quorum/core/vm/vm.go

441 lines
13 KiB
Go
Raw Normal View History

2015-07-06 17:54:22 -07:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-06 17:54:22 -07:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-06 17:54:22 -07:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-06 17:54:22 -07:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-06 17:54:22 -07:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-06 17:54:22 -07:00
2014-10-18 04:31:20 -07:00
package vm
2015-01-19 02:18:34 -08:00
import (
"fmt"
"math/big"
"time"
2015-03-16 03:27:38 -07:00
"github.com/ethereum/go-ethereum/common"
2015-03-23 13:48:31 -07:00
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/params"
2015-01-19 02:18:34 -08:00
)
2014-10-15 08:12:26 -07:00
// Config are the configuration options for the EVM
type Config struct {
Debug bool
EnableJit bool
ForceJit bool
Tracer Tracer
}
// EVM is used to run Ethereum based contracts and will utilise the
// passed environment to query external sources for state information.
// The EVM will run the byte code VM or JIT VM based on the passed
// configuration.
type EVM struct {
env Environment
jumpTable vmJumpTable
cfg Config
gasTable params.GasTable
2015-01-19 02:18:34 -08:00
}
// New returns a new instance of the EVM.
func New(env Environment, cfg Config) *EVM {
return &EVM{
env: env,
jumpTable: newJumpTable(env.RuleSet(), env.BlockNumber()),
cfg: cfg,
gasTable: env.RuleSet().GasTable(env.BlockNumber()),
}
2015-01-19 02:18:34 -08:00
}
// Run loops and evaluates the contract's code with the given input data
func (evm *EVM) Run(contract *Contract, input []byte) (ret []byte, err error) {
evm.env.SetDepth(evm.env.Depth() + 1)
defer evm.env.SetDepth(evm.env.Depth() - 1)
2015-03-23 13:48:31 -07:00
if contract.CodeAddr != nil {
if p := Precompiled[contract.CodeAddr.Str()]; p != nil {
return evm.RunPrecompiled(p, input, contract)
}
}
// Don't bother with the execution if there's no code.
if len(contract.Code) == 0 {
return nil, nil
}
codehash := contract.CodeHash // codehash is used when doing jump dest caching
if codehash == (common.Hash{}) {
codehash = crypto.Keccak256Hash(contract.Code)
}
var program *Program
if false {
// JIT disabled due to JIT not being Homestead gas reprice ready.
// If the JIT is enabled check the status of the JIT program,
2016-03-15 11:08:18 -07:00
// if it doesn't exist compile a new program in a separate
// goroutine or wait for compilation to finish if the JIT is
// forced.
switch GetProgramStatus(codehash) {
case progReady:
return RunProgram(GetProgram(codehash), evm.env, contract, input)
case progUnknown:
if evm.cfg.ForceJit {
// Create and compile program
program = NewProgram(contract.Code)
perr := CompileProgram(program)
if perr == nil {
return RunProgram(program, evm.env, contract, input)
}
glog.V(logger.Info).Infoln("error compiling program", err)
} else {
// create and compile the program. Compilation
2016-03-15 11:08:18 -07:00
// is done in a separate goroutine
program = NewProgram(contract.Code)
go func() {
err := CompileProgram(program)
if err != nil {
glog.V(logger.Info).Infoln("error compiling program", err)
return
}
}()
}
}
}
var (
caller = contract.caller
code = contract.Code
instrCount = 0
op OpCode // current opcode
mem = NewMemory() // bound memory
stack = newstack() // local stack
statedb = evm.env.Db() // current state
// For optimisation reason we're using uint64 as the program counter.
2016-03-15 11:08:18 -07:00
// It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Practically much less so feasible.
pc = uint64(0) // program counter
// jump evaluates and checks whether the given jump destination is a valid one
// if valid move the `pc` otherwise return an error.
