hbbft/src/agreement/mod.rs

664 lines
25 KiB
Rust
Raw Normal View History

2018-07-02 06:42:31 -07:00
//! # Binary Byzantine agreement protocol
//!
//! The Binary Agreement protocol allows each node to input one binary (`bool`) value, and will
//! output a binary value. The output is guaranteed to have been input by at least one correct
//! node, and all correct nodes will have the same output.
//!
//! ## How it works
//!
//! The algorithm proceeds in _epochs_, and the number of epochs it takes until it terminates is
//! unbounded in theory but has a finite expected value. Each node keeps track of an _estimate_
//! value `e`, which is initialized to the node's own input. Let's call a value `v`
//! that has been input by at least one correct node and such that `!v` hasn't been _output_ by any
//! correct node yet, a _viable output_. The estimate will always be a viable output.
//!
//! All messages are annotated with the epoch they belong to, but we omit that here for brevity.
//!
//! * At the beginning of each epoch, we multicast `BVal(e)`. It translates to: "I know that `e` is
//! a viable output."
//!
//! * Once we receive `BVal(v)` with the same value from _f + 1_ different validators, we know that
//! at least one of them must be correct. So we know that `v` is a viable output. If we haven't
//! done so already we multicast `BVal(v)`. (Even if we already multicast `BVal(!v)`).
//!
//! * Let's say a node _believes in `v`_ if it received `BVal(v)` from _2 f + 1_ validators.
//! For the _first_ value `v` we believe in, we multicast `Aux(v)`. It translates to:
//! "I know that all correct nodes will eventually know that `v` is a viable output.
//! I'm not sure about `!v` yet."
//!
//! * Since every node will receive at least _2 f + 1_ `BVal` messages from correct validators,
//! there is at least one value `v`, such that every node receives _f + 1_ `BVal(v)` messages.
//! As a consequence, every correct validator will multicast `BVal(v)` itself. Hence we are
//! guaranteed to receive _2 f + 1_ `BVal(v)` messages.
//! In short: If _any_ correct node believes in `v`, _every_ correct node will.
//!
//! * Every correct node will eventually send exactly one `Aux`, so we will receive at least
//! _2 f + 1_ `Aux` messages with values we believe in. At that point, we define the set `vals`
//! of _candidate values_: the set of values we believe in _and_ have received in an `Aux`.
//!
//! * Once we have the set of candidate values, we obtain a _coin value_ `s` (see below).
//!
//! * If there is only a single candidate value `b`, we set our estimate `e = b`. If `s == b`,
//! we _output_ and send a `Term(b)` message which is interpreted as `BVal(b)` and `Aux(b)` for
//! all future epochs. If `s != b`, we just proceed to the next epoch.
//!
//! * If both values are candidates, we set `e = s` and proceed to the next epoch.
//!
//! In epochs that are 0 modulo 3, the value `s` is `true`. In 1 modulo 3, it is `false`. In the
2018-07-05 08:51:55 -07:00
//! case 2 modulo 3, we flip a common coin to determine a pseudorandom `s`.
2018-07-02 06:42:31 -07:00
//!
//! An adversary that knows each coin value, controls a few validators and controls network
//! scheduling can delay the delivery of `Aux` and `BVal` messages to influence which candidate
//! values the nodes will end up with. In some circumstances that allows them to stall the network.
//! This is even true if the coin is flipped too early: the adversary must not learn about the coin
//! value early enough to delay enough `Aux` messages. That's why in the third case, the value `s`
//! is determined as follows:
//!
//! * We multicast a `Conf` message containing our candidate values.
//!
//! * Since every good node believes in all values it puts into its `Conf` message, we will
//! eventually receive _2 f + 1_ `Conf` messages containing only values we believe in. Then we
//! trigger the common coin.
//!
//! * After _f + 1_ nodes have sent us their coin shares, we receive the coin output and assign it
//! to `s`.
