
 

PoA Consensus Audit 
[CRITICAL] 

Not found 

[SERIOUS] 

1. ​ValidatorMetadata.sol#L131 

The obsolete mechanism of voting should be removed. Its disadvantages include, 
firstly, the inability to vote against and thus, in some way, cancel the proposed proxy 
address, secondly, a low and fixed in the form of a constant (​3​) decision threshold. 

Fixed at ​PR 150​. 

2. ​VotingToChangeMinThreshold.sol#L98 

If the vote threshold is increased for changing the keys or voting key 
(​KeysManager.sol#L454​) is deleted, it is not verified that the total number of voting 
keys remaining in the system is still greater than the current threshold and voting can 
in principle be finished (see. ​VotingToChange.sol#L229​). As a result, a denial of 
service may occur. 

Client: Yes, we have an ​issue created on this topic​ — it is assumed that if the 
threshold is higher than the number of validators, then you can vote for changing the 
implementation of ​BallotsStorage​, which stores this threshold value because the 
voting for the change of implementation in such cases is not blocked. Please 
comment on it if you still see the problem given the above. I am thinking of solving 
this issue after the hard fork in order to save time now. Also at the stage of creating a 
vote for the change of threshold, we have such a test for the number of validators: 
VotingToChangeMinThreshold.sol#L21​ — although this is a test for the number of 

https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L131
https://github.com/poanetwork/poa-network-consensus-contracts/pull/150
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeMinThreshold.sol#L98
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L454
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingToChange.sol#L229
https://github.com/poanetwork/poa-network-consensus-contracts/issues/154
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeMinThreshold.sol#L21


mining keys and not voting keys, we do not have validators with an empty voting key 
(theoretically and technically they might exist, but this is unlikely). 

Yes, that's it. Plus, the number of voters, equal to the aforementioned 
getProxyThreshold​, is also necessary to successfully complete the voting to change 
the implementation of ​BallotsStorage​. There are no critical issues, the rest are 
available for you to see and evaluate their probabilities and make decisions. 

Client: about ​getProxyThreshold​ — if there is a shortage of keys to successfully 
finalise the vote for changing the implementation of ​BallotsStorage​, then the 
validators will be able to create a new vote, just the same, in which the actual value 
of proxyThreshold will be recorded, which will be enough to finalise the new vote. 

[WARNINGS] 

1. ​BallotsStorage.sol#L101 

If there are > 200 validators, ​getBallotLimitPerValidator​ will return zero. This 
function is used in the function ​withinLimit​, which means that no one will be able to 
create new ballots any more — all changes will be blocked. 

This problem is not currently relevant due to an error in the implementation of the 
withinLimit​ modifier where instead of ​<=​ there should be ​<​, otherwise it is allowed to 
exceed the limit by 1 for calls to ​_createBallot​. If this error is corrected, there will be 
a blocking of the possibility of voting for changes when the number of validators 
reaches 200. 

Fixed at ​PR 146​. 

2. ​VotingToChange.sol#L94 

Here, the number of open ballots is imported only for the current validators. If the 
validator has opened the ballot, then ceased to be an effective validator 
(​poa.currentValidators​), and then a ​migrateBasicAll​ call was made, then the ballot of 
this validator cannot be closed because it will fail on ​assert​ when calling 
_decreaseValidatorLimit​ during ​_finalizeBallot​. 

Fixed at ​PR 145​. 

3. ​VotingToChangeKeys.sol#L329 

It is possible to create two or more ballots for deleting the same mining key while this 
mining key is still active. However, only the first of such ballots will be successfully 
completed, while the rest will remain active. 

https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/BallotsStorage.sol#L101
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingToChange.sol#L136
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingToChange.sol#L181
https://github.com/poanetwork/poa-network-consensus-contracts/pull/146
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingToChange.sol#L94
https://github.com/poanetwork/poa-network-consensus-contracts/pull/145
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeKeys.sol#L329


Fixed at ​PR 145​. 

4. ​KeysManager.sol#L77 

require(poa.getCurrentValidatorsLength() <= maxLimitValidators());​ — here it is 
necessary to change ​<=​ to ​<​; otherwise it turns out that when the limit is reached, one 
more addition is allowed. 

Fixed at ​PR 145​. 