jump = func(from uint64, to *big.Int) error {
if !contract.jumpdests.has(codehash, code, to) {
nop := contract.GetOp(to.Uint64())
return fmt.Errorf("invalid jump destination (%v) %v", nop, to)
}
pc = to.Uint64()
return nil
}
newMemSize *big.Int
cost *big.Int
)
contract.Input = input
2015-01-19 02:18:34 -08:00
2015-03-27 08:53:05 -07:00
// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
2015-03-27 08:09:57 -07:00
defer func() {
if err != nil && evm.cfg.Debug {
evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.Depth(), err)
2015-03-27 08:09:57 -07:00
}
}()
2015-01-19 02:18:34 -08:00
if glog.V(logger.Debug) {
glog.Infof("running byte VM %x\n", codehash[:4])
tstart := time.Now()
defer func() {
glog.Infof("byte VM %x done. time: %v instrc: %v\n", codehash[:4], time.Since(tstart), instrCount)
}()
}
for ; ; instrCount++ {
/*
if EnableJit && it%100 == 0 {
if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady {
// move execution
fmt.Println("moved", it)
glog.V(logger.Info).Infoln("Moved execution to JIT")
return runProgram(program, pc, mem, stack, evm.env, contract, input)
}
}
*/
2015-01-19 02:18:34 -08:00
// Get the memory location of pc
op = contract.GetOp(pc)
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
if evm.env.ReadOnly() && op.isMutating() {
return nil, fmt.Errorf("VM in read-only mode. Mutating opcode prohibited")
}
// calculate the new memory size and gas price for the current executing opcode
newMemSize, cost, err = calculateGasAndSize(evm.gasTable, evm.env, contract, caller, op, statedb, mem, stack)
2015-03-27 08:09:57 -07:00
if err != nil {
return nil, err
}
2015-01-19 02:18:34 -08:00
// Use the calculated gas. When insufficient gas is present, use all gas and return an
// Out Of Gas error
if !contract.UseGas(cost) {
return nil, OutOfGasError
2015-01-19 02:18:34 -08:00
}
// Resize the memory calculated previously
2015-01-19 02:18:34 -08:00
mem.Resize(newMemSize.Uint64())
// Add a log message
if evm.cfg.Debug {
evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.Depth(), nil)
}
if opPtr := evm.jumpTable[op]; opPtr.valid {
if opPtr.fn != nil {
opPtr.fn(instruction{}, &pc, evm.env, contract, mem, stack)
2015-01-19 02:18:34 -08:00
} else {
switch op {
case PC:
opPc(instruction{data: new(big.Int).SetUint64(pc)}, &pc, evm.env, contract, mem, stack)
case JUMP:
if err := jump(pc, stack.pop()); err != nil {
return nil, err
}
2015-01-19 02:18:34 -08:00
continue
case JUMPI:
pos, cond := stack.pop(), stack.pop()
2015-03-16 10:42:18 -07:00
if cond.Cmp(common.BigTrue) >= 0 {
if err := jump(pc, pos); err != nil {
return nil, err
}
2015-01-19 02:18:34 -08:00
continue
}
case RETURN:
offset, size := stack.pop(), stack.pop()
ret := mem.GetPtr(offset.Int64(), size.Int64())
2015-01-19 02:18:34 -08:00
return ret, nil
case SUICIDE:
opSuicide(instruction{}, nil, evm.env, contract, mem, stack)
2015-01-19 02:18:34 -08:00
fallthrough
case STOP: // Stop the contract
return nil, nil
2015-03-27 08:09:57 -07:00
}
2015-01-19 02:18:34 -08:00
}
} else {
2015-03-27 08:09:57 -07:00
return nil, fmt.Errorf("Invalid opcode %x", op)
2015-01-19 02:18:34 -08:00
}
pc++
2015-01-19 02:18:34 -08:00
}
}
// calculateGasAndSize calculates the required given the opcode and stack items calculates the new memorysize for
// the operation. This does not reduce gas or resizes the memory.
