parity-common/memorydb/src/lib.rs

398 lines
10 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Reference-counted memory-based `HashDB` implementation.
extern crate hashdb;
extern crate heapsize;
extern crate rlp;
#[cfg(test)] extern crate keccak_hasher;
#[cfg(test)] extern crate tiny_keccak;
#[cfg(test)] extern crate ethereum_types;
use hashdb::{HashDB, Hasher as KeyHasher, AsHashDB};
use heapsize::HeapSizeOf;
use rlp::NULL_RLP;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::hash;
use std::mem;
// Backing `HashMap` parametrized with a `Hasher` for the keys `Hasher::Out` and the `Hasher::StdHasher`
// as hash map builder.
type FastMap<H, T> = HashMap<<H as KeyHasher>::Out, T, hash::BuildHasherDefault<<H as KeyHasher>::StdHasher>>;
/// Reference-counted memory-based `HashDB` implementation.
///
/// Use `new()` to create a new database. Insert items with `insert()`, remove items
/// with `remove()`, check for existence with `contains()` and lookup a hash to derive
/// the data with `get()`. Clear with `clear()` and purge the portions of the data
/// that have no references with `purge()`.
///
/// # Example
/// ```rust
/// extern crate hashdb;
/// extern crate keccak_hasher;
/// extern crate memorydb;
///
/// use hashdb::*;
/// use keccak_hasher::KeccakHasher;
/// use memorydb::*;
/// fn main() {
/// let mut m = MemoryDB::<KeccakHasher, Vec<u8>>::new();
/// let d = "Hello world!".as_bytes();
///
/// let k = m.insert(d);
/// assert!(m.contains(&k));
/// assert_eq!(m.get(&k).unwrap(), d);
///
/// m.insert(d);
/// assert!(m.contains(&k));
///
/// m.remove(&k);
/// assert!(m.contains(&k));
///
/// m.remove(&k);
/// assert!(!m.contains(&k));
///
/// m.remove(&k);
/// assert!(!m.contains(&k));
///
/// m.insert(d);
/// assert!(!m.contains(&k));
/// m.insert(d);
/// assert!(m.contains(&k));
/// assert_eq!(m.get(&k).unwrap(), d);
///
/// m.remove(&k);
/// assert!(!m.contains(&k));
/// }
/// ```
#[derive(Clone, PartialEq)]
pub struct MemoryDB<H: KeyHasher, T> {
data: FastMap<H, (T, i32)>,
hashed_null_node: H::Out,
null_node_data: T,
}
impl<'a, H, T> Default for MemoryDB<H, T>
where
H: KeyHasher,
H::Out: HeapSizeOf,
T: From<&'a [u8]> + Clone
{
fn default() -> Self { Self::new() }
}
impl<'a, H, T> MemoryDB<H, T>
where
H: KeyHasher,
H::Out: HeapSizeOf,
T: From<&'a [u8]> + Clone,
{
/// Create a new instance of the memory DB.
pub fn new() -> Self {
MemoryDB::from_null_node(&NULL_RLP, NULL_RLP.as_ref().into())
}
}
impl<H, T> MemoryDB<H, T>
where
H: KeyHasher,
H::Out: HeapSizeOf,
T: Default,
{
/// Remove an element and delete it from storage if reference count reaches zero.
/// If the value was purged, return the old value.
pub fn remove_and_purge(&mut self, key: &<H as KeyHasher>::Out) -> Option<T> {
if key == &self.hashed_null_node {
return None;
}
match self.data.entry(key.clone()) {
Entry::Occupied(mut entry) =>
if entry.get().1 == 1 {
Some(entry.remove().0)
} else {
entry.get_mut().1 -= 1;
None
},
Entry::Vacant(entry) => {
entry.insert((T::default(), -1)); // FIXME: shouldn't it be purged?
