hbbft/src/broadcast/broadcast.rs

722 lines
27 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::sync::Arc;
use std::{fmt, result};
use byteorder::{BigEndian, ByteOrder};
use hex_fmt::{HexFmt, HexList};
use log::{debug, warn};
use rand::Rng;
use reed_solomon_erasure as rse;
use reed_solomon_erasure::{galois_8::Field as Field8, ReedSolomon};
use super::merkle::{Digest, MerkleTree, Proof};
use super::message::HexProof;
use super::{Error, FaultKind, Message, Result};
use crate::fault_log::Fault;
use crate::{ConsensusProtocol, NodeIdT, Target, ValidatorSet};
type RseResult<T> = result::Result<T, rse::Error>;
/// Broadcast algorithm instance.
#[derive(Debug)]
pub struct Broadcast<N> {
/// Our ID.
// TODO: Make optional for observers?
our_id: N,
/// The set of validator IDs.
val_set: Arc<ValidatorSet<N>>,
/// The ID of the sending node.
proposer_id: N,
/// The Reed-Solomon erasure coding configuration.
coding: Coding,
/// If we are the proposer: whether we have already sent the `Value` messages with the shards.
value_sent: bool,
/// Whether we have already sent `Echo` to all nodes who haven't sent `CanDecode`.
echo_sent: bool,
/// Whether we have already multicast `Ready`.
ready_sent: bool,
/// Whether we have already sent `EchoHash` to the right nodes.
echo_hash_sent: bool,
/// Whether we have already sent `CanDecode` for the given hash.
can_decode_sent: BTreeSet<Digest>,
/// Whether we have already output a value.
decided: bool,
/// Number of faulty nodes to optimize performance for.
// TODO: Make this configurable: Allow numbers between 0 and N/3?
fault_estimate: usize,
/// The hashes and proofs we have received via `Echo` and `EchoHash` messages, by sender ID.
echos: BTreeMap<N, EchoContent>,
/// The hashes we have received from nodes via `CanDecode` messages, by hash.
/// A node can receive conflicting `CanDecode`s from the same node.
can_decodes: BTreeMap<Digest, BTreeSet<N>>,
/// The root hashes we received via `Ready` messages, by sender ID.
readys: BTreeMap<N, Vec<u8>>,
}
/// A `Broadcast` step, containing at most one output.
pub type Step<N> = crate::CpStep<Broadcast<N>>;
impl<N: NodeIdT> ConsensusProtocol for Broadcast<N> {
type NodeId = N;
type Input = Vec<u8>;
type Output = Self::Input;
type Message = Message;
type Error = Error;
type FaultKind = FaultKind;
fn handle_input<R: Rng>(&mut self, input: Self::Input, _rng: &mut R) -> Result<Step<N>> {
self.broadcast(input)
}
fn handle_message<R: Rng>(
&mut self,
sender_id: &Self::NodeId,
message: Message,
_rng: &mut R,
) -> Result<Step<N>> {
self.handle_message(sender_id, message)
}
fn terminated(&self) -> bool {
self.decided
}
fn our_id(&self) -> &N {
&self.our_id
}
}
impl<N: NodeIdT> Broadcast<N> {
/// Creates a new broadcast instance to be used by node `our_id` which expects a value proposal
/// from node `proposer_id`.
pub fn new<V>(our_id: N, val_set: V, proposer_id: N) -> Result<Self>
where
V: Into<Arc<ValidatorSet<N>>>,
{
let val_set: Arc<ValidatorSet<N>> = val_set.into();
let parity_shard_num = 2 * val_set.num_faulty();
let data_shard_num = val_set.num() - parity_shard_num;
let coding =
Coding::new(data_shard_num, parity_shard_num).map_err(|_| Error::InvalidNodeCount)?;
let fault_estimate = val_set.num_faulty();
Ok(Broadcast {
our_id,
val_set,
proposer_id,
coding,
value_sent: false,
echo_sent: false,
ready_sent: false,
echo_hash_sent: false,
can_decode_sent: BTreeSet::new(),
decided: false,
fault_estimate,
echos: BTreeMap::new(),
can_decodes: BTreeMap::new(),
readys: BTreeMap::new(),
})
}
/// Initiates the broadcast. This must only be called in the proposer node.
pub fn broadcast(&mut self, input: Vec<u8>) -> Result<Step<N>> {
if *self.our_id() != self.proposer_id {
return Err(Error::InstanceCannotPropose);
}
if self.value_sent {
return Err(Error::MultipleInputs);
}
self.value_sent = true;
// Split the value into chunks/shards, encode them with erasure codes.