func calculateGasAndSize(gasTable params.GasTable, env Environment, contract *Contract, caller ContractRef, op OpCode, statedb Database, mem *Memory, stack *Stack) (*big.Int, *big.Int, error) {
2015-03-02 07:32:02 -08:00
var (
gas = new(big.Int)
newMemSize *big.Int = new(big.Int)
)
2015-03-27 08:09:57 -07:00
err := baseCheck(op, stack, gas)
if err != nil {
return nil, nil, err
}
2015-01-19 02:18:34 -08:00
2015-03-09 16:25:27 -07:00
// stack Check, memory resize & gas phase
2015-01-19 02:18:34 -08:00
switch op {
case SUICIDE:
// if suicide is not nil: homestead gas fork
if gasTable.CreateBySuicide != nil {
gas.Set(gasTable.Suicide)
if !env.Db().Exist(common.BigToAddress(stack.data[len(stack.data)-1])) {
gas.Add(gas, gasTable.CreateBySuicide)
}
}
if !statedb.HasSuicided(contract.Address()) {
statedb.AddRefund(params.SuicideRefundGas)
}
case EXTCODESIZE:
gas.Set(gasTable.ExtcodeSize)
case BALANCE:
gas.Set(gasTable.Balance)
case SLOAD:
gas.Set(gasTable.SLoad)
2015-01-19 02:18:34 -08:00
case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
n := int(op - SWAP1 + 2)
2015-03-27 08:09:57 -07:00
err := stack.require(n)
if err != nil {
return nil, nil, err
}
2015-03-03 02:11:11 -08:00
gas.Set(GasFastestStep)
2015-01-19 02:18:34 -08:00
case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
n := int(op - DUP1 + 1)
2015-03-27 08:09:57 -07:00
err := stack.require(n)
if err != nil {
return nil, nil, err
}
2015-03-03 02:11:11 -08:00
gas.Set(GasFastestStep)
2015-01-19 02:18:34 -08:00
case LOG0, LOG1, LOG2, LOG3, LOG4:
n := int(op - LOG0)
2015-03-27 08:09:57 -07:00
err := stack.require(n + 2)
if err != nil {
return nil, nil, err
}
2015-01-19 02:18:34 -08:00
2015-03-09 16:25:27 -07:00
mSize, mStart := stack.data[stack.len()-2], stack.data[stack.len()-1]
2015-03-02 07:32:02 -08:00
gas.Add(gas, params.LogGas)
gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(n)), params.LogTopicGas))
gas.Add(gas, new(big.Int).Mul(mSize, params.LogDataGas))
2015-01-19 02:18:34 -08:00
newMemSize = calcMemSize(mStart, mSize)
quadMemGas(mem, newMemSize, gas)
2015-01-19 02:18:34 -08:00
case EXP:
gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(len(stack.data[stack.len()-2].Bytes()))), params.ExpByteGas))
2015-01-19 02:18:34 -08:00
case SSTORE:
2015-03-27 08:09:57 -07:00
err := stack.require(2)
if err != nil {
return nil, nil, err
}
2015-01-19 02:18:34 -08:00
2015-03-02 07:32:02 -08:00
var g *big.Int
2015-03-09 16:25:27 -07:00
y, x := stack.data[stack.len()-2], stack.data[stack.len()-1]
val := statedb.GetState(contract.Address(), common.BigToHash(x))
2015-06-18 03:25:02 -07:00
// This checks for 3 scenario's and calculates gas accordingly
// 1. From a zero-value address to a non-zero value (NEW VALUE)
// 2. From a non-zero value address to a zero-value address (DELETE)
2016-03-15 11:08:18 -07:00
// 3. From a non-zero to a non-zero (CHANGE)
if common.EmptyHash(val) && !common.EmptyHash(common.BigToHash(y)) {
2015-01-19 02:18:34 -08:00
// 0 => non 0
g = params.SstoreSetGas
} else if !common.EmptyHash(val) && common.EmptyHash(common.BigToHash(y)) {
statedb.AddRefund(params.SstoreRefundGas)
2015-01-19 02:18:34 -08:00
g = params.SstoreClearGas
2015-01-19 02:18:34 -08:00
} else {
// non 0 => non 0 (or 0 => 0)
g = params.SstoreResetGas
2015-01-19 02:18:34 -08:00
}
2015-03-02 07:32:02 -08:00
gas.Set(g)
2015-01-19 02:18:34 -08:00
case MLOAD:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.peek(), u256(32))
quadMemGas(mem, newMemSize, gas)
2015-01-19 02:18:34 -08:00
case MSTORE8:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.peek(), u256(1))
quadMemGas(mem, newMemSize, gas)
2015-03-02 08:55:45 -08:00
case MSTORE:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.peek(), u256(32))
quadMemGas(mem, newMemSize, gas)
2015-01-19 02:18:34 -08:00