None
}
}
}
}
impl<H: KeyHasher, T: Clone> MemoryDB<H, T> {
/// Create a new `MemoryDB` from a given null key/data
pub fn from_null_node(null_key: &[u8], null_node_data: T) -> Self {
MemoryDB {
data: FastMap::<H,_>::default(),
hashed_null_node: H::hash(null_key),
null_node_data,
}
}
/// Clear all data from the database.
///
/// # Examples
/// ```rust
/// extern crate hashdb;
/// extern crate keccak_hasher;
/// extern crate memorydb;
///
/// use hashdb::*;
/// use keccak_hasher::KeccakHasher;
/// use memorydb::*;
///
/// fn main() {
/// let mut m = MemoryDB::<KeccakHasher, Vec<u8>>::new();
/// let hello_bytes = "Hello world!".as_bytes();
/// let hash = m.insert(hello_bytes);
/// assert!(m.contains(&hash));
/// m.clear();
/// assert!(!m.contains(&hash));
/// }
/// ```
pub fn clear(&mut self) {
self.data.clear();
}
/// Purge all zero-referenced data from the database.
pub fn purge(&mut self) {
self.data.retain(|_, &mut (_, rc)| rc != 0);
}
/// Return the internal map of hashes to data, clearing the current state.
pub fn drain(&mut self) -> FastMap<H, (T, i32)> {
mem::replace(&mut self.data, FastMap::<H,_>::default())
}
/// Grab the raw information associated with a key. Returns None if the key
/// doesn't exist.
///
/// Even when Some is returned, the data is only guaranteed to be useful
/// when the refs > 0.
pub fn raw(&self, key: &<H as KeyHasher>::Out) -> Option<(T, i32)> {
if key == &self.hashed_null_node {
return Some((self.null_node_data.clone(), 1));
}
self.data.get(key).map(|(value, count)| (value.clone(), *count))
}
/// Consolidate all the entries of `other` into `self`.
pub fn consolidate(&mut self, mut other: Self) {
for (key, (value, rc)) in other.drain() {
match self.data.entry(key) {
Entry::Occupied(mut entry) => {
if entry.get().1 < 0 {
entry.get_mut().0 = value;
}
entry.get_mut().1 += rc;
}
Entry::Vacant(entry) => {
entry.insert((value, rc));
}
}
}
}
}
impl<H, T> MemoryDB<H, T>
where
H: KeyHasher,
H::Out: HeapSizeOf,
T: HeapSizeOf,
{
/// Returns the size of allocated heap memory
pub fn mem_used(&self) -> usize {
self.data.heap_size_of_children()
}
}
impl<H, T> HashDB<H, T> for MemoryDB<H, T>
where
H: KeyHasher,
T: Default + PartialEq<T> + for<'a> From<&'a [u8]> + Send + Sync + Clone,
{
fn keys(&self) -> HashMap<H::Out, i32> {
self.data.iter()
.filter_map(|(k, v)| if v.1 != 0 {
Some((*k, v.1))
} else {
None
})
.collect()
}
fn get(&self, key: &H::Out) -> Option<T> {
if key == &self.hashed_null_node {
return Some(self.null_node_data.clone());
}
match self.data.get(key) {
Some(&(ref d, rc)) if rc > 0 => Some(d.clone()),
_ => None
}
}
fn contains(&self, key: &H::Out) -> bool {
if key == &self.hashed_null_node {
return true;
}
match self.data.get(key) {
Some(&(_, x)) if x > 0 => true,
_ => false
}
}
fn emplace(&mut self, key:H::Out, value: T) {
if value == self.null_node_data {
return;
}
match self.data.entry(key) {
Entry::Occupied(mut entry) => {
let &mut (ref mut old_value, ref mut rc) = entry.get_mut();
if *rc <= 0 {
*old_value = value;