// Assemble a Merkle tree from data and parity shards. Take all proofs
// from this tree and send them, each to its own node.
let (proof, step) = self.send_shards(input)?;
let our_id = &self.our_id().clone();
Ok(step.join(self.handle_value(our_id, proof)?))
}
/// Handles a message received from `sender_id`.
///
/// This must be called with every message we receive from another node.
pub fn handle_message(&mut self, sender_id: &N, message: Message) -> Result<Step<N>> {
if !self.val_set.contains(sender_id) {
return Err(Error::UnknownSender);
}
match message {
Message::Value(p) => self.handle_value(sender_id, p),
Message::Echo(p) => self.handle_echo(sender_id, p),
Message::Ready(ref hash) => self.handle_ready(sender_id, hash),
Message::CanDecode(ref hash) => self.handle_can_decode(sender_id, hash),
Message::EchoHash(ref hash) => self.handle_echo_hash(sender_id, hash),
}
}
/// Returns the proposer's node ID.
pub fn proposer_id(&self) -> &N {
&self.proposer_id
}
/// Returns the set of all validator IDs.
pub fn validator_set(&self) -> &Arc<ValidatorSet<N>> {
&self.val_set
}
/// Breaks the input value into shards of equal length and encodes them --
/// and some extra parity shards -- with a Reed-Solomon erasure coding
/// scheme. The returned value contains the shard assigned to this
/// node. That shard doesn't need to be sent anywhere. It gets recorded in
/// the broadcast instance.
fn send_shards(&mut self, mut value: Vec<u8>) -> Result<(Proof<Vec<u8>>, Step<N>)> {
let data_shard_num = self.coding.data_shard_count();
let parity_shard_num = self.coding.parity_shard_count();
// Insert the length of `v` so it can be decoded without the padding.
let payload_len = value.len() as u32;
value.splice(0..0, 0..4); // Insert four bytes at the beginning.
BigEndian::write_u32(&mut value[..4], payload_len); // Write the size.
let value_len = value.len(); // This is at least 4 now, due to the payload length.
// Size of a Merkle tree leaf value: the value size divided by the number of data shards,
// and rounded up, so that the full value always fits in the data shards. Always at least 1.
let shard_len = (value_len + data_shard_num - 1) / data_shard_num;
// Pad the last data shard with zeros. Fill the parity shards with zeros.
value.resize(shard_len * (data_shard_num + parity_shard_num), 0);
// Divide the vector into chunks/shards.
let shards_iter = value.chunks_mut(shard_len);
// Convert the iterator over slices into a vector of slices.
let mut shards: Vec<&mut [u8]> = shards_iter.collect();
// Construct the parity chunks/shards. This only fails if a shard is empty or the shards
// have different sizes. Our shards all have size `shard_len`, which is at least 1.
self.coding.encode(&mut shards).expect("wrong shard size");
debug!(
"{}: Value: {} bytes, {} per shard. Shards: {:0.10}",
self,
value_len,
shard_len,
HexList(&shards)
);
// Create a Merkle tree from the shards.
let mtree = MerkleTree::from_vec(shards.into_iter().map(|shard| shard.to_vec()).collect());
// Default result in case of `proof` error.
let mut result = Err(Error::ProofConstructionFailed);
assert_eq!(self.val_set.num(), mtree.values().len());
let mut step = Step::default();
// Send each proof to a node.
for (id, index) in self.val_set.all_indices() {
let proof = mtree.proof(*index).ok_or(Error::ProofConstructionFailed)?;
if *id == *self.our_id() {
// The proof is addressed to this node.
result = Ok(proof);
} else {
// Rest of the proofs are sent to remote nodes.
let msg = Target::node(id.clone()).message(Message::Value(proof));
step.messages.push(msg);
}
}
result.map(|proof| (proof, step))
}
/// Handles a received echo and verifies the proof it contains.
fn handle_value(&mut self, sender_id: &N, p: Proof<Vec<u8>>) -> Result<Step<N>> {
// If the sender is not the proposer or if this is not the first `Value`, ignore.
if *sender_id != self.proposer_id {
let fault_kind = FaultKind::ReceivedValueFromNonProposer;
return Ok(Fault::new(sender_id.clone(), fault_kind).into());
}
match self.echos.get(self.our_id()) {
// Multiple values from proposer.
