Add internal messages and channel.

This commit is contained in:
c0gent 2018-07-11 13:06:20 -07:00
parent 221cd24c07
commit c1a7bc8953
5 changed files with 240 additions and 565 deletions

View File

@ -4,13 +4,13 @@ version = "0.1.0"
authors = ["c0gent <nsan1129@gmail.com>"]
autobins = false
[[bin]]
name = "simulation"
path = "src/bin/simulation.rs"
# [[bin]]
# name = "simulation"
# path = "src/bin/simulation.rs"
[[bin]]
name = "network"
path = "src/bin/network.rs"
path = "src/bin/network_test.rs"
[dependencies]
log = "*"
@ -47,6 +47,7 @@ byteorder = "*"
[dependencies.hbbft]
version = "*"
git = "https://github.com/c0gent/hbbft"
branch = "master"
# git = "https://github.com/c0gent/hbbft"
# branch = "master"
path = "../hbbft"
features = ["serialization-protobuf"]

View File

@ -91,7 +91,7 @@ fn main() {
.map(|bv| bv.as_bytes().to_vec());
let hb = Hydrabadger::new(bind_address, broadcast_value);
hb.run(remote_addresses);
hydrabadger::run_node(hb, remote_addresses);
// match mine() {
// Ok(_) => {},

View File

@ -1,404 +0,0 @@
extern crate bincode;
extern crate colored;
extern crate env_logger;
extern crate hbbft;
extern crate itertools;
extern crate pairing;
extern crate rand;
extern crate serde;
#[macro_use(Deserialize, Serialize)]
extern crate serde_derive;
extern crate signifix;
use std::collections::{BTreeMap, BTreeSet, VecDeque};
use std::rc::Rc;
use std::time::{Duration, Instant};
use std::{cmp, u64};
use colored::*;
use itertools::Itertools;
use rand::Rng;
use serde::de::DeserializeOwned;
use serde::Serialize;
use signifix::{metric, TryFrom};
use hbbft::crypto::SecretKeySet;
use hbbft::honey_badger::{Batch, HoneyBadger, HoneyBadgerBuilder};
use hbbft::messaging::{DistAlgorithm, NetworkInfo, Target};
/// A node identifier. In the simulation, nodes are simply numbered.
#[derive(Serialize, Deserialize, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Clone, Copy)]
pub struct NodeUid(pub usize);
/// A transaction.
#[derive(Serialize, Deserialize, Eq, PartialEq, Hash, Ord, PartialOrd, Debug, Clone)]
pub struct Transaction(pub Vec<u8>);
impl Transaction {
fn new(len: usize) -> Transaction {
Transaction(rand::thread_rng().gen_iter().take(len).collect())
}
}
/// A serialized message with a sender and the timestamp of arrival.
#[derive(Eq, PartialEq, Debug)]
struct TimestampedMessage<D: DistAlgorithm> {
time: Duration,
sender_id: D::NodeUid,
target: Target<D::NodeUid>,
message: Vec<u8>,
}
impl<D: DistAlgorithm> Clone for TimestampedMessage<D>
where D::Message: Clone, {
fn clone(&self) -> Self {
TimestampedMessage {
time: self.time,
sender_id: self.sender_id.clone(),
target: self.target.clone(),
message: self.message.clone(),
}
}
}
/// Performance parameters of a node's hardware and Internet connection. For simplicity, only the
/// sender's lag and bandwidth are taken into account. (I.e. infinite downstream, limited
/// upstream.)