5. ​ValidatorMetadata.sol#L260 

The public modifier allows the voting key owner to use any mining key, including 
creating a request for changing other people's data or editing someone else's 
request before it is accepted. 

Client: the ​changeRequestForValidator​ function has been removed with its code having 
been transferred to the changeRequest function at ​PR 146​. 

6. ​ValidatorMetadata.sol#L331 

uint256 public constant MAX_PENDING_CHANGE_CONFIRMATIONS = 50​ — such a definition 
of a constant will block the ability to make changes if the threshold (returned from 
ballotsStorage.getBallotThreshold (metadataChangeThresholdType))​through voting is 
set above 50. 

Fixed at ​PR 146​. 

Client: here 
https://github.com/poanetwork/poa-network-consensus-contracts/pull/164/files#diff-2
c00ed73fa555c3fa081a96e5b5893dc​ it was decided to return the value of 50 as a 
constraint to limit the iteration of the cycles here 
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc71
0858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L447​ and here 
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc71
0858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L638​. The added 
code takes into account the minimum threshold, so if the threshold is higher than 50, 
the lock will not occur during finalisation: 
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc71
0858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L275-L280 

But in fact, the restriction that was supposed to be brought back can be bypassed 
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc71
0858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L277-L278 

https://github.com/poanetwork/poa-network-consensus-contracts/pull/145
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L77
https://github.com/poanetwork/poa-network-consensus-contracts/pull/145
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L260
https://github.com/poanetwork/poa-network-consensus-contracts/pull/146
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L331
https://github.com/poanetwork/poa-network-consensus-contracts/pull/146
https://github.com/poanetwork/poa-network-consensus-contracts/pull/164/files#diff-2c00ed73fa555c3fa081a96e5b5893dc
https://github.com/poanetwork/poa-network-consensus-contracts/pull/164/files#diff-2c00ed73fa555c3fa081a96e5b5893dc
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L447
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L447
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L638
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L638
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L275-L280
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L275-L280
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L277-L278
https://github.com/varasev/poa-network-consensus-contracts/blob/aa6eab9a28fbc710858b0e020e7f5f69dda8ba17/contracts/ValidatorMetadata.sol#L277-L278


Client: yes, it can be bypassed if ​minThreshold​ is greater than ​50​. But it is unlikely that 
minThreshold​ will be set to such a large value when initialising the ​BallotsStorage 
contract. I will additionally do a check inside the function ​BallotsStorage.init​ so that 
this value cannot be exceeded. Improvements according to this warning are 
introduced in 
https://github.com/poanetwork/poa-network-consensus-contracts/pull/166 

7. ​KeysManager.sol#L323 

Is it possible to add a validator that is greater by 1 than ​maxLimitValidators​? 

Client: yes, replaced with a strict inequality: ​PR 145​. 

By the way, this is another place where you can create an unclosable ballot. 

Client: yes, right. It will be necessary to add a check for the number of validators 
when creating a ballot. It is unlikely that the system will reach 2,000 validators, but 
nonetheless. 

No, in a simple form, a check during creation won't suffice; I wrote about this in the 
last comment. If it is done, then you have to keep a counter of the validators 
expected to be added and add them to the current number when checking the 
condition. 

Client: We decided not to add such a check because the situation with a number of 
validators equal to 2000 is unlikely. In order not to complicate the code for 
processing such an unlikely event. The solution for the issue with unfinalisable 
ballots is described in ​remark No 9​. 

8. ​KeysManager.sol#L263 

Exceeding ​maxLimitValidators​ is possible, if some of the initial keys are used after 
reaching ​maxLimitValidators​ via ​addMiningKey​. 

Fixed at ​PR 153​. 

9. ​VotingTo.sol#L191 

In some parts of the code that read the mining keys logs, there are limits to reading 
the logs (e.g. also here ​KeysManager.sol#L181​), which are different. However, there 
is no limitation for mining keys logging. This means that when the set limits are 
reached, reading the log will stop returning the correct data. The reaching of the 
limits can occur as a result of attacker actions, and also, with some extremely low 

https://github.com/poanetwork/poa-network-consensus-contracts/pull/166
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L323
https://github.com/poanetwork/poa-network-consensus-contracts/pull/145
https://github.com/mixbytes/audits_public/blob/master/solidity/PoA%20Consensus/audit_en.md#9-votingtochangekeyssoll116
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L263
https://github.com/poanetwork/poa-network-consensus-contracts/pull/153
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingTo.sol#L191
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L181


probability, during a regular operation. We recommend setting identical limits 
everywhere for reading and writing. 