2018-05-24 11:11:56 -07:00
pub mod bin_values;
2018-05-24 10:52:58 -07:00
use rand;
use std::collections::{BTreeMap, BTreeSet};
use std::fmt::Debug;
2018-05-23 10:38:33 -07:00
use std::mem::replace;
use std::sync::Arc;
use itertools::Itertools;
2018-05-24 10:52:58 -07:00
use agreement::bin_values::BinValues;
2018-07-19 06:09:50 -07:00
use common_coin::{self, CommonCoin, CommonCoinMessage};
use messaging::{self, DistAlgorithm, NetworkInfo, Target};
2018-05-20 04:51:33 -07:00
error_chain!{
2018-06-08 11:43:27 -07:00
links {
CommonCoin(common_coin::Error, common_coin::ErrorKind);
}
2018-05-20 04:51:33 -07:00
errors {
UnknownProposer {
description("unknown proposer")
}
InputNotAccepted {
description("input not accepted")
}
2018-05-20 04:51:33 -07:00
}
}
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
2018-05-24 10:52:58 -07:00
pub enum AgreementContent {
2018-05-28 03:54:37 -07:00
/// `BVal` message.
2018-05-24 10:52:58 -07:00
BVal(bool),
2018-05-28 03:54:37 -07:00
/// `Aux` message.
2018-05-24 10:52:58 -07:00
Aux(bool),
2018-05-28 03:54:37 -07:00
/// `Conf` message.
2018-05-24 10:52:58 -07:00
Conf(BinValues),
/// `Term` message.
Term(bool),
2018-06-08 11:43:27 -07:00
/// Common Coin message,
Coin(Box<CommonCoinMessage>),
}
impl AgreementContent {
/// Creates an message with a given epoch number.
pub fn with_epoch(self, epoch: u32) -> AgreementMessage {
AgreementMessage {
epoch,
content: self,
}
}
2018-05-23 10:38:33 -07:00
}
2018-05-24 10:52:58 -07:00
/// Messages sent during the binary Byzantine agreement stage.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Rand)]
2018-05-24 10:52:58 -07:00
pub struct AgreementMessage {
2018-05-24 11:11:56 -07:00
pub epoch: u32,
pub content: AgreementContent,
2018-05-23 10:38:33 -07:00
}
// NOTE: Extending rand_derive to correctly generate random values from boxes would make this
// implementation obsolete; however at the time of this writing, `rand::Rand` is already deprecated
// with no replacement in sight.
impl rand::Rand for AgreementContent {
fn rand<R: rand::Rng>(rng: &mut R) -> Self {
let message_type = *rng
.choose(&["bval", "aux", "conf", "term", "coin"])
.unwrap();
match message_type {
"bval" => AgreementContent::BVal(rand::random()),
"aux" => AgreementContent::Aux(rand::random()),
"conf" => AgreementContent::Conf(rand::random()),
"term" => AgreementContent::Term(rand::random()),
"coin" => AgreementContent::Coin(Box::new(rand::random())),
_ => unreachable!(),
}
}
}
/// Possible values of the common coin schedule defining the method to derive the common coin in a
/// given epoch: as a constant value or a distributed computation.
enum CoinSchedule {
False,
True,
Random,
}
/// Binary Agreement instance
pub struct Agreement<NodeUid> {
/// Shared network information.
netinfo: Arc<NetworkInfo<NodeUid>>,
2018-06-14 04:28:38 -07:00
/// Session ID, e.g, the Honey Badger algorithm epoch.
session_id: u64,
/// The ID of the proposer of the value for this agreement instance.
proposer_id: NodeUid,
/// Agreement algorithm epoch.
epoch: u32,
/// Bin values. Reset on every epoch update.
2018-05-23 10:38:33 -07:00
bin_values: BinValues,
2018-05-24 10:52:58 -07:00
/// Values received in `BVal` messages. Reset on every epoch update.
2018-05-23 10:38:33 -07:00
received_bval: BTreeMap<NodeUid, BTreeSet<bool>>,
2018-05-28 03:54:37 -07:00
/// Sent `BVal` values. Reset on every epoch update.
sent_bval: BTreeSet<bool>,
2018-05-24 10:52:58 -07:00
/// Values received in `Aux` messages. Reset on every epoch update.