#[derive(Clone, Copy)]
pub struct HwQuality {
/// The network latency. This is added once for every message.
latency: Duration,
/// The inverse bandwidth, in time per byte.
inv_bw: Duration,
/// The CPU time multiplier: how much slower, in percent, is this node than your computer?
cpu_factor: u32,
}
/// A "node" running an instance of the algorithm `D`.
pub struct TestNode<D: DistAlgorithm> {
/// This node's own ID.
id: D::NodeUid,
/// The instance of the broadcast algorithm.
algo: D,
/// The duration for which this node's CPU has already been simulated.
time: Duration,
/// The time when this node last sent data over the network.
sent_time: Duration,
/// Incoming messages from other nodes that this node has not yet handled, with timestamps.
in_queue: VecDeque<TimestampedMessage<D>>,
/// Outgoing messages to other nodes, with timestamps.
out_queue: VecDeque<TimestampedMessage<D>>,
/// The values this node has output so far, with timestamps.
outputs: Vec<(Duration, D::Output)>,
/// The number of messages this node has handled so far.
message_count: usize,
/// The total size of messages this node has handled so far, in bytes.
message_size: u64,
/// The hardware and network quality of this node.
hw_quality: HwQuality,
}
impl<D: DistAlgorithm> TestNode<D>
where D::Message: Serialize + DeserializeOwned, {
/// Creates a new test node with the given broadcast instance.
fn new(algo: D, hw_quality: HwQuality) -> TestNode<D> {
let mut node = TestNode {
id: algo.our_id().clone(),
algo,
time: Duration::default(),
sent_time: Duration::default(),
in_queue: VecDeque::new(),
out_queue: VecDeque::new(),
outputs: Vec::new(),
message_count: 0,
message_size: 0,
hw_quality,
};
node.send_output_and_msgs();
node
}
/// Handles the first message in the node's queue.
fn handle_message(&mut self) {
let ts_msg = self.in_queue.pop_front().expect("message not found");
self.time = cmp::max(self.time, ts_msg.time);
self.message_count += 1;
self.message_size += ts_msg.message.len() as u64;
let start = Instant::now();
let msg = bincode::deserialize::<D::Message>(&ts_msg.message).expect("deserialize");
self.algo
.handle_message(&ts_msg.sender_id, msg)
.expect("handling message");
self.time += start.elapsed() * self.hw_quality.cpu_factor / 100;
self.send_output_and_msgs()
}
/// Handles the algorithm's output and messages.
fn send_output_and_msgs(&mut self) {
let start = Instant::now();
let out_msgs: Vec<_> = self
.algo
.message_iter()
.map(|msg| {
(
msg.target,
bincode::serialize(&msg.message).expect("serialize"),
)
})
.collect();
self.time += start.elapsed() * self.hw_quality.cpu_factor / 100;
let time = self.time;
self.outputs
.extend(self.algo.output_iter().map(|out| (time, out)));
self.sent_time = cmp::max(self.time, self.sent_time);
for (target, message) in out_msgs {
self.sent_time += self.hw_quality.inv_bw * message.len() as u32;
self.out_queue.push_back(TimestampedMessage {
time: self.sent_time + self.hw_quality.latency,
sender_id: self.id.clone(),
target,
message,
});
}
}
/// Returns the time when the next message can be handled.
fn next_event_time(&self) -> Option<Duration> {
match self.in_queue.front() {
None => None,
Some(ts_msg) => Some(cmp::max(ts_msg.time, self.time)),
}
}
/// Returns the number of messages this node has handled so far.
fn message_count(&self) -> usize {
self.message_count
}
/// Returns the size of messages this node has handled so far.
fn message_size(&self) -> u64 {
self.message_size
}
/// Adds a message into the incoming queue.
fn add_message(&mut self, msg: TimestampedMessage<D>) {
match self.in_queue.iter().position(|other| other.time > msg.time) {
None => self.in_queue.push_back(msg),
Some(i) => self.in_queue.insert(i, msg),
}
}
}
/// A collection of `TestNode`s representing a network.
pub struct TestNetwork<D: DistAlgorithm> {
nodes: BTreeMap<D::NodeUid, TestNode<D>>,
}
impl<D: DistAlgorithm<NodeUid = NodeUid>> TestNetwork<D>
where D::Message: Serialize + DeserializeOwned + Clone, {
/// Creates a new network with `good_num` good nodes, and `dead_num` dead nodes.