Some(val) if val.hash() != p.root_hash() => {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleValues).into())
}
// Already received proof.
Some(EchoContent::Full(proof)) if *proof == p => {
warn!(
"Node {:?} received Value({:?}) multiple times from {:?}.",
self.our_id(),
HexProof(&p),
sender_id
);
return Ok(Step::default());
}
_ => (),
};
// If the proof is invalid, log the faulty node behavior and ignore.
if !self.validate_proof(&p, &self.our_id()) {
return Ok(Fault::new(sender_id.clone(), FaultKind::InvalidProof).into());
}
// Send the proof in an `Echo` message to left nodes
// and `EchoHash` message to right nodes and handle the response.
let echo_hash_steps = self.send_echo_hash(p.root_hash())?;
let echo_steps = self.send_echo_left(p)?;
Ok(echo_steps.join(echo_hash_steps))
}
/// Handles a received `Echo` message.
fn handle_echo(&mut self, sender_id: &N, p: Proof<Vec<u8>>) -> Result<Step<N>> {
// If the sender has already sent `Echo`, ignore.
if let Some(EchoContent::Full(old_p)) = self.echos.get(sender_id) {
if *old_p == p {
warn!(
"Node {:?} received Echo({:?}) multiple times from {:?}.",
self.our_id(),
HexProof(&p),
sender_id,
);
return Ok(Step::default());
} else {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleEchos).into());
}
}
// Case where we have received an earlier `EchoHash`
// message from sender_id with different root_hash.
if let Some(EchoContent::Hash(hash)) = self.echos.get(sender_id) {
if hash != p.root_hash() {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleEchos).into());
}
}
// If the proof is invalid, log the faulty-node behavior, and ignore.
if !self.validate_proof(&p, sender_id) {
return Ok(Fault::new(sender_id.clone(), FaultKind::InvalidProof).into());
}
let hash = *p.root_hash();
// Save the proof for reconstructing the tree later.
self.echos.insert(sender_id.clone(), EchoContent::Full(p));
let mut step = Step::default();
// Upon receiving `N - 2f` `Echo`s with this root hash, send `CanDecode`
if !self.can_decode_sent.contains(&hash)
&& self.count_echos_full(&hash) >= self.coding.data_shard_count()
{
step.extend(self.send_can_decode(&hash)?);
}
// Upon receiving `N - f` `Echo`s with this root hash, multicast `Ready`.
if !self.ready_sent && self.count_echos(&hash) >= self.val_set.num_correct() {
step.extend(self.send_ready(&hash)?);
}
// Computes output if we have required number of `Echo`s and `Ready`s
// Else returns Step::default()
if self.ready_sent {
step.extend(self.compute_output(&hash)?);
}
Ok(step)
}
fn handle_echo_hash(&mut self, sender_id: &N, hash: &Digest) -> Result<Step<N>> {
// If the sender has already sent `EchoHash`, ignore.
if let Some(EchoContent::Hash(old_hash)) = self.echos.get(sender_id) {
if old_hash == hash {
warn!(
"Node {:?} received EchoHash({:?}) multiple times from {:?}.",
self.our_id(),
hash,
sender_id,
);
return Ok(Step::default());
} else {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleEchoHashes).into());
}
}
// If the sender has already sent an `Echo` for the same hash, ignore.
if let Some(EchoContent::Full(p)) = self.echos.get(sender_id) {
if p.root_hash() == hash {
return Ok(Step::default());
} else {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleEchoHashes).into());
}
}
// Save the hash for counting later.
self.echos
.insert(sender_id.clone(), EchoContent::Hash(*hash));
if self.ready_sent || self.count_echos(&hash) < self.val_set.num_correct() {
return self.compute_output(&hash);
}
// Upon receiving `N - f` `Echo`s with this root hash, multicast `Ready`.
self.send_ready(&hash)
}
/// Handles a received `CanDecode` message.