2018-05-23 10:38:33 -07:00
received_aux: BTreeMap<NodeUid, bool>,
2018-05-28 03:54:37 -07:00
/// Received `Conf` messages. Reset on every epoch update.
2018-05-23 10:38:33 -07:00
received_conf: BTreeMap<NodeUid, BinValues>,
/// Received `Term` messages. Kept throughout epoch updates.
received_term: BTreeMap<NodeUid, bool>,
/// The estimate of the decision value in the current epoch.
estimated: Option<bool>,
/// A permanent, latching copy of the output value. This copy is required because `output` can
/// be consumed using `DistAlgorithm::next_output` immediately after the instance finishing to
/// handle a message, in which case it would otherwise be unknown whether the output value was
/// ever there at all. While the output value will still be required in a later epoch to decide
/// the termination state.
decision: Option<bool>,
/// A cache for messages for future epochs that cannot be handled yet.
// TODO: Find a better solution for this; defend against spam.
incoming_queue: Vec<(NodeUid, AgreementMessage)>,
/// Termination flag. Once the instance determines that all the remote nodes have reached
/// agreement or have the necessary information to reach agreement, it sets the `terminated`
/// flag and accepts no more incoming messages.
terminated: bool,
2018-05-24 10:52:58 -07:00
/// Whether the `Conf` message round has started in the current epoch.
conf_round: bool,
2018-06-08 11:43:27 -07:00
/// A common coin instance. It is reset on epoch update.
common_coin: CommonCoin<NodeUid, Nonce>,
/// Common coin schedule computed at the start of each epoch.
coin_schedule: CoinSchedule,
}
2018-07-19 06:09:50 -07:00
pub type Step<NodeUid> = messaging::Step<Agreement<NodeUid>>;
2018-07-09 04:35:26 -07:00
impl<NodeUid: Clone + Debug + Ord> DistAlgorithm for Agreement<NodeUid> {
type NodeUid = NodeUid;
type Input = bool;
type Output = bool;
type Message = AgreementMessage;
type Error = Error;
2018-07-19 06:09:50 -07:00
fn input(&mut self, input: Self::Input) -> Result<Step<NodeUid>> {
self.set_input(input)
}
/// Receive input from a remote node.
fn handle_message(
&mut self,
sender_id: &Self::NodeUid,
message: Self::Message,
2018-07-19 06:09:50 -07:00
) -> Result<Step<NodeUid>> {
if self.terminated || message.epoch < self.epoch {
2018-07-09 04:35:26 -07:00
// Message is obsolete: We are already in a later epoch or terminated.
Ok(Step::default())
} else if message.epoch > self.epoch {
// Message is for a later epoch. We can't handle that yet.
self.incoming_queue.push((sender_id.clone(), message));
Ok(Step::default())
} else {
match message.content {
AgreementContent::BVal(b) => self.handle_bval(sender_id, b),
AgreementContent::Aux(b) => self.handle_aux(sender_id, b),
AgreementContent::Conf(v) => self.handle_conf(sender_id, v),
AgreementContent::Term(v) => Ok(self.handle_term(sender_id, v)),
AgreementContent::Coin(msg) => self.handle_coin(sender_id, *msg),
}
}
}
/// Whether the algorithm has terminated.
fn terminated(&self) -> bool {
self.terminated
}
fn our_id(&self) -> &Self::NodeUid {
self.netinfo.our_uid()
}
}
impl<NodeUid: Clone + Debug + Ord> Agreement<NodeUid> {
2018-06-14 06:10:05 -07:00
pub fn new(
netinfo: Arc<NetworkInfo<NodeUid>>,
2018-06-14 06:10:05 -07:00
session_id: u64,
proposer_id: NodeUid,
) -> Result<Self> {
let invocation_id = netinfo.invocation_id();
2018-07-17 06:54:12 -07:00
if let Some(proposer_i) = netinfo.node_index(&proposer_id) {
Ok(Agreement {
netinfo: netinfo.clone(),
session_id,
proposer_id,
epoch: 0,
bin_values: BinValues::new(),
received_bval: BTreeMap::new(),
sent_bval: BTreeSet::new(),
received_aux: BTreeMap::new(),
received_conf: BTreeMap::new(),
received_term: BTreeMap::new(),
estimated: None,
decision: None,
incoming_queue: Vec::new(),
terminated: false,
conf_round: false,
common_coin: CommonCoin::new(
netinfo,
Nonce::new(invocation_id.as_ref(), session_id, proposer_i, 0),
),
2018-06-22 09:39:55 -07:00
coin_schedule: CoinSchedule::True,
})
2018-06-14 06:10:05 -07:00
} else {
Err(ErrorKind::UnknownProposer.into())
}
}
/// Sets the input value for agreement.