pub fn new<F>(good_num: usize, dead_num: usize, new_algo: F, hw_quality: HwQuality)
-> TestNetwork<D>
where F: Fn(NodeUid, BTreeSet<NodeUid>) -> D {
let node_ids: BTreeSet<NodeUid> = (0..(good_num + dead_num)).map(NodeUid).collect();
let new_node_by_id = |id: NodeUid| {
(
id,
TestNode::new(new_algo(id, node_ids.clone()), hw_quality),
)
};
let mut network = TestNetwork {
nodes: (0..good_num).map(NodeUid).map(new_node_by_id).collect(),
};
let initial_msgs: Vec<_> = network
.nodes
.values_mut()
.flat_map(|node| node.out_queue.drain(..))
.collect();
network.dispatch_messages(initial_msgs);
network
}
/// Pushes the messages into the queues of the corresponding recipients.
fn dispatch_messages<Q>(&mut self, msgs: Q)
where Q: IntoIterator<Item = TimestampedMessage<D>> {
for ts_msg in msgs {
match ts_msg.target {
Target::All => {
for node in self.nodes.values_mut() {
if node.id != ts_msg.sender_id {
node.add_message(ts_msg.clone())
}
}
}
Target::Node(to_id) => {
if let Some(node) = self.nodes.get_mut(&to_id) {
node.add_message(ts_msg);
}
}
}
}
}
/// Handles a queued message in one of the nodes with the earliest timestamp.
pub fn step(&mut self) -> NodeUid {
let min_time = self
.nodes
.values()
.filter_map(TestNode::next_event_time)
.min()
.expect("no more messages in queue");
let min_ids: Vec<NodeUid> = self
.nodes
.iter()
.filter(|(_, node)| node.next_event_time() == Some(min_time))
.map(|(id, _)| *id)
.collect();
let next_id = *rand::thread_rng().choose(&min_ids).unwrap();
let msgs: Vec<_> = {
let node = self.nodes.get_mut(&next_id).unwrap();
node.handle_message();
node.out_queue.drain(..).collect()
};
self.dispatch_messages(msgs);
next_id
}
/// Returns the number of messages that have been handled so far.
pub fn message_count(&self) -> usize {
self.nodes.values().map(TestNode::message_count).sum()
}
/// Returns the total size of messages that have been handled so far.
pub fn message_size(&self) -> u64 {
self.nodes.values().map(TestNode::message_size).sum()
}
}
/// The timestamped batches for a particular epoch that have already been output.
#[derive(Clone, Default)]
struct EpochInfo {
nodes: BTreeMap<NodeUid, (Duration, Batch<Transaction, NodeUid>)>,
}
impl EpochInfo {
/// Adds a batch to this epoch. Prints information if the epoch is complete.
fn add(&mut self, id: NodeUid, time: Duration, batch: &Batch<Transaction, NodeUid>,
network: &TestNetwork<HoneyBadger<Transaction, NodeUid>>) {
if self.nodes.contains_key(&id) {
return;
}
self.nodes.insert(id, (time, batch.clone()));
if self.nodes.len() < network.nodes.len() {
return;
}
let (min_t, max_t) = self
.nodes
.values()
.map(|&(time, _)| time)
.minmax()
.into_option()
.unwrap();
let txs = batch.len();
println!(
"{:>5} {:6} {:6} {:5} {:9} {:>9}B",
batch.epoch.to_string().cyan(),
min_t.as_secs() * 1000 + max_t.subsec_nanos() as u64 / 1_000_000,
max_t.as_secs() * 1000 + max_t.subsec_nanos() as u64 / 1_000_000,
txs,
network.message_count() / network.nodes.len(),
metric::Signifix::try_from(network.message_size() / network.nodes.len() as u64)
.unwrap(),
);
}
}
/// Proposes `txn_count` values and expects nodes to output and order them.
fn simulate_honey_badger(mut network: TestNetwork<HoneyBadger<Transaction, NodeUid>>,
txn_count: usize) {
// Returns `true` if the node has not output all transactions yet.