fn handle_can_decode(&mut self, sender_id: &N, hash: &Digest) -> Result<Step<N>> {
// Save the hash for counting later. If hash from sender_id already exists, emit a warning.
if let Some(nodes) = self.can_decodes.get(hash) {
if nodes.contains(sender_id) {
warn!(
"Node {:?} received same CanDecode({:?}) multiple times from {:?}.",
self.our_id(),
hash,
sender_id,
);
}
}
self.can_decodes
.entry(*hash)
.or_default()
.insert(sender_id.clone());
Ok(Step::default())
}
/// Handles a received `Ready` message.
fn handle_ready(&mut self, sender_id: &N, hash: &Digest) -> Result<Step<N>> {
// If the sender has already sent a `Ready` before, ignore.
if let Some(old_hash) = self.readys.get(sender_id) {
if old_hash == hash {
warn!(
"Node {:?} received Ready({:?}) multiple times from {:?}.",
self.our_id(),
hash,
sender_id
);
return Ok(Step::default());
} else {
return Ok(Fault::new(sender_id.clone(), FaultKind::MultipleReadys).into());
}
}
self.readys.insert(sender_id.clone(), hash.to_vec());
let mut step = Step::default();
// Upon receiving f + 1 matching Ready(h) messages, if Ready
// has not yet been sent, multicast Ready(h).
if self.count_readys(hash) == self.val_set.num_faulty() + 1 && !self.ready_sent {
// Enqueue a broadcast of a Ready message.
step.extend(self.send_ready(hash)?);
}
// Upon receiving 2f + 1 matching Ready(h) messages, send full
// `Echo` message to every node who hasn't sent us a `CanDecode`
if self.count_readys(hash) == 2 * self.val_set.num_faulty() + 1 {
step.extend(self.send_echo_remaining(hash)?);
}
Ok(step.join(self.compute_output(hash)?))
}
/// Sends `Echo` message to all left nodes and handles it.
fn send_echo_left(&mut self, p: Proof<Vec<u8>>) -> Result<Step<N>> {
if !self.val_set.contains(&self.our_id) {
return Ok(Step::default());
}
let echo_msg = Message::Echo(p.clone());
let mut step = Step::default();
let right = self.right_nodes().cloned().collect();
// Send `Echo` message to all non-validating nodes and the ones on our left.
let msg = Target::AllExcept(right).message(echo_msg);
step.messages.push(msg);
let our_id = &self.our_id().clone();
Ok(step.join(self.handle_echo(our_id, p)?))
}
/// Sends `Echo` message to remaining nodes who haven't sent `CanDecode`
fn send_echo_remaining(&mut self, hash: &Digest) -> Result<Step<N>> {
self.echo_sent = true;
if !self.val_set.contains(&self.our_id) {
return Ok(Step::default());
}
let p = match self.echos.get(self.our_id()) {
// Haven't received `Echo`.
None | Some(EchoContent::Hash(_)) => return Ok(Step::default()),
// Received `Echo` for different hash.
Some(EchoContent::Full(p)) if p.root_hash() != hash => return Ok(Step::default()),
Some(EchoContent::Full(p)) => p.clone(),
};
let echo_msg = Message::Echo(p);
let mut step = Step::default();
let senders = self.can_decodes.get(hash);
let right = self
.right_nodes()
.filter(|id| senders.map_or(true, |s| !s.contains(id)))
.cloned()
.collect();
step.messages.push(Target::Nodes(right).message(echo_msg));
Ok(step)
}
/// Sends an `EchoHash` message and handles it. Does nothing if we are only an observer.
fn send_echo_hash(&mut self, hash: &Digest) -> Result<Step<N>> {
self.echo_hash_sent = true;
if !self.val_set.contains(&self.our_id) {
return Ok(Step::default());
}
let echo_hash_msg = Message::EchoHash(*hash);
let mut step = Step::default();
let right = self.right_nodes().cloned().collect();
let msg = Target::Nodes(right).message(echo_hash_msg);
step.messages.push(msg);
let our_id = &self.our_id().clone();
Ok(step.join(self.handle_echo_hash(our_id, hash)?))
}
/// Returns an iterator over all nodes to our right.
///
/// The nodes are arranged in a circle according to their ID, starting with our own. The first
/// _N - 2 f + g_ nodes are considered "to our left" and the rest "to our right".
