"
void Cancommand()
{
switch (Serial3.read())
{
case 'A': // sends all the bytes of realtime values
sendCanValues();
break;
case 'G': // this is the reply command sent by the Can interface
uint8_t Gdata;
while (Serial3.available() == 0) { }
cancmdfail = Serial3.read();
if (cancmdfail == 0)
{
//command request failed and/or data/device was not available
}
while (Serial3.available() == 0) { }
Gdata= Serial3.read();
break;
case 'L':
uint8_t Llength;
while (Serial3.available() == 0) { }
canlisten = Serial3.read();
if (canlisten == 0)
{
//command request failed and/or data/device was not available
break;
}
while (Serial3.available() == 0) { }
Llength= Serial3.read(); // next the number of bytes expected value
for (uint8_t Lcount = 0; Lcount <Llength ;Lcount++)
{
while (Serial3.available() == 0){}
// receive all x bytes into "Lbuffer"
Lbuffer[Lcount] = Serial3.read();
}
break;
case 'S': // send code version
Serial3.print("Speeduino 2016.09_canio");
currentStatus.secl = 0; //This is required in TS3 due to its stricter timings
break;
case 'Q': // send code version
Serial3.print("speeduino 201609-dev_canio");
break;
default:
break;
}
}
/*
This function returns the current values of a fixed group of variables. if this list is changed so must the list in the Can interface to prevent errors
*/
void sendCanValues()
{
uint8_t packetSize = 34;
uint8_t response[packetSize];
Serial3.write("A"); //confirm cmd type
Serial3.write(packetSize); //confirm no of byte to be sent
//now send the data
response[0] = currentStatus.secl; //secl is simply a counter that increments each second. Used to track unexpected resets (Which will reset this count to 0)
response[1] = currentStatus.squirt; //Squirt Bitfield
response[2] = currentStatus.engine; //Engine Status Bitfield
response[3] = (byte)(divu100(currentStatus.dwell)); //Dwell in ms * 10
response[4] = (byte)(currentStatus.MAP >> 1); //map value is divided by 2
response[5] = (byte)(currentStatus.IAT + CALIBRATION_TEMPERATURE_OFFSET); //mat
response[6] = (byte)(currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET); //Coolant ADC
response[7] = currentStatus.tpsADC; //TPS (Raw 0-255)
response[8] = currentStatus.battery10; //battery voltage
response[9] = currentStatus.O2; //O2
response[10] = currentStatus.egoCorrection; //Exhaust gas correction (%)
response[11] = currentStatus.iatCorrection; //Air temperature Correction (%)
response[12] = currentStatus.wueCorrection; //Warmup enrichment (%)
response[13] = lowByte(currentStatus.RPM); //rpm HB
response[14] = highByte(currentStatus.RPM); //rpm LB
response[15] = currentStatus.TAEamount; //acceleration enrichment (%)
response[16] = 0x00; //Barometer correction (%)
response[17] = currentStatus.corrections; //Total GammaE (%)
response[18] = currentStatus.VE; //Current VE 1 (%)
response[19] = currentStatus.afrTarget;
response[20] = (byte)(currentStatus.PW / 100); //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS.
response[21] = currentStatus.tpsDOT; //TPS DOT
response[22] = currentStatus.advance;
response[23] = currentStatus.TPS; // TPS (0% to 100%)
//Need to split the int loopsPerSecond value into 2 bytes
response[24] = lowByte(currentStatus.loopsPerSecond);
response[25] = highByte(currentStatus.loopsPerSecond);
//The following can be used to show the amount of free memory
currentStatus.freeRAM = freeRam();
response[26] = lowByte(currentStatus.freeRAM); //(byte)((currentStatus.loopsPerSecond >> 8) & 0xFF);
response[27] = highByte(currentStatus.freeRAM);
response[28] = currentStatus.batCorrection; //Battery voltage correction (%)
response[29] = currentStatus.spark; //Spark related bitfield
response[30] = currentStatus.O2_2; //O2
//rpmDOT must be sent as a signed integer
response[31] = lowByte(currentStatus.rpmDOT);
response[32] = highByte(currentStatus.rpmDOT);
response[33] = currentStatus.flex; //Flex sensor value (or 0 if not used)
Serial3.write(response, (size_t)packetSize);
return;
}
// this routine sends a request(either "0" for a "G" or "1" for a "L" to the Can interface
void sendCancommand(uint8_t cmdtype, uint16_t canaddress, uint8_t candata1, uint8_t candata2)
{
switch (cmdtype)
{
case 0:
Serial3.print("G");
Serial3.write(canaddress); //tscanid of speeduino device
Serial3.write(candata1); // table id
Serial3.write(candata2); //table memory offset
break;
case 1: //send request to listen for a can message
Serial3.print("L");
Serial3.write(canaddress); //11 bit canaddress of device to listen for
break;
}
}