// If it has, and has advanced another epoch, it clears all messages for later epochs.
let node_busy = |node: &mut TestNode<HoneyBadger<Transaction, NodeUid>>| {
node.outputs
.iter()
.map(|&(_, ref batch)| batch.len())
.sum::<usize>() < txn_count
};
// Handle messages until all nodes have output all transactions.
println!("{}", "Epoch Min/Max Time Txs Msgs/Node Size/Node".bold());
let mut epochs = Vec::new();
while network.nodes.values_mut().any(node_busy) {
let id = network.step();
for &(time, ref batch) in &network.nodes[&id].outputs {
if epochs.len() <= batch.epoch as usize {
epochs.resize(batch.epoch as usize + 1, EpochInfo::default());
}
epochs[batch.epoch as usize].add(id, time, batch, &network);
}
}
}
// -n <n>, --nodes <n> The total number of nodes [default: 10]
// -f <f>, --faulty <f> The number of faulty nodes [default: 0]
// -t <txs>, --txs <txs> The number of transactions to process [default: 1000]
// -b <b>, --batch <b> The batch size, i.e. txs per epoch [default: 100]
// -l <lag>, --lag <lag> The network lag between sending and receiving [default: 100]
// --bw <bw> The bandwidth, in kbit/s [default: 2000]
// --cpu <cpu> The CPU speed, in percent of this machine's [default: 100]
// --tx-size <size> The size of a transaction, in bytes [default: 10]
fn main() {
let node_count_total = 15;
let node_count_faulty = 1;
let txn_count = 1000;
let batch_size = 100;
let latency = 100;
let bandwidth = 2000;
let cpu = 100;
let txn_bytes = 10;
println!("Simulating Honey Badger with:");
println!("{} nodes, {} faulty", node_count_total, node_count_faulty);
println!(
"{} transactions, {} bytes each, ≤{} per epoch",
txn_count, txn_bytes, batch_size
);
println!(
"Network latency: {} ms, bandwidth: {} kbit/s, {:5.2}% CPU speed",
latency, bandwidth, cpu
);
println!();
let node_count_good = node_count_total - node_count_faulty;
let txns = (0..txn_count).map(|_| Transaction::new(txn_bytes));
let sk_set = SecretKeySet::random(node_count_faulty, &mut rand::thread_rng());
let pk_set = sk_set.public_keys();
let new_honey_badger = |id: NodeUid, all_ids: BTreeSet<NodeUid>| {
let netinfo = Rc::new(NetworkInfo::new(
id,
all_ids,
sk_set.secret_key_share(id.0 as u64),
pk_set.clone(),
));
HoneyBadgerBuilder::new(netinfo)
.batch_size(batch_size)
.build_with_transactions(txns.clone())
.expect("Instantiate honey_badger")
};
let hw_quality = HwQuality {
latency: Duration::from_millis(latency),
inv_bw: Duration::new(0, 8_000_000 / bandwidth),
cpu_factor: (10_000f32 / cpu as f32) as u32,
};
let network = TestNetwork::new(node_count_good, node_count_faulty, new_honey_badger, hw_quality);
simulate_honey_badger(network, txn_count);
}

View File

@ -19,9 +19,9 @@ use std::{
io::Cursor,
};
use futures::{
StartSend, AsyncSink,
sync::mpsc,
future::{self, Either},
StartSend, AsyncSink,
};
use tokio::{
self,
@ -44,27 +44,21 @@ use bincode::{self, serialize_into, deserialize_from, serialize, deserialize};
use tokio_serde_bincode::{ReadBincode, WriteBincode};
use hbbft::{
broadcast::{Broadcast, BroadcastMessage},
crypto::{
SecretKeySet,
poly::Poly,
},
messaging::{DistAlgorithm, NetworkInfo, SourcedMessage, Target},
crypto::{SecretKeySet, poly::Poly},
messaging::{DistAlgorithm, NetworkInfo, SourcedMessage, Target, TargetedMessage},
proto::message::BroadcastProto,
honey_badger::HoneyBadger,
dynamic_honey_badger::{DynamicHoneyBadger, Input, Batch, Message, Change},
dynamic_honey_badger::{/*DynamicHoneyBadger,*/ /*Input, Batch,*/ Message, /*Change*/},
queueing_honey_badger::{QueueingHoneyBadger, Input, Batch, /*Message,*/ Change},
};
// use network::{comms_task, connection, messaging::Messaging};
#[derive(Debug, Fail)]
pub enum Error {
#[fail(display = "{}", _0)]
Io(std::io::Error),
// #[fail(display = "{}", _0)]
// CommsError(comms_task::Error),
#[fail(display = "{}", _0)]
Serde(bincode::Error),
}
@ -76,24 +70,104 @@ impl From<std::io::Error> for Error {
}
/// A transaction.