}
*rc += 1;
},
Entry::Vacant(entry) => {
entry.insert((value, 1));
},
}
}
fn insert(&mut self, value: &[u8]) -> H::Out {
if value == &NULL_RLP {
return self.hashed_null_node.clone();
}
let key = H::hash(value);
match self.data.entry(key) {
Entry::Occupied(mut entry) => {
let &mut (ref mut old_value, ref mut rc) = entry.get_mut();
if *rc <= 0 {
*old_value = value.into();
}
*rc += 1;
},
Entry::Vacant(entry) => {
entry.insert((value.into(), 1));
},
}
key
}
fn remove(&mut self, key: &H::Out) {
if key == &self.hashed_null_node {
return;
}
match self.data.entry(*key) {
Entry::Occupied(mut entry) => {
let &mut (_, ref mut rc) = entry.get_mut();
*rc -= 1;
},
Entry::Vacant(entry) => {
entry.insert((T::default(), -1));
},
}
}
}
impl<H, T> AsHashDB<H, T> for MemoryDB<H, T>
where
H: KeyHasher,
T: Default + PartialEq<T> + for<'a> From<&'a[u8]> + Send + Sync + Clone,
{
fn as_hashdb(&self) -> &HashDB<H, T> { self }
fn as_hashdb_mut(&mut self) -> &mut HashDB<H, T> { self }
}
#[cfg(test)]
mod tests {
use super::*;
use tiny_keccak::Keccak;
use ethereum_types::H256;
use keccak_hasher::KeccakHasher;
#[test]
fn memorydb_remove_and_purge() {
let hello_bytes = b"Hello world!";
let mut hello_key = [0;32];
Keccak::keccak256(hello_bytes, &mut hello_key);
let hello_key = H256(hello_key);
let mut m = MemoryDB::<KeccakHasher, Vec<u8>>::new();
m.remove(&hello_key);
assert_eq!(m.raw(&hello_key).unwrap().1, -1);
m.purge();
assert_eq!(m.raw(&hello_key).unwrap().1, -1);
m.insert(hello_bytes);
assert_eq!(m.raw(&hello_key).unwrap().1, 0);
m.purge();
assert_eq!(m.raw(&hello_key), None);
let mut m = MemoryDB::<KeccakHasher, Vec<u8>>::new();
assert!(m.remove_and_purge(&hello_key).is_none());
assert_eq!(m.raw(&hello_key).unwrap().1, -1);
m.insert(hello_bytes);
m.insert(hello_bytes);
assert_eq!(m.raw(&hello_key).unwrap().1, 1);
assert_eq!(&*m.remove_and_purge(&hello_key).unwrap(), hello_bytes);
assert_eq!(m.raw(&hello_key), None);
assert!(m.remove_and_purge(&hello_key).is_none());
}
#[test]
fn consolidate() {
let mut main = MemoryDB::<KeccakHasher, Vec<u8>>::new();
let mut other = MemoryDB::<KeccakHasher, Vec<u8>>::new();
let remove_key = other.insert(b"doggo");
main.remove(&remove_key);
let insert_key = other.insert(b"arf");
main.emplace(insert_key, "arf".as_bytes().to_vec());
let negative_remove_key = other.insert(b"negative");
other.remove(&negative_remove_key); // ref cnt: 0
other.remove(&negative_remove_key); // ref cnt: -1
main.remove(&negative_remove_key); // ref cnt: -1
main.consolidate(other);
let overlay = main.drain();
assert_eq!(overlay.get(&remove_key).unwrap(), &("doggo".as_bytes().to_vec(), 0));
assert_eq!(overlay.get(&insert_key).unwrap(), &("arf".as_bytes().to_vec(), 2));
assert_eq!(overlay.get(&negative_remove_key).unwrap(), &("negative".as_bytes().to_vec(), -2));
}
#[test]
fn default_works() {
let mut db = MemoryDB::<KeccakHasher, Vec<u8>>::default();
let hashed_null_node = KeccakHasher::hash(&NULL_RLP);
assert_eq!(db.insert(&NULL_RLP), hashed_null_node);
}
}