///
/// These are the nodes to which we only send an `EchoHash` message in the beginning.
fn right_nodes(&self) -> impl Iterator<Item = &N> {
let our_id = self.our_id().clone();
let not_us = move |x: &&N| **x != our_id;
self.val_set
.all_ids()
.cycle()
.skip_while(not_us.clone())
.skip(self.val_set.num_correct() - self.val_set.num_faulty() + self.fault_estimate)
.take_while(not_us)
}
/// Sends a `CanDecode` message and handles it. Does nothing if we are only an observer.
fn send_can_decode(&mut self, hash: &Digest) -> Result<Step<N>> {
self.can_decode_sent.insert(hash.clone());
if !self.val_set.contains(&self.our_id) {
return Ok(Step::default());
}
let can_decode_msg = Message::CanDecode(*hash);
let mut step = Step::default();
let our_id = &self.our_id().clone();
let recipients = self
.val_set
.all_ids()
.filter(|id| match self.echos.get(id) {
Some(EchoContent::Hash(_)) | None => *id != our_id,
_ => false,
})
.cloned()
.collect();
let msg = Target::Nodes(recipients).message(can_decode_msg);
step.messages.push(msg);
Ok(step.join(self.handle_can_decode(our_id, hash)?))
}
/// Sends a `Ready` message and handles it. Does nothing if we are only an observer.
fn send_ready(&mut self, hash: &Digest) -> Result<Step<N>> {
self.ready_sent = true;
if !self.val_set.contains(&self.our_id) {
return Ok(Step::default());
}
let ready_msg = Message::Ready(*hash);
let step: Step<_> = Target::all().message(ready_msg).into();
let our_id = &self.our_id().clone();
Ok(step.join(self.handle_ready(our_id, hash)?))
}
/// Checks whether the conditions for output are met for this hash, and if so, sets the output
/// value.
fn compute_output(&mut self, hash: &Digest) -> Result<Step<N>> {
if self.decided
|| self.count_readys(hash) <= 2 * self.val_set.num_faulty()
|| self.count_echos_full(hash) < self.coding.data_shard_count()
{
return Ok(Step::default());
}
// Upon receiving 2f + 1 matching Ready(h) messages, wait for N 2f Echo messages.
let mut leaf_values: Vec<Option<Box<[u8]>>> = self
.val_set
.all_ids()
.map(|id| {
self.echos
.get(id)
.and_then(EchoContent::proof)
.and_then(|p| {
if p.root_hash() == hash {
Some(p.value().clone().into_boxed_slice())
} else {
None
}
})
})
.collect();
if let Some(value) = self.decode_from_shards(&mut leaf_values, hash) {
self.decided = true;
Ok(Step::default().with_output(value))
} else {
let fault_kind = FaultKind::BroadcastDecoding;
Ok(Fault::new(self.proposer_id.clone(), fault_kind).into())
}
}
/// Interpolates the missing shards and glues together the data shards to retrieve the value.
/// This returns `None` if reconstruction failed or the reconstructed shards don't match the
/// root hash. This can only happen if the proposer provided invalid shards.
fn decode_from_shards(
&self,
leaf_values: &mut [Option<Box<[u8]>>],
root_hash: &Digest,
) -> Option<Vec<u8>> {
// Try to interpolate the Merkle tree using the Reed-Solomon erasure coding scheme.
self.coding.reconstruct_shards(leaf_values).ok()?;
// Collect shards for tree construction.
let shards: Vec<Vec<u8>> = leaf_values
.iter()
.filter_map(|l| l.as_ref().map(|v| v.to_vec()))
.collect();
debug!("{}: Reconstructed shards: {:0.10}", self, HexList(&shards));
// Construct the Merkle tree.
let mtree = MerkleTree::from_vec(shards);
// If the root hash of the reconstructed tree does not match the one
// received with proofs then abort.
if mtree.root_hash() != root_hash {
return None; // The proposer is faulty.