#[derive(Serialize, Deserialize, Eq, PartialEq, Hash, Ord, PartialOrd, Debug, Clone)]
pub struct Transaction(pub Vec<u8>);
impl Transaction {
fn random(len: usize) -> Transaction {
Transaction(rand::thread_rng().gen_iter().take(len).collect())
}
}
/// Messages sent over the network between nodes.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum WireMessage {
pub enum WireMessageKind {
Hello,
Goodbye,
Message,
// Message,
#[serde(with = "serde_bytes")]
Bytes(Bytes),
Message(Message<Uuid>),
// Transaction()
}
/// Messages sent over the network between nodes.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct WireMessage {
// src_uid: Uuid,
kind: WireMessageKind,
}
impl WireMessage {
pub fn hello(/*src_uid: Uuid*/) -> WireMessage {
WireMessage {
// src_uid,
kind: WireMessageKind::Hello,
}
}
// pub fn src_uid(&self) -> &Uuid {
// &self.src_uid
// }
pub fn kind(&self) -> &WireMessageKind {
&self.kind
}
}
/// A message between internal threads/tasks.
#[derive(Clone, Debug)]
pub enum InternalMessageKind {
Wire(WireMessage),
}
/// A message between internal threads/tasks.
#[derive(Clone, Debug)]
pub struct InternalMessage {
src_uid: Uuid,
kind: InternalMessageKind,
}
impl InternalMessage {
pub fn wire(src_uid: Uuid, wire_message: WireMessage) -> InternalMessage {
InternalMessage {
src_uid,
kind: InternalMessageKind::Wire(wire_message),
}
}
pub fn src_uid(&self) -> &Uuid {
&self.src_uid
}
pub fn kind(&self) -> &InternalMessageKind {
&self.kind
}
}
/// Transmit half of the message channel.
type Tx = mpsc::UnboundedSender<WireMessage>;
// TODO: Use a bounded tx/rx (find a sensible upper bound):
type WireTx = mpsc::UnboundedSender<WireMessage>;
/// Receive half of the message channel.
type Rx = mpsc::UnboundedReceiver<WireMessage>;
// TODO: Use a bounded tx/rx (find a sensible upper bound):
type WireRx = mpsc::UnboundedReceiver<WireMessage>;
type PeerTxs = Arc<RwLock<HashMap<SocketAddr, Tx>>>;
/// Transmit half of the message channel.
// TODO: Use a bounded tx/rx (find a sensible upper bound):
type InternalTx = mpsc::UnboundedSender<InternalMessage>;
/// Receive half of the message channel.
// TODO: Use a bounded tx/rx (find a sensible upper bound):
type InternalRx = mpsc::UnboundedReceiver<InternalMessage>;
// type PeerTxs = Arc<RwLock<HashMap<SocketAddr, Tx>>>;
/// A serialized message with a sender and the timestamp of arrival.
#[derive(Eq, PartialEq, Debug)]
@ -177,24 +251,29 @@ impl Sink for WireMessages {
/// The state for each connected client.
struct Peer {
// /// Name of the peer.