Client: if we just put a limit on the mining key exchange recording, the function 
VotingToChangeKeys.checkIfMiningExisted​will behave the same as now — return false 
for the key that was created more than 25 key exchanges ago. Do I understand 
correctly that you propose to prohibit swapping mining key if the limit is reached? As 
for the ​KeysManager.migrateMiningKey​function — it will now take the value of the same 
limit from the public-getter maxOldMiningKeysDeepCheck(): ​PR 156​. 

Yes, it turns out that the limit is 25 key changes. You would know better how this will 
interfere. There are alternatives (make a tree structure, Bloom filter, ...), but they are 
relatively cumbersome. 

Client: I think we will stick with the current implementation and current limits. 

10. ​PoaNetworkConsensus.sol#L78 

We recommend adding a check whether the ​currentValidators[i]​ validator has not 
been added before. Otherwise, some cells in ​currentValidators​ and ​pendingList​ will 
be perpetually occupied, and ​getCurrentValidatorsLength​ and 
getCurrentValidatorsLengthWithoutMoC​ will return inflated numbers. 

Fixed at ​PR 156​. 

11. Global limits for ballots 

In ​the documentation​ global limits for ballots are mentioned (e.g. “Validator 
Management Ballot: 9 active ballots at one time”). In the audited version of the code 
they are not present, but if they are implemented, they will not only be useless 
against spam, but in a compartment with the problem of unclosable ballots they can 
lead to a global denial of service. 

Client: Yes, this information in the documentation is outdated (we will correct it). 
Instead of global limits, we use limits for each validator, calculated in the 
BallotsStorage.getBallotLimitPerValidator​ function: ​BallotsStorage.sol#L135-L145 ​. 
The solution for unfinalisable ballots is described in ​remark No 9​. Please comment: 
Do you see any problems with spam protection in the current implementation, which 
relies on ​BallotsStorage.getBallotLimitPerValidator​? 

We see no problems here. 

12. Documentation 

https://github.com/poanetwork/poa-network-consensus-contracts/pull/156/files#diff-7b2957c0b674ce4e78e903e367828aa6
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/PoaNetworkConsensus.sol#L78
https://github.com/poanetwork/poa-network-consensus-contracts/pull/156
https://github.com/poanetwork/wiki/wiki/Ballots-Overview.-Life-cycle-and-limits#limits
https://github.com/poanetwork/poa-network-consensus-contracts/blob/fd2b2c6c2f4a4b1b5bdacd4f9510397e3c5124fa/contracts/BallotsStorage.sol#L135-L145
https://github.com/mixbytes/audits_public/blob/master/solidity/PoA%20Consensus/audit_en.md#9-votingtochangekeyssoll116


In ​the documentation​ on the diagram there is a comment that the contract method 
looks for votes ready to be finalised and finalises them, but it is not present in the 
code. The next diagram contains the same comment 
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper#voting-on-a-ballot 

Client: we will remove the superfluous note from the diagrams. The corresponding 
issue: ​https://github.com/poanetwork/wiki/issues/67​. 

13. ​BlockReward.sol#L71 

The ​isMiningActive​ check is sufficient only if the miner has remained active for the 
entire period. In a situation where there have been no rewards for a long time, it may 
turn out that the miner is no longer active, but has not yet received a reward for 
previous periods. 

Client: here it is assumed that the reward function will be consistently called every 5 
seconds. At each call, the validator (miner) will be different (at the moment, there are 
19 validators on the network) — this function is called by the Parity engine in a loop 
for all validators from the list. When the last validator is processed, the call starts 
from the beginning of the list. Therefore, for example, in case of 20 validators, the 
wait time for any validator is 100 seconds. If the validator is no longer present, but 
Parity for some reason called the reward function for this validator, then a revert will 
occur. Theoretically, such situations should not occur; Parity should operate with a 
list of validators that is always up-to-date. But require has been inserted here, just in 
case. 

14. ​BlockReward.sol#L115 

In the ​rewardHBBFT​ function, in the loop, there is a distribution of rewards between the 
miners, with the list of miners being rebuilt on the go. There may be a situation in 
which the rewards distribution begins with an outdated list, but continues with the 
updated one, and it is unclear how the updated list and the list of miners who really 
should receive a reward for their work should correspond (as at the moment of the 
function call, it is guaranteed that the list contains precisely the miners who 
completed the work within a certain period in the past). 