fn set_input(&mut self, input: bool) -> Result<Step<NodeUid>> {
if self.epoch != 0 || self.estimated.is_some() {
2018-05-20 04:51:33 -07:00
return Err(ErrorKind::InputNotAccepted.into());
}
if self.netinfo.num_nodes() == 1 {
let mut step = self.send_bval(input)?;
step.extend(self.send_aux(input)?);
step.extend(self.decide(input));
Ok(step)
} else {
// Set the initial estimated value to the input value.
self.estimated = Some(input);
// Record the input value as sent.
self.send_bval(input)
}
}
/// Acceptance check to be performed before setting the input value.
pub fn accepts_input(&self) -> bool {
self.epoch == 0 && self.estimated.is_none()
}
fn handle_bval(&mut self, sender_id: &NodeUid, b: bool) -> Result<Step<NodeUid>> {
self.received_bval
.entry(sender_id.clone())
.or_insert_with(BTreeSet::new)
.insert(b);
2018-05-21 02:01:49 -07:00
let count_bval = self
.received_bval
.values()
.filter(|values| values.contains(&b))
.count();
2018-05-24 10:52:58 -07:00
// upon receiving `BVal(b)` messages from 2f + 1 nodes,
// bin_values := bin_values {b}
if count_bval == 2 * self.netinfo.num_faulty() + 1 {
2018-05-23 15:19:48 -07:00
let previous_bin_values = self.bin_values;
2018-05-24 10:52:58 -07:00
let bin_values_changed = self.bin_values.insert(b);
2018-05-24 10:52:58 -07:00
// wait until bin_values != 0, then multicast `Aux(w)`
// where w ∈ bin_values
2018-05-23 10:38:33 -07:00
if previous_bin_values == BinValues::None {
2018-05-24 10:52:58 -07:00
// Send an `Aux` message at most once per epoch.
2018-05-23 10:38:33 -07:00
self.send_aux(b)
2018-05-24 10:52:58 -07:00
} else if bin_values_changed {
self.on_bin_values_changed()
2018-05-23 10:38:33 -07:00
} else {
Ok(Step::default())
}
} else if count_bval == self.netinfo.num_faulty() + 1 && !self.sent_bval.contains(&b) {
2018-05-24 10:52:58 -07:00
// upon receiving `BVal(b)` messages from f + 1 nodes, if
// `BVal(b)` has not been sent, multicast `BVal(b)`
2018-05-23 10:38:33 -07:00
self.send_bval(b)
} else {
Ok(Step::default())
}
}
/// Called when `bin_values` changes as a result of receiving a `BVal` message. Tries to update
/// the epoch.
fn on_bin_values_changed(&mut self) -> Result<Step<NodeUid>> {
match self.coin_schedule {
CoinSchedule::False => {
let (aux_count, aux_vals) = self.count_aux();
if aux_count >= self.netinfo.num_nodes() - self.netinfo.num_faulty() {
self.on_coin(false, aux_vals.definite())
} else {
Ok(Step::default())
}
}
CoinSchedule::True => {
let (aux_count, aux_vals) = self.count_aux();
if aux_count >= self.netinfo.num_nodes() - self.netinfo.num_faulty() {
self.on_coin(true, aux_vals.definite())
} else {
Ok(Step::default())
}
}
CoinSchedule::Random => {
// If the `Conf` round has already started, a change in `bin_values` can lead to its
// end. Try if it has indeed finished.