case RETURN:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])
quadMemGas(mem, newMemSize, gas)
2015-01-19 02:18:34 -08:00
case SHA3:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])
2015-01-19 02:18:34 -08:00
2015-03-09 16:25:27 -07:00
words := toWordSize(stack.data[stack.len()-2])
gas.Add(gas, words.Mul(words, params.Sha3WordGas))
quadMemGas(mem, newMemSize, gas)
2015-03-02 07:32:02 -08:00
case CALLDATACOPY:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])
2015-01-19 02:18:34 -08:00
2015-03-09 16:25:27 -07:00
words := toWordSize(stack.data[stack.len()-3])
gas.Add(gas, words.Mul(words, params.CopyGas))
quadMemGas(mem, newMemSize, gas)
2015-03-02 07:32:02 -08:00
case CODECOPY:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])
2015-01-19 02:18:34 -08:00
2015-03-09 16:25:27 -07:00
words := toWordSize(stack.data[stack.len()-3])
gas.Add(gas, words.Mul(words, params.CopyGas))
quadMemGas(mem, newMemSize, gas)
2015-03-02 07:32:02 -08:00
case EXTCODECOPY:
gas.Set(gasTable.ExtcodeCopy)
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-4])
2015-03-02 07:32:02 -08:00
2015-03-09 16:25:27 -07:00
words := toWordSize(stack.data[stack.len()-4])
gas.Add(gas, words.Mul(words, params.CopyGas))
2015-03-03 04:29:52 -08:00
quadMemGas(mem, newMemSize, gas)
2015-03-02 07:32:02 -08:00
case CREATE:
2015-03-09 16:25:27 -07:00
newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-3])
quadMemGas(mem, newMemSize, gas)
2015-01-19 02:18:34 -08:00
case CALL, CALLCODE:
gas.Set(gasTable.Calls)
2015-03-02 07:32:02 -08:00
if op == CALL {
if !env.Db().Exist(common.BigToAddress(stack.data[stack.len()-2])) {
gas.Add(gas, params.CallNewAccountGas)
2015-03-02 07:32:02 -08:00
}
2015-03-03 04:29:52 -08:00
}
2015-03-09 16:25:27 -07:00
if len(stack.data[stack.len()-3].Bytes()) > 0 {
gas.Add(gas, params.CallValueTransferGas)
2015-03-02 07:32:02 -08:00
}
2015-03-09 16:25:27 -07:00
x := calcMemSize(stack.data[stack.len()-6], stack.data[stack.len()-7])
y := calcMemSize(stack.data[stack.len()-4], stack.data[stack.len()-5])
2015-01-19 02:18:34 -08:00
newMemSize = common.BigMax(x, y)
quadMemGas(mem, newMemSize, gas)
cg := callGas(gasTable, contract.Gas, gas, stack.data[stack.len()-1])
// Replace the stack item with the new gas calculation. This means that
// either the original item is left on the stack or the item is replaced by:
// (availableGas - gas) * 63 / 64
// We replace the stack item so that it's available when the opCall instruction is
// called. This information is otherwise lost due to the dependency on *current*
// available gas.
stack.data[stack.len()-1] = cg
gas.Add(gas, cg)
case DELEGATECALL:
gas.Set(gasTable.Calls)
x := calcMemSize(stack.data[stack.len()-5], stack.data[stack.len()-6])
y := calcMemSize(stack.data[stack.len()-3], stack.data[stack.len()-4])
2015-03-16 03:27:38 -07:00
newMemSize = common.BigMax(x, y)
quadMemGas(mem, newMemSize, gas)
cg := callGas(gasTable, contract.Gas, gas, stack.data[stack.len()-1])
// Replace the stack item with the new gas calculation. This means that
// either the original item is left on the stack or the item is replaced by:
// (availableGas - gas) * 63 / 64
// We replace the stack item so that it's available when the opCall instruction is
// called.
stack.data[stack.len()-1] = cg
gas.Add(gas, cg)
2015-01-19 02:18:34 -08:00
}
2015-03-27 08:09:57 -07:00
return newMemSize, gas, nil
2014-09-14 16:11:01 -07:00
}
// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
func (evm *EVM) RunPrecompiled(p *PrecompiledAccount, input []byte, contract *Contract) (ret []byte, err error) {
gas := p.Gas(len(input))
if contract.UseGas(gas) {
ret = p.Call(input)
2015-01-19 02:18:34 -08:00
return ret, nil
2015-01-19 02:18:34 -08:00
} else {
return nil, OutOfGasError
2015-01-19 02:18:34 -08:00
}
}