One of the problems that arise: if the miner has lost control of the key and changed it 
through a ballot, it is possible that the reward will go to the old key because the list of 
hbbftPayoutKeys​ had not been updated for a long time. 

Client: the work here is built on the following principle. It is assumed that all 
validators should receive compensation in turn. At the very beginning, the list of 
validators is taken. During the cycle, the reward is charged to each validator in the 
order of its number in the array. If the loop goes beyond the current size of the array 

https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper#creating-a-new-ballot
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper#voting-on-a-ballot
https://github.com/poanetwork/wiki/issues/67
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/BlockReward.sol#L71
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/BlockReward.sol#L115


of validators, then after processing the last validator in the array, the list is updated 
because during the processing of the array from the zero element to the last, the 
lineup of validators could change. Thus, the processing begins with the first validator 
of the already updated list. I.e. it takes a snapshot of the validators list, and it does 
not change until this list is processed to the end. Once it is processed to the end, the 
snapshot is taken again. Etc. This contract has not been fully worked out yet — it is 
possible that the algorithm will change, but we still need to test the current version of 
its code. Let me know if the calculation algorithm given above is not completely clear 
to you. We have a small description of the task by which the function was 
implemented: ​https://github.com/poanetwork/RFC/issues/16 

[REMARKS] 

1. ​KeysManager.sol#L238-L265 

Several ​initialKey​s can use the same mining key. In the current implementation of 
the ​PoaNetworkConsensus.sol​contract, the addValidator function will throw an 
exception in this situation, but it's better to add an explicit check via 
successfulValidatorClone​, as this will reduce the chance of errors occurring when 
making changes. In particular, you will not have to think about what will happen if 
you have already created and initialised ​KeysMaster​, but ​ProxyStorage​ is not initialised 
yet, and ​poaNetworkConsensus()​ returns ​address(0)​. Or, what happens if the ballot 
decided to change ​ProxyStorage​, and with it, the address ​EthernalStorageProxy​ of the 
contract for ​PoaNetworkConsensus​ changes, but the migration of data from 
PoaNetworkConsensus​ is a separate transaction, and the call ​createKeys​ has wedged 
between these events. 

Any ​initialKey​ can use someone else's payment key and/or voting key. 

Fixed at ​PR 135​. 

2. ​KeysManager.sol#L346-L368 

In the ​swapMiningKey​ function, ​miningKey​ can be overwritten along with all other keys, 
create an infinite loop in the ​miningKeyHistory​ chain (actually kill the connection of the 
current key with all previous ones) if the attacker knows only the mining key — it is 
not checked if the new and old keys are different. In the current contract system, the 
possibility of such a call is eliminated, but it's better to insert an explicit check and not 
to rely on the fact that future changes in ​VotingToChangeKeys​ will not permit exploiting 
the vulnerability. 

Fixed at ​PR 148​. 

https://github.com/poanetwork/RFC/issues/16
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L238-L265
https://github.com/poanetwork/poa-network-consensus-contracts/pull/135
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L346-L368
https://github.com/poanetwork/poa-network-consensus-contracts/pull/148


3. ​ValidatorMetadata.sol#L317 

Linear complexity in verifying the fact of voting. However, the length of the array is 
never greater than three (written in ​ValidatorMetadata.sol#L139​), so there isn't a 
problem. 

Client: functions related to changing the ​ProxyStorage​ address are removed from 
ValidatorMetadata​ in ​PR 150​ — these functions were migrated from the old version of 
the contract. Now they are not needed because we have upgradable ​ProxyStorage​. 

4. ​ValidatorMetadata.sol#L367 

Directly specifying an integer value (enum) will potentially cause problems when 
making changes. 

Fixed at ​PR 149​. 

5. ​VotingToChangeKeys.sol#L93 

Nowhere after the call to ​areBallotParamsValid​ it is checked that ​mining key != 
address(0)​. Therefore, one can, for example, create a ballot to add a voting key for 
the zero address. If, for some reason, such a ballot ends with an accept, at the 
finalisation stage, a revert will occur when trying to add voting keys to ​KeysManager​, 
and this member will have an unremovable Ballot freeze. 

