hbbft/tests/net_dynamic_hb.rs

477 lines
18 KiB
Rust

pub mod net;
use std::collections::{BTreeMap, BTreeSet};
use std::time;
use hbbft::dynamic_honey_badger::{Change, ChangeState, DynamicHoneyBadger, Input, JoinPlan};
use hbbft::sender_queue::{SenderQueue, Step};
use hbbft::Epoched;
use proptest::{prelude::ProptestConfig, prop_compose, proptest, proptest_helper};
use rand::{seq::SliceRandom, SeedableRng};
use crate::net::adversary::{Adversary, ReorderingAdversary};
use crate::net::proptest::{gen_seed, NetworkDimension, TestRng, TestRngSeed};
use crate::net::{NetBuilder, NewNodeInfo, Node, VirtualNet};
type DHB = SenderQueue<DynamicHoneyBadger<Vec<usize>, usize>>;
/// Choose a node's contribution for an epoch.
///
/// Selects randomly out of a slice, according to chosen batch and contribution sizes. The function
/// will not fail to do so, even if the queue is empty, returning a smaller or empty slice
/// `Vec` accordingly.
///
/// # Panics
///
/// The function asserts that `batch_size >= contribution_size`.
fn choose_contribution<R, T>(
rng: &mut R,
queue: &[T],
batch_size: usize,
contribution_size: usize,
) -> Vec<T>
where
R: rand::Rng,
T: Clone,
{
assert!(batch_size >= contribution_size);
let n = queue.len().min(batch_size);
let k = queue.len().min(contribution_size);
queue[0..n].choose_multiple(rng, k).cloned().collect()
}
/// Test configuration for dynamic honey badger tests.
#[derive(Debug)]
struct TestConfig {
/// The desired network dimension.
dimension: NetworkDimension,
/// Total number of transactions to execute before finishing.
total_txs: usize,
/// Epoch batch size.
batch_size: usize,
/// Individual nodes contribution size.
contribution_size: usize,
/// Random number generator to be passed to subsystems.
seed: TestRngSeed,
}
prop_compose! {
/// Strategy to generate a test configuration.
fn arb_config()
(dimension in NetworkDimension::range(3, 15),
total_txs in 20..60usize,
batch_size in 10..20usize,
contribution_size in 1..10usize,
seed in gen_seed())
-> TestConfig {
TestConfig {
dimension, total_txs, batch_size, contribution_size, seed
}
}
}
/// Proptest wrapper for `do_drop_and_readd`.
proptest! {
#![proptest_config(ProptestConfig {
cases: 1, .. ProptestConfig::default()
})]
#[test]
#[allow(clippy::unnecessary_operation)]
fn drop_and_readd(cfg in arb_config()) {
do_drop_and_readd(cfg)
}
}
/// Dynamic honey badger: Drop a validator node, demoting it to observer, then re-add it, all while
/// running a regular honey badger network.
// TODO: Add an observer node to the test network.
#[allow(clippy::needless_pass_by_value, clippy::cyclomatic_complexity)]
fn do_drop_and_readd(cfg: TestConfig) {
let mut rng: TestRng = TestRng::from_seed(cfg.seed);
// First, we create a new test network with Honey Badger instances.
let num_faulty = cfg.dimension.faulty();
let (net, _) = NetBuilder::new(0..cfg.dimension.size())
.num_faulty(num_faulty)
// Limited to 15k messages per node.
.message_limit(15_000 * cfg.dimension.size() as usize)
// 30 secs per node.
.time_limit(time::Duration::from_secs(30 * cfg.dimension.size() as u64))
.adversary(ReorderingAdversary::new())
.using_step(move |node: NewNodeInfo<SenderQueue<_>>| {
let id = node.id;
println!(
"Constructing new {} dynamic honey badger node #{}",
if id < num_faulty { "faulty" } else { "correct" },
id
);
let dhb = DynamicHoneyBadger::builder().build(node.netinfo.clone());
SenderQueue::builder(
dhb,
node.netinfo.all_ids().filter(|&&them| them != id).cloned(),
)
.build(node.id)
})
.build(&mut rng)
.expect("could not construct test network");
let mut state = TestState::new(net);
// We will use the first correct node as the node we will remove from and re-add to the network.
// Note: This should be randomized using proptest.
let pivot_node_id: usize = *(state
.net
.correct_nodes()
.nth(0)
.expect("expected at least one correct node")
.id());
println!("Will remove and readd node #{}", pivot_node_id);
// We generate a list of transaction we want to propose, for each node. All nodes will propose
// a number between 0..total_txs, chosen randomly.
let mut queues: BTreeMap<_, Vec<usize>> = state
.net
.nodes()
.map(|node| (*node.id(), (0..cfg.total_txs).collect()))
.collect();
// For each node, select transactions randomly from the queue and propose them.
for (id, queue) in &mut queues {
let proposal = choose_contribution(&mut rng, queue, cfg.batch_size, cfg.contribution_size);
println!("Node {:?} will propose: {:?}", id, proposal);
// The step will have its messages added to the queue automatically, we ignore the output.