}
// Reconstruct the value from the data shards:
// Concatenate the leaf values that are data shards The first four bytes are
// interpreted as the payload size, and the padding beyond that size is dropped.
let count = self.coding.data_shard_count();
let mut bytes = mtree.into_values().into_iter().take(count).flatten();
let payload_len = match (bytes.next(), bytes.next(), bytes.next(), bytes.next()) {
(Some(b0), Some(b1), Some(b2), Some(b3)) => {
BigEndian::read_u32(&[b0, b1, b2, b3]) as usize
}
_ => return None, // The proposer is faulty: no payload size.
};
let payload: Vec<u8> = bytes.take(payload_len).collect();
debug!("{}: Glued data shards {:0.10}", self, HexFmt(&payload));
Some(payload)
}
/// Returns `true` if the proof is valid and has the same index as the node ID.
fn validate_proof(&self, p: &Proof<Vec<u8>>, id: &N) -> bool {
self.val_set.index(id) == Some(p.index()) && p.validate(self.val_set.num())
}
/// Returns the number of nodes that have sent us a full `Echo` message with this hash.
fn count_echos_full(&self, hash: &Digest) -> usize {
self.echos
.values()
.filter_map(EchoContent::proof)
.filter(|p| p.root_hash() == hash)
.count()
}
/// Returns the number of nodes that have sent us an `Echo` or `EchoHash` message with this hash.
fn count_echos(&self, hash: &Digest) -> usize {
self.echos.values().filter(|v| v.hash() == hash).count()
}
/// Returns the number of nodes that have sent us a `Ready` message with this hash.
fn count_readys(&self, hash: &Digest) -> usize {
self.readys
.values()
.filter(|h| h.as_slice() == hash)
.count()
}
}
impl<N: NodeIdT> fmt::Display for Broadcast<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> result::Result<(), fmt::Error> {
write!(f, "{:?} Broadcast({:?})", self.our_id(), self.proposer_id)
}
}
/// A wrapper for `ReedSolomon` that doesn't panic if there are no parity shards.
#[derive(Debug)]
enum Coding {
/// A `ReedSolomon` instance with at least one parity shard.
ReedSolomon(Box<ReedSolomon<Field8>>),
/// A no-op replacement that doesn't encode or decode anything.
Trivial(usize),
}
impl Coding {
/// Creates a new `Coding` instance with the given number of shards.
fn new(data_shard_num: usize, parity_shard_num: usize) -> RseResult<Self> {
Ok(if parity_shard_num > 0 {
let rs = ReedSolomon::new(data_shard_num, parity_shard_num)?;
Coding::ReedSolomon(Box::new(rs))
} else {
Coding::Trivial(data_shard_num)
})
}
/// Returns the number of data shards.
fn data_shard_count(&self) -> usize {
match *self {
Coding::ReedSolomon(ref rs) => rs.data_shard_count(),
Coding::Trivial(dsc) => dsc,
}
}
/// Returns the number of parity shards.
fn parity_shard_count(&self) -> usize {
match *self {
Coding::ReedSolomon(ref rs) => rs.parity_shard_count(),
Coding::Trivial(_) => 0,
}
}
/// Constructs (and overwrites) the parity shards.
fn encode(&self, slices: &mut [&mut [u8]]) -> RseResult<()> {
match *self {
Coding::ReedSolomon(ref rs) => rs.encode(slices),
Coding::Trivial(_) => Ok(()),
}
}
/// If enough shards are present, reconstructs the missing ones.
fn reconstruct_shards(&self, shards: &mut [Option<Box<[u8]>>]) -> RseResult<()> {
match *self {
Coding::ReedSolomon(ref rs) => rs.reconstruct(shards),
Coding::Trivial(_) => {
if shards.iter().all(Option::is_some) {
Ok(())
} else {
Err(rse::Error::TooFewShardsPresent)
}
}
}
}
}
/// Content for `EchoHash` and `Echo` messages.
#[derive(Debug)]
enum EchoContent {
/// `EchoHash` message.
Hash(Digest),
/// `Echo` message
Full(Proof<Vec<u8>>),
}
impl EchoContent {
/// Returns hash of the message from either message types.
pub fn hash(&self) -> &Digest {
match &self {
EchoContent::Hash(h) => h,
EchoContent::Full(p) => p.root_hash(),
}
}
/// Returns Proof if type is Full else returns None.
pub fn proof(&self) -> Option<&Proof<Vec<u8>>> {
match &self {
EchoContent::Hash(_) => None,
EchoContent::Full(p) => Some(p),
}
}
}