Fixed at ​PR 147​. 

6. ​EternalStorageProxy.sol#L59 

The value of the free memory pointer is not updated. Before using a fragment of 
memory, it is recommended to allocate it by adding ​mstore(0x40, a new free memory 
pointer)​. 

Client: I think we can do without a free memory pointer, as described in 
https://github.com/zeppelinos/zos-lib/issues/70​ — I have made a corresponding PR 
to delete it: 
https://github.com/poanetwork/poa-network-consensus-contracts/pull/151​. 

Commented on the issue. Long story short — it is a dangerous practice. However, if 
you do not use the "allocator" at all, the question is removed. 

Client: Does it mean that in our case, such a solution may be used? 
EternalStorageProxy.sol#L58-L75​. 

Yes. 

https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L317
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L139
https://github.com/poanetwork/poa-network-consensus-contracts/pull/150
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L367
https://github.com/poanetwork/poa-network-consensus-contracts/pull/149
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeKeys.sol#L93
https://github.com/poanetwork/poa-network-consensus-contracts/pull/147
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/eternal-storage/EternalStorageProxy.sol#L59
https://github.com/zeppelinos/zos-lib/issues/70
https://github.com/poanetwork/poa-network-consensus-contracts/pull/151
https://github.com/poanetwork/poa-network-consensus-contracts/blob/cdda8976896f85b4d71e0a28216616cf3e9df385/contracts/eternal-storage/EternalStorageProxy.sol#L58-L75


7. ​VotingToChangeKeys.sol#L219 

During ballot migration, the following parameters are not migrated: ​NEW_PAYOUT_KEY​, 
NEW_VOTING_KEY​. 

Client: yes, that's right, since the migration is assumed from the old version of the 
contract, in which there are no such parameters. For the future, I added the 
migration of these parameters in a commented form. If in the future a migration from 
a new version of the contract to a new one is needed, these lines will be 
uncommented: ​PR 152​. 

8. ​KeysManager.sol#L409 

The attacker has the opportunity to force specification of another, already registered 
voting key on their mining key. Further serious development of this vector of attack is 
not visible; however, we recommend to preventing this situation by a pre-checking 
the corresponding ​miningKeyByVoting​ for 0. 

Client: the check is added simultaneously to KeysManager and 
VotingToChangeKeys: ​PR 152​. 

But, it seems, there is again the risk of an unclosable ballot. 

Client: yes, but we decided that unclosable ballots in such cases are normal. If, for 
example, we cannot add a voting key to a nonexistent mining key, then such a ballot 
should not be finalised and should have the sign "not finalised" to show that the 
proposed changes have not been applied. The very cases of such voting are 
theoretically possible by code, but are unlikely (now including due to additional 
checks even during the creation of voting). However, if you think that unfinalised 
ballots may pose a threat, please provide your comments. 

Although if the ballot is not finalised, the function _decreaseValidatorLimit will not be 
called, which would entail a decrease in the ballot creation limit of a particular 
validator. I'll think of a better solution. 

No global consequences from the unclosable ballots (e.g. DoS) are seen. 

Client: the solution for this issue is complete in remark No 9. 

9. ​VotingToChangeKeys.sol#L116 

Such checks, referring to the global state, are valid only at the time of creating the 
ballot. When the voting effects are applied, the global state may change and the test 

https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeKeys.sol#L219
https://github.com/poanetwork/poa-network-consensus-contracts/pull/152/files#diff-d4341d108087469a82aa13c606e762ddR228
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L409
https://github.com/poanetwork/poa-network-consensus-contracts/pull/152/files#diff-d4341d108087469a82aa13c606e762ddR228
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeKeys.sol#L116


conditions will not be satisfied, but this will go unnoticed. One of the consequences is 
mentioned above. 

Client: Yes, similar checks are added to the KeysManager (at the finalisation stage): 
PR 152​. 

Yes, now there are checks, which is good, but now a lot of potential places where 
you can create an unclosable ballot have popped up. Perhaps, instead of dealing 
with this set, it would be better to apply ballot effects by using sub-call and 
processing the Boolean completion code (e.g. in the case of ​false​, just put the 
corresponding information flag in the vote)? 

Client: so, you suggest to get rid of reverts in KeysManager, and to set the 
'if'-conditions. If the condition is not met, then the ballot effects are not applied, but 
the ballot is still marked as finalised. Am I right? 