let _ = state
.net
.send_input(*id, Input::User(proposal), &mut rng)
.expect("could not send initial transaction");
}
// Afterwards, remove a specific node from the dynamic honey badger network.
let netinfo = state
.net
.get(pivot_node_id)
.expect("pivot node missing")
.algorithm()
.algo()
.netinfo()
.clone();
let pub_keys_add = netinfo.public_key_map().clone();
let mut pub_keys_rm = pub_keys_add.clone();
pub_keys_rm.remove(&pivot_node_id);
state
.net
.broadcast_input(
&Input::Change(Change::NodeChange(pub_keys_rm.clone())),
&mut rng,
)
.expect("broadcasting failed");
// We are tracking (correct) nodes' state through the process by ticking them off individually.
let non_pivot_nodes: BTreeSet<_> = state
.net
.correct_nodes()
.map(|n| *n.id())
.filter(|id| *id != pivot_node_id)
.collect();
let mut awaiting_removal: BTreeSet<_> = state.net.correct_nodes().map(|n| *n.id()).collect();
let mut awaiting_addition_input: BTreeSet<_> = non_pivot_nodes.clone();
let mut awaiting_addition_in_progress: BTreeSet<_> = non_pivot_nodes.clone();
let mut awaiting_addition: BTreeSet<_> = awaiting_removal.clone();
let mut expected_outputs: BTreeMap<_, BTreeSet<_>> = state
.net
.correct_nodes()
.map(|n| (*n.id(), (0..10).collect()))
.collect();
let mut received_batches: BTreeMap<u64, _> = BTreeMap::new();
// Whether node 0 was rejoined as a validator.
let mut rejoined_pivot_node = false;
// The removed pivot node which is to be restarted as soon as all remaining validators agree to
// add it back.
let mut saved_node: Option<Node<DHB>> = None;
// Run the network:
loop {
let (node_id, step) = state.net.crank_expect(&mut rng);
if !state.net[node_id].is_faulty() {
for batch in &step.output {
// Check that correct nodes don't output different batches for the same epoch.
if let Some(b) = received_batches.insert(batch.epoch(), batch.clone()) {
assert!(
batch.public_eq(&b),
"A batch of node {} doesn't match a previous batch for the same epoch {}",
node_id,
batch.epoch()
);
}
let expected_participants: Vec<_> = if awaiting_removal.contains(&node_id) {
// The node hasn't removed the pivot node yet.
pub_keys_add.keys()
} else if awaiting_addition.contains(&node_id) {
// The node has removed the pivot node but hasn't added it back yet.
pub_keys_rm.keys()
} else {
// The node has added the pivot node back.
pub_keys_add.keys()
}
.collect();
assert!(
batch.contributions().count() * 3 > expected_participants.len() * 2,
"The batch contains less than N - f contributions: {:?}",
batch
);
// Verify that only contributions from expected participants can be present in the
// batch.
let batch_participants: Vec<_> = batch.contributions().map(|(id, _)| id).collect();
assert!(
batch_participants
.iter()
.all(|id| expected_participants.contains(id)),
"The batch at node {} contains an unexpected participant: {:?} (expected {:?})",
node_id,
batch_participants,
expected_participants,
);
}
}
for change in step.output.iter().map(|output| output.change()) {
match change {
ChangeState::Complete(Change::NodeChange(ref pub_keys))
if *pub_keys == pub_keys_rm =>
{
println!("Node {} done removing.", node_id);
// Removal complete, tally:
awaiting_removal.remove(&node_id);
}
ChangeState::InProgress(Change::NodeChange(ref pub_keys))
if *pub_keys == pub_keys_add =>
{
println!("Node {} is progressing with readding.", node_id);
awaiting_addition_in_progress.remove(&node_id);
}
ChangeState::Complete(Change::NodeChange(ref pub_keys))
if *pub_keys == pub_keys_add =>
{
println!("Node {} done adding.", node_id);
// Node added, ensure it has been removed first.
if awaiting_removal.contains(&node_id) {
panic!(
"Node {} reported a success `Add({}, _)` before `Remove({})`",
node_id, pivot_node_id, pivot_node_id
);
}
awaiting_addition.remove(&node_id);
}
_ => {
println!("Unhandled change: {:?}", change);
}
}
}
let (era, hb_epoch) = state.net[node_id].algorithm().algo().epoch();
if node_id != pivot_node_id
&& awaiting_addition_input.contains(&node_id)
&& state.shutdown_epoch.is_some()
&& era + hb_epoch >= state.shutdown_epoch.unwrap()
{
// Now we can add the node again. Public keys will be reused.
let step = state
.net
.send_input(
node_id,
Input::Change(Change::NodeChange(pub_keys_add.clone())),
&mut rng,
)
.expect("failed to send `Add` input");
assert!(step.output.is_empty());
awaiting_addition_input.remove(&node_id);
println!("Node {} started readding.", node_id);
}
// Record whether or not we received some output.
let has_output = !step.output.is_empty();
// Find the node's input queue.
let queue: &mut Vec<_> = queues
.get_mut(&node_id)
.expect("queue for node disappeared");
// Examine potential algorithm output.