self.try_finish_conf_round()
}
}
}
fn send_bval(&mut self, b: bool) -> Result<Step<NodeUid>> {
if !self.netinfo.is_validator() {
return Ok(Step::default());
}
// Record the value `b` as sent.
self.sent_bval.insert(b);
2018-05-24 10:52:58 -07:00
// Multicast `BVal`.
let msg = AgreementContent::BVal(b).with_epoch(self.epoch);
let mut step: Step<NodeUid> = Target::All.message(msg).into();
2018-05-24 10:52:58 -07:00
// Receive the `BVal` message locally.
let our_uid = &self.netinfo.our_uid().clone();
step.extend(self.handle_bval(our_uid, b)?);
Ok(step)
}
fn send_conf(&mut self) -> Result<Step<NodeUid>> {
2018-05-24 10:52:58 -07:00
if self.conf_round {
// Only one `Conf` message is allowed in an epoch.
return Ok(Step::default());
2018-05-23 10:38:33 -07:00
}
// Trigger the start of the `Conf` round.
self.conf_round = true;
if !self.netinfo.is_validator() {
return Ok(Step::default());
}
2018-05-23 15:19:48 -07:00
let v = self.bin_values;
2018-05-24 10:52:58 -07:00
// Multicast `Conf`.
let msg = AgreementContent::Conf(v).with_epoch(self.epoch);
let mut step: Step<NodeUid> = Target::All.message(msg).into();
2018-05-24 10:52:58 -07:00
// Receive the `Conf` message locally.
let our_uid = &self.netinfo.our_uid().clone();
step.extend(self.handle_conf(our_uid, v)?);
Ok(step)
2018-05-23 10:38:33 -07:00
}
2018-05-24 10:52:58 -07:00
/// Waits until at least (N f) `Aux` messages have been received, such that
2018-05-23 10:38:33 -07:00
/// the set of values carried by these messages, vals, are a subset of
2018-05-24 10:52:58 -07:00
/// bin_values (note that bin_values_r may continue to change as `BVal`
2018-05-23 10:38:33 -07:00
/// messages are received, thus this condition may be triggered upon arrival
2018-05-24 10:52:58 -07:00
/// of either an `Aux` or a `BVal` message).
fn handle_aux(&mut self, sender_id: &NodeUid, b: bool) -> Result<Step<NodeUid>> {
2018-05-24 10:52:58 -07:00
// Perform the `Aux` message round only if a `Conf` round hasn't started yet.
if self.conf_round {
return Ok(Step::default());
2018-05-23 10:38:33 -07:00
}
self.received_aux.insert(sender_id.clone(), b);
2018-05-23 10:38:33 -07:00
if self.bin_values == BinValues::None {
return Ok(Step::default());
2018-05-23 10:38:33 -07:00
}
let (aux_count, aux_vals) = self.count_aux();
if aux_count < self.netinfo.num_nodes() - self.netinfo.num_faulty() {
2018-05-24 10:52:58 -07:00
// Continue waiting for the (N - f) `Aux` messages.
return Ok(Step::default());
2018-05-23 10:38:33 -07:00
}
// Execute the Common Coin schedule `false, true, get_coin(), false, true, get_coin(), ...`
match self.coin_schedule {
CoinSchedule::False => self.on_coin(false, aux_vals.definite()),
CoinSchedule::True => self.on_coin(true, aux_vals.definite()),
CoinSchedule::Random => self.send_conf(), // Start the `Conf` message round.