// name: BytesMut,
// Peer uid.
uid: Uuid,
// The incoming stream of messages:
wire_messages: WireMessages,
/// Handle to the shared message state.
txs: PeerTxs,
// txs: PeerTxs,
hb: Arc<Hydrabadger>,
/// Receive half of the message channel.
rx: Rx,
/// Client socket address.
rx: WireRx,
peer_internal_tx: InternalTx,
/// Peer socket address.
addr: SocketAddr,
}
impl Peer {
/// Create a new instance of `Peer`.
fn new(txs: PeerTxs, wire_messages: WireMessages) -> Peer {
fn new(hb: Arc<Hydrabadger>, wire_messages: WireMessages,
peer_internal_tx: InternalTx) -> Peer {
// Get the client socket address
let addr = wire_messages.socket().peer_addr().unwrap();
@ -202,13 +281,14 @@ impl Peer {
let (tx, rx) = mpsc::unbounded();
// Add an entry for this `Peer` in the shared state map.
let guard = txs.write().unwrap().insert(addr, tx);
let guard = hb.peer_txs.write().unwrap().insert(addr, tx);
Peer {
// name,
uid: Uuid::new_v4(),
wire_messages,
txs,
hb,
rx,
peer_internal_tx,
addr,
}
}
@ -216,7 +296,7 @@ impl Peer {
/// Sends a message to all connected peers.
fn send_to_all(&mut self, msg: &WireMessage) {
// Now, send the message to all other peers
for (addr, tx) in self.txs.read().unwrap().iter() {
for (addr, tx) in self.hb.peer_txs.read().unwrap().iter() {
// Don't send the message to ourselves
if *addr != self.addr {
// The send only fails if the rx half has been dropped,
@ -275,8 +355,8 @@ impl Future for Peer {
info!("Received message: {:?}", message);
if let Some(msg) = message {
match msg {
WireMessage::Hello => info!("HELLO RECEIVED from '{}'", self.addr),
match msg.kind() {
WireMessageKind::Hello => info!("HELLO RECEIVED from '{}'", self.uid),
_ => (),
}
} else {
@ -297,168 +377,166 @@ impl Future for Peer {
impl Drop for Peer {
fn drop(&mut self) {
self.txs.write().unwrap().remove(&self.addr);
self.hb.peer_txs.write().unwrap().remove(&self.addr);
}
}
/// Return a future to manage the socket.
pub fn handle_incoming(socket: TcpStream, peer_txs: PeerTxs) -> impl Future<Item = (), Error = ()> {
let peer_addr = socket.peer_addr().unwrap();
info!("Incoming connection from '{}'", peer_addr);
let wire_messages = WireMessages::new(socket);
struct HoneyBadgerTask {
wire_messages.into_future()
.map_err(|(e, _)| e)
.and_then(move |(message, wire_messages)| {
let message = match message {
Some(message) => message,
None => {
// The remote client closed the connection without sending
// any data.
info!("Closing connection to '{}'", peer_addr);
return Either::A(future::ok(()));
}
};
info!("Connected to '{}'", peer_addr);
// Create the peer.
//
// This is also a future that processes the connection, only
// completing when the socket closes.
let peer = Peer::new(peer_txs, wire_messages);
// Wrap `peer` with `Either::B` to make the return type fit.
Either::B(peer)
})
.map_err(|e| {
error!("Connection error = {:?}", e);
})
}
// // Used to create a secret key from a UUID.