for batch in step.output {
println!(
"Received epoch {} batch on node {:?}.",
batch.epoch(),
node_id,
);
// If this is a batch removing the pivot node, record the epoch in which the pivot node
// will shut down.
if let ChangeState::Complete(Change::NodeChange(ref pub_keys)) = batch.change() {
if *pub_keys == pub_keys_rm {
state.shutdown_epoch = Some(batch.epoch() + 1);
}
}
for tx in batch.iter() {
// Remove the confirmed contribution from the input queue.
let index = queue.iter().position(|v| v == tx);
if let Some(idx) = index {
assert_eq!(queue.remove(idx), *tx);
}
// Add it to the set of received outputs.
if !state.net[node_id].is_faulty() {
expected_outputs
.get_mut(&node_id)
.expect("output set disappeared")
.remove(tx);
// Also delete expected output from the pivot node if that node is currently
// removed. It does not output any values in epochs in which it is not a
// participant.
if node_id != pivot_node_id
&& awaiting_removal.is_empty()
&& !rejoined_pivot_node
{
expected_outputs
.get_mut(&pivot_node_id)
.expect("pivot node output set disappeared")
.remove(tx);
}
}
}
// If this is the first batch from a correct node with a vote to add node 0 back, take
// the join plan of the batch and use it to restart node 0.
if !rejoined_pivot_node && !state.net[node_id].is_faulty() && state.join_plan.is_none()
{
if let ChangeState::InProgress(Change::NodeChange(pub_keys)) = batch.change() {
if *pub_keys == pub_keys_add {
state.join_plan = Some(
batch
.join_plan()
.expect("failed to get the join plan of the batch"),
);
}
}
}
// Restart the pivot node having checked that it can be correctly restarted.
if !rejoined_pivot_node && awaiting_addition_in_progress.is_empty() {
if let Some(join_plan) = state.join_plan.take() {
let node = saved_node.take().expect("the pivot node wasn't saved");
let step = restart_node_for_add(&mut state.net, node, join_plan, &mut rng);
state
.net
.process_step(pivot_node_id, &step)
.expect("processing a step failed");
rejoined_pivot_node = true;
}
}
}
// Decide - from the point of view of the pivot node - whether it is ready to go offline.
if !rejoined_pivot_node
&& saved_node.is_none()
&& state.net[pivot_node_id].algorithm().is_removed()
{
println!(
"Removing the pivot node {} from the test network.",
pivot_node_id
);
saved_node = state.net.remove_node(&pivot_node_id);
if node_id == pivot_node_id {
// Further operations on the cranked node are not possible. Continue with
// processing other nodes.
continue;
}
}
// Check if we are done.
if expected_outputs.values().all(|s| s.is_empty())
&& awaiting_addition.is_empty()
&& awaiting_removal.is_empty()
{
// All outputs are empty and all nodes have removed and added the single pivot node.
break;
}
// If not done, check if we still want to propose something.
if has_output {
// Out of the remaining transactions, select a suitable amount.
let proposal =
choose_contribution(&mut rng, queue, cfg.batch_size, cfg.contribution_size);
let _ = state
.net
.send_input(node_id, Input::User(proposal), &mut rng)
.expect("could not send follow-up transaction");
}
}
// As a final step, we verify that all nodes have arrived at the same conclusion. The pivot node
// can miss some batches while it was removed.
let full_node = state
.net
.correct_nodes()
.find(|node| *node.id() != pivot_node_id)
.expect("Could not find a full node");
state.net.verify_batches(&full_node);
println!("End result: {:?}", full_node.outputs());
}
/// Restarts node 0 on the test network for adding it back as a validator.
fn restart_node_for_add<R, A>(
net: &mut VirtualNet<DHB, A>,
mut node: Node<DHB>,
join_plan: JoinPlan<usize>,
rng: &mut R,
) -> Step<DynamicHoneyBadger<Vec<usize>, usize>>
where
R: rand::Rng,
A: Adversary<DHB>,
{
println!("Restarting node {} with {:?}", node.id(), join_plan);
// TODO: When an observer node is added to the network, it should also be added to peer_ids.
let peer_ids: Vec<_> = net
.nodes()
.map(|node| node.id())
.filter(|id| *id != node.id())
.cloned()
.collect();
let step = node
.algorithm_mut()
.restart(join_plan, peer_ids.into_iter(), rng)
.expect("failed to restart pivot node");
net.insert_node(node);
step
}
/// Internal state of the test.
struct TestState<A>
where
A: Adversary<DHB>,
{
/// The test network.
net: VirtualNet<DHB, A>,
/// The join plan for readding the pivot node.
join_plan: Option<JoinPlan<usize>>,
/// The epoch in which the pivot node should go offline.
shutdown_epoch: Option<u64>,
}
impl<A> TestState<A>
where
A: Adversary<DHB>,
{
/// Constructs a new `VirtualNetState`.
fn new(net: VirtualNet<DHB, A>) -> Self {
TestState {
net,
join_plan: None,
shutdown_epoch: None,
}
}
}