Not completely. I suggest to keep the reverts, but here 
VotingToChangeKeys.sol#L297​ and in all similar places, replace the external call 
with a code like ​keysManager.addMiningKey.value (0) (affectedKey);​, i.e. ignore 
pop-up exceptions. 

Now that I have outlined such a rebellious though, I started doubting myself. Maybe, 
as an alternative — we could get rid of the reverts in the code that applies the 
changes and ignore the changes, if they cannot be applied, i.e. just ​return;​. 

Client: if we consider the negative consequences of unfinalised ballots, then I see 
only one instance with the function ​VotingToChange._decreaseValidatorLimit 
(described above). 

We can change the code for all the ​KeysManager​ functions that are called from 
VotingToChangeKeys​, so that they do not initiate revert, but rather return false if it fails. 
Then the finalisation function will not do a revert (as done with 
VotingToManageEmissionFunds​) and we can do without ​prefinalise​. 

It was decided to replace the reverts with returns, as you suggested above. Now 
when finalising the ballot, if the conditions at the time of finalisation are not met, the 
transaction will still pass, but the changes will not be applied. This has been fixed at 
PR 155​. To fix the problem with the ​_decreaseValidatorLimit​ function in the 
VotingToChange._finalizeBallot​ function, the code is changed as follows: ​diff​ — i.e. 
the ballot limit change happens once (during the first finalisation transaction). If the 
finalisation attempts are repeated, the counter value does not change, so that it 
cannot be increased by cheaters. 

10. ​ValidatorMetadata.sol#L279 

https://github.com/poanetwork/poa-network-consensus-contracts/pull/152/files#diff-d4341d108087469a82aa13c606e762ddR228
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeKeys.sol#L297
https://github.com/poanetwork/poa-network-consensus-contracts/pull/155
https://github.com/poanetwork/poa-network-consensus-contracts/pull/155/files#diff-1b5bd6dd22e70fb3f22f92d5589b038fR217
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L279


One validator can nullify the ballot for changing the metadata of another validator. 

Client: the ​changeRequestForValidator​ function has been removed with the transfer of 
its code to the ​changeRequest​function in ​PR 146​. 

11. ​ValidatorMetadata.sol#L334 

Since the voting key is taken into account during the ballot, rather than the mining 
key, and those in turn can change for the same validator, it is possible for one 
validator to vote several times. 

Fixed at ​PR 157​. 

12. ​ValidatorMetadata.sol 

Is the expected behaviour that when changing the mining key of the validator, it will 
lose its metainformation? Is the expected behaviour that when returning the existing 
mining key to the active validators set, the old metainformation will automatically be 
associated with this mining key? We recommend processing the deletion and 
change of the validator key in ​ValidatorMetadata​. 

Fixed at ​PR 158​. 

13. ​VotingToManageEmissionFunds.sol#L48 

Since there can only be one ballot at a time about the emission, one validator can 
with some limited success organise a DoS attack on emission funds payout, 
constantly creating malicious ballots (e.g. on payout of emissions funds to itself). 

Client: if the validator does so, other validators will be able to vote against and 
exclude it from the list of validators (in a separate ballot for the keys). For the 
validators to have more difficulty in colluding, there should be 50% + 1 validator 
voted, as done in ​PR 160​. If the validator does this inadvertently (e.g. created a 
ballot with an incorrect payout address), it will have 15 minutes to cancel the 
erroneous ballot. The abolition of erroneous ballots is implemented in ​PR 168​. 

14. ​abi.encodePacked 

Generating keys for contract storages through ​abi.encodePacked​ seems a dangerous 
practice because of the probability of collision: e.g. if keys for two different records 
are formed from such sets of fragments [‘foo‘, ‘bar‘], [‘foob‘, ‘ar‘], a collision will occur. 
It is recommended to use ​abi.encode​. 

Fixed at ​PR 159​. 

https://github.com/poanetwork/poa-network-consensus-contracts/pull/146
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L334
https://github.com/poanetwork/poa-network-consensus-contracts/pull/157
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol
https://github.com/poanetwork/poa-network-consensus-contracts/pull/158
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToManageEmissionFunds.sol#L48
https://github.com/poanetwork/poa-network-consensus-contracts/pull/160
https://github.com/poanetwork/poa-network-consensus-contracts/pull/168
https://github.com/poanetwork/poa-network-consensus-contracts/pull/159


15. Enums 

In contracts, the comparison of the elements of ​enum​ to more/less is used, and also 
the assumption that the first ​enum​element declared in the source code will be 
converted to ​0​ and back. Unfortunately, the solidity documentation gives very little 
guarantee about the aspects of ​enum​, and does not guarantee the functioning of the 
techniques described above. We recommend avoiding them. 