// fn sum_into_u64(bytes: &[u8]) -> u64 {
// let mut id_u64s = vec![0; 2];
// LittleEndian::read_u64_into(bytes, &mut id_u64s);
// id_u64s.iter().sum()
// }
pub struct Hydrabadger/*<T, N>*/ {
pub struct Hydrabadger {
/// Node uid:
uid: Uuid,
/// Incoming connection socket.
addr: SocketAddr,
value: Option<Vec<u8>>,
peer_txs: PeerTxs,
// value: Option<Vec<u8>>,
// TODO: Use a bounded tx/rx (find a sensible upper bound):
peer_txs: RwLock<HashMap<SocketAddr, WireTx>>,
/// Honey badger.
dhb: DynamicHoneyBadger<Vec<u8>, Uuid>,
dhb: RwLock<QueueingHoneyBadger<Transaction, Uuid>>,
/// Incoming messages from other nodes that this node has not yet handled, with timestamps.
in_queue: VecDeque<TimestampedMessage>,
/// Outgoing messages to other nodes, with timestamps.
out_queue: VecDeque<TimestampedMessage>,
// TODO: Use a bounded tx/rx (find a sensible upper bound):
peer_internal_tx: InternalTx,
peer_internal_rx: InternalRx,
peer_out_queue: RwLock<VecDeque<TargetedMessage<Message<usize>, usize>>>,
batch_out_queue: RwLock<VecDeque<Batch<Transaction, usize>>>,
}
impl Hydrabadger {
/// Returns a new Hydrabadger node.
pub fn new(addr: SocketAddr, value: Option<Vec<u8>>) -> Self {
pub fn new(addr: SocketAddr, _value: Option<Vec<u8>>) -> Self {
// let node_count_good = node_count_total - node_count_faulty;
// let txns = (0..txn_count).map(|_| Transaction::new(txn_bytes));
let sk_set = SecretKeySet::random(0, &mut rand::thread_rng());
let pk_set = sk_set.public_keys();
let id = Uuid::new_v4();
let mut all_ids = BTreeSet::new();
all_ids.insert(id);
let sk_share = 0;
let uid = Uuid::new_v4();
// let mut all_ids = BTreeSet::new();
// all_ids.insert(id);
// let sk_share = 0;
let node_ids: BTreeSet<_> = iter::once(uid).collect();
let netinfo = NetworkInfo::new(
id,
all_ids,
sk_set.secret_key_share(sk_share),
uid,
node_ids.clone(),
sk_set.secret_key_share(0 as u64),
pk_set.clone(),
);
let dhb = DynamicHoneyBadger::builder(netinfo)
let dhb = RwLock::new(QueueingHoneyBadger::builder(netinfo)
.batch_size(50)
.max_future_epochs(0)
.build().expect("Error creating `DynamicHoneyBadger`");
.build());
/*.build().expect("Error creating `QueueingHoneyBadger`");*/
let (peer_internal_tx, peer_internal_rx) = mpsc::unbounded();
Hydrabadger {
uid,
addr,
value,
peer_txs: Arc::new(RwLock::new(HashMap::new())),
// value,
peer_txs: RwLock::new(HashMap::new()),
dhb,
in_queue: VecDeque::new(),
out_queue: VecDeque::new(),
// peer_in_queue: RwLock::new(VecDeque::new()),
peer_internal_tx,
peer_internal_rx,
peer_out_queue: RwLock::new(VecDeque::new()),
batch_out_queue: RwLock::new(VecDeque::new()),
}
}
/// Starts the server.