}
2018-05-23 10:38:33 -07:00
}
fn handle_conf(&mut self, sender_id: &NodeUid, v: BinValues) -> Result<Step<NodeUid>> {
2018-05-23 10:38:33 -07:00
self.received_conf.insert(sender_id.clone(), v);
2018-05-24 10:52:58 -07:00
self.try_finish_conf_round()
}
/// Receives a `Term(v)` message. If we haven't yet decided on a value and there are more than
/// `num_faulty` such messages with the same value from different nodes, performs expedite
/// termination: decides on `v`, broadcasts `Term(v)` and terminates the instance.
fn handle_term(&mut self, sender_id: &NodeUid, b: bool) -> Step<NodeUid> {
self.received_term.insert(sender_id.clone(), b);
// Check for the expedite termination condition.
if self.decision.is_none()
&& self.received_term.iter().filter(|(_, &c)| b == c).count()
> self.netinfo.num_faulty()
{
self.decide(b)
} else {
Step::default()
}
}
/// Handles a Common Coin message. If there is output from Common Coin, starts the next
/// epoch. The function may output a decision value.
fn handle_coin(
&mut self,
sender_id: &NodeUid,
msg: CommonCoinMessage,
) -> Result<Step<NodeUid>> {
let coin_step = self.common_coin.handle_message(sender_id, msg)?;
self.on_coin_step(coin_step)
}
fn on_coin_step(
&mut self,
2018-07-19 06:09:50 -07:00
coin_step: common_coin::Step<NodeUid, Nonce>,
) -> Result<Step<NodeUid>> {
let mut step = Step::default();
2018-07-18 05:15:47 -07:00
let epoch = self.epoch;
let coin_output = step.extend_with(coin_step, |c_msg| {
AgreementContent::Coin(Box::new(c_msg)).with_epoch(epoch)
});
if let Some(coin) = coin_output.into_iter().next() {
let def_bin_value = self.count_conf().1.definite();
step.extend(self.on_coin(coin, def_bin_value)?);
}
Ok(step)
}
2018-06-12 11:36:50 -07:00
/// When the common coin has been computed, tries to decide on an output value, updates the
/// `Agreement` epoch and handles queued messages for the new epoch.
fn on_coin(&mut self, coin: bool, def_bin_value: Option<bool>) -> Result<Step<NodeUid>> {
if self.terminated {
// Avoid an infinite regression without making an Agreement step.
return Ok(Step::default());
}
let mut step = Step::default();
let b = if let Some(b) = def_bin_value {
// Outputting a value is allowed only once.
if self.decision.is_none() && b == coin {
step.extend(self.decide(b));
2018-06-08 11:43:27 -07:00
}
b
} else {
coin
};
self.update_epoch();
self.estimated = Some(b);
step.extend(self.send_bval(b)?);
let queued_msgs = replace(&mut self.incoming_queue, Vec::new());
for (sender_id, msg) in queued_msgs {
step.extend(self.handle_message(&sender_id, msg)?);
2018-07-09 04:35:26 -07:00
if self.terminated {
break;
}
2018-06-08 11:43:27 -07:00
}
Ok(step)
2018-06-08 11:43:27 -07:00
}
/// Computes the coin schedule for the current `Agreement` epoch.
fn coin_schedule(&self) -> CoinSchedule {
match self.epoch % 3 {
2018-06-22 09:39:55 -07:00
0 => CoinSchedule::True,
1 => CoinSchedule::False,
_ => CoinSchedule::Random,
}
}
/// Decides on a value and broadcasts a `Term` message with that value.
fn decide(&mut self, b: bool) -> Step<NodeUid> {
2018-07-09 02:36:30 -07:00
if self.terminated {
return Step::default();
2018-07-09 02:36:30 -07:00
}
// Output the agreement value.
let mut step = Step::default();
step.output.push_back(b);
// Latch the decided state.
self.decision = Some(b);
debug!(
"{:?}/{:?} (is_validator: {}) decision: {}",
self.netinfo.our_uid(),
self.proposer_id,
self.netinfo.is_validator(),
b
);
if self.netinfo.is_validator() {
let msg = AgreementContent::Term(b).with_epoch(self.epoch);
step.messages.push_back(Target::All.message(msg));
self.received_term.insert(self.netinfo.our_uid().clone(), b);
}
self.terminated = true;
step
}
fn try_finish_conf_round(&mut self) -> Result<Step<NodeUid>> {
if self.conf_round
&& self.count_conf().0 >= self.netinfo.num_nodes() - self.netinfo.num_faulty()
{
2018-07-17 10:27:28 -07:00
// Invoke the common coin.