Client: in practice for Solidity it is checked that the first element in enum is always 0, 
and each next element is 1 more than the previous one. This is accepted in most 
programming languages (except for languages that allow explicit assignment of 
values to enum elements), so we believe that this basic principle will not change in 
Solidity in the future. At least the current version 0.4.24 is all right in this aspect. If 
this plan somehow changes in the future, then our unit tests will show errors - we will 
see it and make corrections, if necessary. 

16. ​EmissionFunds.sol#L49 

Theoretically, an attacker can fill up the EVM stack in such a way that the call to the 
legitimate recipient will not work and will simply return false (for more details, see 
https://solidity.readthedocs.io/en/latest/security-considerations.html#callstack-depth​), 
i.e. the attacker can disrupt the payment (at the same time, the funds remain safe). 
However, for this purpose, the attacker must be a validator, and his voting key must 
be the address of a contract. 

Client: not completely clear about the voting key. Do I correctly understand that the 
attacker should call the function ​VotingToManageEmissionFunds.finalize​ with an 
overflowed stack? The ​EmissionFunds.sendFundsTo​ function can only be called from 
there. 

Yes, you understand correctly, to call with an almost overflowed stack, so that the 
finalise call is processed, and the subsequent ones are not. 

Client: maybe we need to add ​require (msg.sender == tx.origin);​ to the 
VotingToManagerEmissionFunds._finalize​function? 

I think it will be a little more reliable to require that ​msg.sender​ not be a contract. 

Client: as I understand, for this purpose it is possible to use asm-function 
extcodesize(msg.sender)​, although its call will cost 700 Gas. Do you happen to know 
a cheaper solution to determine if the address belongs to an arbitrary contract? 

We do not know. 700 Gas is 30 times less than the fee for the Ether transfer. I think 
that it is acceptable. 

https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/EmissionFunds.sol#L49
https://solidity.readthedocs.io/en/latest/security-considerations.html#callstack-depth


Fixed at ​PR 165​. 

17. ​BlockReward.sol#L122 

It is possible to achieve a block Gas limit due to writing to the storage during 
_hbbftRefreshPayoutKeys()​. Directly in the code, strict restrictions on the growth of 
keysNumberToReward​ are not visible. 

Client: here it is assumed that the reward function will be called by the Parity engine 
(or the engine based on it). The Parity documentation says that such functions are 
called on behalf of the special address ​0xffffFFFfFFffffffffffffffFfFFFfffFFFfFFfE 
and the transactions are "system" ones: 
https://wiki.parity.io/Block-Reward-Contract.html#limitations 

I ran the experiment using ​https://github.com/varasev/test-block-reward​ and looked 
at the value of ​block.gaslimit​ in the contract at the time the reward function is called. 
It equals ​0xFFFF...FFFF​ (256 bit). I.e. the biggest number that fits into ​uint256​ (infinity, 
essentially). 

Therefore, we can assume that the Gas is unlimited for such "system" calls because 
it is not really spent by anyone. 

Also, it is not decided yet where exactly we will use the ​RewardByTime​ contract (it is 
made for the future) — whether it will be called in a similar way, or some other way. 
In any case, I have added a TODO comment to the contract code so that in the 
future I do not forget about the potential Gas restriction in the block: ​PR 168​. 

18. ​BlockReward.sol#L151 

Is it correct that the payout to the validator always occurs, regardless of the Boolean 
flag ​keysManager.isPayoutActive(miningKey)​? 

Client: Yes, if the validator does not have a payout key, then the payment should 
occur to its mining key (for example, such a case is with the Master of Ceremony). 

19. ​BallotsStorage.sol#L20 

The threshold type ​MetadataChange​ is not actually used during the consensus work 
(voting for changes in metadata are constructed differently). 

Client: this type of threshold is used in the function 
ValidatorMetadata.getMinThreshold​: ​ValidatorMetadata.sol#L366​ — the threshold 
value used in the function ​ValidatorMetadata.finalize​:​ValidatorMetadata.sol#L342​. 