pub fn run(&self, remotes: HashSet<SocketAddr>) {
let socket = TcpListener::bind(&self.addr).unwrap();
info!("Listening on: {}", self.addr);
let peer_txs = self.peer_txs.clone();
let listen = socket.incoming()
.map_err(|e| error!("failed to accept socket; error = {:?}", e))
.for_each(move |socket| {
let peer_addr = socket.peer_addr().unwrap();
info!("Incoming connection from '{}'", peer_addr);
let wire_messages = WireMessages::new(socket);
tokio::spawn(Peer::new(peer_txs.clone(), wire_messages)
.map_err(|e| {
error!("Connection error = {:?}", e);
})
);
Ok(())
});
let peer_txs = self.peer_txs.clone();
let connect = future::lazy(move || {
for remote_addr in remotes.iter() {
let peer_txs = peer_txs.clone();
tokio::spawn(TcpStream::connect(remote_addr)
.map_err(Error::from)
.and_then(move |socket| {
// Wrap the socket with the frame delimiter and codec:
let mut wire_messages = WireMessages::new(socket);
match wire_messages.send_msg(WireMessage::Hello) {
Ok(_) => Either::A(Peer::new(peer_txs, wire_messages)),
Err(err) => Either::B(future::err(err)),
}
})
.map_err(|err| error!("Socket connection error: {:?}", err)));
}
Ok(())
});
let peer_txs = self.peer_txs.clone();
let list = Interval::new(Instant::now(), Duration::from_millis(3000))
.for_each(move |_| {
let peer_txs = peer_txs.read().unwrap();
info!("Peer list:");
for (peer_addr, mut pb) in peer_txs.iter() {
info!(" peer_addr: {}", peer_addr);
}
Ok(())
})
.map_err(|err| {
error!("List connection inverval error: {:?}", err);
});
tokio::run(listen.join3(connect, list).map(|(_, _, _)| ()));
}
pub fn connect(&self) {
}
}
/// Binds to a host address and returns a future which starts the node.
pub fn node(hb: Hydrabadger, remotes: HashSet<SocketAddr>)
-> impl Future<Item = (), Error = ()> {
let socket = TcpListener::bind(&hb.addr).unwrap();
info!("Listening on: {}", hb.addr);
// let peer_txs = hb.peer_txs.clone();
let hydrabadger = Arc::new(hb);
let hb = hydrabadger.clone();
let listen = socket.incoming()
.map_err(|e| error!("failed to accept socket; error = {:?}", e))
.for_each(move |socket| {
let peer_addr = socket.peer_addr().unwrap();
info!("Incoming connection from '{}'", peer_addr);
let wire_messages = WireMessages::new(socket);
tokio::spawn(Peer::new(hb.clone(), wire_messages, hb.peer_internal_tx.clone())
.map_err(|e| {
error!("Connection error = {:?}", e);
})
);
Ok(())
});
// let peer_txs = hb.peer_txs.clone();
let uid = hydrabadger.uid.clone();
let hb = hydrabadger.clone();
let connect = future::lazy(move || {
for remote_addr in remotes.iter() {
let hb = hb.clone();
tokio::spawn(TcpStream::connect(remote_addr)
.map_err(Error::from)
.and_then(move |socket| {
// Wrap the socket with the frame delimiter and codec:
let mut wire_messages = WireMessages::new(socket);
match wire_messages.send_msg(WireMessage::hello()) {
Ok(_) => {
let peer_internal_tx = hb.peer_internal_tx.clone();
Either::A(Peer::new(hb, wire_messages, peer_internal_tx))
},
Err(err) => Either::B(future::err(err)),
}
})
.map_err(|err| error!("Socket connection error: {:?}", err)));
}
Ok(())
});
let hb = hydrabadger.clone();
let list = Interval::new(Instant::now(), Duration::from_millis(3000))
.for_each(move |_| {
let hb = hb.clone();
let peer_txs = hb.peer_txs.read().unwrap();
// info!("Peer list:");
for (peer_addr, mut pb) in peer_txs.iter() {
info!(" peer_addr: {}", peer_addr);
}
// TODO: Send txns instead.
Ok(())
})
.map_err(|err| {
error!("List connection inverval error: {:?}", err);
});
listen.join3(connect, list).map(|(_, _, _)| ())
}
/// Starts a node.
pub fn run_node(hb: Hydrabadger, remotes: HashSet<SocketAddr>) {
tokio::run(node(hb, remotes));
}

View File

@ -28,5 +28,5 @@ extern crate hbbft;
pub mod hydrabadger;
pub mod blockchain;
pub use hydrabadger::{Hydrabadger};
pub use blockchain::{Blockchain, MiningError};
pub use hydrabadger::{run_node, Hydrabadger};
pub use blockchain::{Blockchain, MiningError};