let coin_step = self.common_coin.input(())?;
self.on_coin_step(coin_step)
} else {
// Continue waiting for (N - f) `Conf` messages
Ok(Step::default())
2018-05-23 10:38:33 -07:00
}
}
fn send_aux(&mut self, b: bool) -> Result<Step<NodeUid>> {
if !self.netinfo.is_validator() {
return Ok(Step::default());
}
2018-05-24 10:52:58 -07:00
// Multicast `Aux`.
let mut step: Step<NodeUid> = Target::All
.message(AgreementContent::Aux(b).with_epoch(self.epoch))
.into();
2018-05-24 10:52:58 -07:00
// Receive the `Aux` message locally.
let our_uid = &self.netinfo.our_uid().clone();
step.extend(self.handle_aux(our_uid, b)?);
Ok(step)
}
2018-05-24 10:52:58 -07:00
/// The count of `Aux` messages such that the set of values carried by those messages is a
/// subset of bin_values_r. The count of matching `Term` messages from terminated nodes is also
/// added to the count of `Aux` messages as witnesses of the terminated nodes' decision.
///
2018-05-24 10:52:58 -07:00
/// In general, we can't expect every good node to send the same `Aux` value, so waiting for N -
/// f agreeing messages would not always terminate. We can, however, expect every good node to
2018-05-28 03:54:37 -07:00
/// send an `Aux` value that will eventually end up in our `bin_values`.
fn count_aux(&self) -> (usize, BinValues) {
let mut aux: BTreeMap<_, _> = self
.received_aux
.iter()
.filter(|(_, &b)| self.bin_values.contains(b))
.collect();
let term: BTreeMap<_, _> = self
.received_term
.iter()
.filter(|(_, &b)| self.bin_values.contains(b))
.collect();
// Ensure that nodes are not counted twice.
aux.extend(term);
let bin: BinValues = aux.values().map(|&&v| BinValues::from_bool(v)).collect();
(aux.len(), bin)
2018-05-23 10:38:33 -07:00
}
2018-05-24 10:52:58 -07:00
/// Counts the number of received `Conf` messages.
fn count_conf(&self) -> (usize, BinValues) {
let (vals_cnt, vals) = self
.received_conf
2018-05-23 10:38:33 -07:00
.values()
2018-05-24 10:52:58 -07:00
.filter(|&conf| conf.is_subset(self.bin_values))
.tee();
(vals_cnt.count(), vals.cloned().collect())
}
fn update_epoch(&mut self) {
2018-05-23 10:38:33 -07:00
self.bin_values.clear();
self.received_bval.clear();
self.sent_bval.clear();
self.received_aux.clear();
self.received_conf.clear();
2018-05-24 10:52:58 -07:00
self.conf_round = false;
2018-05-23 10:38:33 -07:00
self.epoch += 1;
let nonce = Nonce::new(
self.netinfo.invocation_id().as_ref(),
2018-06-14 04:28:38 -07:00
self.session_id,
2018-07-17 06:54:12 -07:00
self.netinfo.node_index(&self.proposer_id).unwrap(),
self.epoch,
);
// TODO: Don't spend time creating a `CommonCoin` instance in epochs where the common coin
// is known.
2018-06-08 11:43:27 -07:00
self.common_coin = CommonCoin::new(self.netinfo.clone(), nonce);
self.coin_schedule = self.coin_schedule();
debug!(
"{:?} Agreement instance {:?} started epoch {}",
self.netinfo.our_uid(),
self.proposer_id,
self.epoch
);
2018-05-23 10:38:33 -07:00
}
}
#[derive(Clone)]
struct Nonce(Vec<u8>);
impl Nonce {
pub fn new(
invocation_id: &[u8],
session_id: u64,
proposer_id: usize,
agreement_epoch: u32,
) -> Self {
Nonce(Vec::from(format!(
"Nonce for Honey Badger {:?}@{}:{}:{}",
invocation_id, session_id, agreement_epoch, proposer_id
)))
}
}
impl AsRef<[u8]> for Nonce {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}