Yes, the question is removed. 

https://github.com/poanetwork/poa-network-consensus-contracts/pull/165
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/BlockReward.sol#L122
https://wiki.parity.io/Block-Reward-Contract.html#limitations
https://github.com/varasev/test-block-reward
https://github.com/poanetwork/poa-network-consensus-contracts/pull/168/files#diff-f4e242d0d44b6094a0517e95d4900577R51
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/BlockReward.sol#L151
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/BallotsStorage.sol#L20
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L366
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/ValidatorMetadata.sol#L342


[PROPOSALS] 

1. ​KeysManager.sol#L109​ and ​KeysManager.sol#L318 

The function ​initialKeys​ and ​getInitialKey​ have the same signature and return the 
same result. In this case, the result of the function is not the key, as one might think 
from the name, but the status of the key. The setter for this value is called 
_setInitialKeyStatus​. It is suggested to make one function with the name 
getInitialKeyStatus​ instead of two functions. 

Fixed at ​PR 148​. 

2. ​VotingTo.sol#L186 

The function ​hasAlreadyVoted​ deducts the mining key by the voting key via 
KeysManager​ and calls ​hasMiningKeyAlreadyVoted​. A line earlier, we already deducted 
the mining key, and this call can be replaced with the ​hasMiningKeyAlreadyVoted​ call. 

Fixed at ​PR 149​. 

3. ​VotingToChange.sol#L124-L126 

It is better to be extra safe and use ​SafeMath​ for the increment/decrement of the voice 
counter. 

Client: I think it's better to leave it as it is, because increment/decrement occurs over 
the signed ​int256​. Progress in this case can have a negative value — this is normal. 

4. ​BlockReward.sol#L88 

The function ​rewardHBBFT​ should probably be described in the ​IBlockReward 
interface. 

Client: The BlockReward smart contract in one of the PRs was divided into two parts: 
RewardByBlock и RewardByTime (each with its own interface): ​PR 140​. 

5. ​PoaNetworkConsensus.sol#L168 

delete pendingList [lastIndex]​ for the ​pendingList​ address array assigns the value 
of ​address(0)​ to the last element of the array, and the next step will be to cut this 
element off, which means resetting it does not make sense. 

Fixed at ​PR 149​. 

6. ​PoaNetworkConsensus.sol#L169 

https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L109
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/KeysManager.sol#L318
https://github.com/poanetwork/poa-network-consensus-contracts/pull/148
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingTo.sol#L186
https://github.com/poanetwork/poa-network-consensus-contracts/pull/149
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingToChange.sol#L124-L126
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/BlockReward.sol#L88
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/interfaces/IBlockReward.sol#L7
https://github.com/poanetwork/poa-network-consensus-contracts/pull/140
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/PoaNetworkConsensus.sol#L168
https://github.com/poanetwork/poa-network-consensus-contracts/pull/149
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/PoaNetworkConsensus.sol#L169


The ​if (pendingList.length > 0)​ check in the code of the ​removeValidator​ function 
looks meaningless because if ​length == 0​, ​revert​ happens earlier in the code. 

Fixed at ​PR 149​. 

7. ​VotingToChangeKeys.sol#L230 

In cases other than ​_affectedKeyType == uint256(KeyTypes.MiningKey)​, it is 
recommended to add a check ​require(keysManager.isMiningActive(_miningKey));​, 
similar to the functions ​_areKeySwapBallotParamsValid​ and 
_areKeyRemovalBallotParamsValid​. 

Fixed at ​PR 152​. 

8. ​VotingToChange.sol#L73 

It is proposed to distinguish between migration and the regular mode of work, so that 
they cannot be executed in parallel. In particular, we propose requiring the migration 
to be completed before the execution of any regular ballot code. 

Fixed at ​PR 167​. 
 

https://github.com/poanetwork/poa-network-consensus-contracts/pull/149
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/VotingToChangeKeys.sol#L230
https://github.com/poanetwork/poa-network-consensus-contracts/pull/152
https://github.com/poanetwork/poa-network-consensus-contracts/blob/8089b20d6b491acaf08f61ab82242c79b8aac41a/contracts/abstracts/VotingToChange.sol#L73
https://github.com/poanetwork/poa-network-consensus-contracts/pull/167

