// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package miner import ( "bytes" "fmt" "math/big" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/consensus/misc" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "gopkg.in/fatih/set.v0" ) const ( resultQueueSize = 10 miningLogAtDepth = 5 // txChanSize is the size of channel listening to TxPreEvent. // The number is referenced from the size of tx pool. txChanSize = 4096 // chainHeadChanSize is the size of channel listening to ChainHeadEvent. chainHeadChanSize = 10 // chainSideChanSize is the size of channel listening to ChainSideEvent. chainSideChanSize = 10 ) // Agent can register themself with the worker type Agent interface { Work() chan<- *Work SetReturnCh(chan<- *Result) Stop() Start() GetHashRate() int64 } // Work is the workers current environment and holds // all of the current state information type Work struct { config *params.ChainConfig signer types.Signer state *state.StateDB // apply state changes here ancestors *set.Set // ancestor set (used for checking uncle parent validity) family *set.Set // family set (used for checking uncle invalidity) uncles *set.Set // uncle set tcount int // tx count in cycle Block *types.Block // the new block header *types.Header txs []*types.Transaction receipts []*types.Receipt privateReceipts []*types.Receipt createdAt time.Time // Leave this publicState named state, add privateState which most code paths can just ignore privateState *state.StateDB } type Result struct { Work *Work Block *types.Block } // worker is the main object which takes care of applying messages to the new state type worker struct { config *params.ChainConfig engine consensus.Engine mu sync.Mutex // update loop mux *event.TypeMux txCh chan core.TxPreEvent txSub event.Subscription chainHeadCh chan core.ChainHeadEvent chainHeadSub event.Subscription chainSideCh chan core.ChainSideEvent chainSideSub event.Subscription wg sync.WaitGroup agents map[Agent]struct{} recv chan *Result eth Backend chain *core.BlockChain proc core.Validator chainDb ethdb.Database coinbase common.Address extra []byte currentMu sync.Mutex current *Work uncleMu sync.Mutex possibleUncles map[common.Hash]*types.Block unconfirmed *unconfirmedBlocks // set of locally mined blocks pending canonicalness confirmations // atomic status counters mining int32 atWork int32 } func newWorker(config *params.ChainConfig, engine consensus.Engine, coinbase common.Address, eth Backend, mux *event.TypeMux) *worker { worker := &worker{ config: config, engine: engine, eth: eth, mux: mux, txCh: make(chan core.TxPreEvent, txChanSize), chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize), chainSideCh: make(chan core.ChainSideEvent, chainSideChanSize), chainDb: eth.ChainDb(), recv: make(chan *Result, resultQueueSize), chain: eth.BlockChain(), proc: eth.BlockChain().Validator(), possibleUncles: make(map[common.Hash]*types.Block), coinbase: coinbase, agents: make(map[Agent]struct{}), unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth), } if _, ok := engine.(consensus.Istanbul); ok || !config.IsQuorum { // Subscribe TxPreEvent for tx pool worker.txSub = eth.TxPool().SubscribeTxPreEvent(worker.txCh) // Subscribe events for blockchain worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh) worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh) go worker.update() go worker.wait() worker.commitNewWork() } return worker } func (self *worker) setEtherbase(addr common.Address) { self.mu.Lock() defer self.mu.Unlock() self.coinbase = addr } func (self *worker) setExtra(extra []byte) { self.mu.Lock() defer self.mu.Unlock() self.extra = extra } func (self *worker) pending() (*types.Block, *state.StateDB, *state.StateDB) { self.currentMu.Lock() defer self.currentMu.Unlock() if atomic.LoadInt32(&self.mining) == 0 { return types.NewBlock( self.current.header, self.current.txs, nil, self.current.receipts, ), self.current.state.Copy(), self.current.privateState.Copy() } return self.current.Block, self.current.state.Copy(), self.current.privateState.Copy() } func (self *worker) pendingBlock() *types.Block { self.currentMu.Lock() defer self.currentMu.Unlock() if atomic.LoadInt32(&self.mining) == 0 { return types.NewBlock( self.current.header, self.current.txs, nil, self.current.receipts, ) } return self.current.Block } func (self *worker) start() { self.mu.Lock() defer self.mu.Unlock() atomic.StoreInt32(&self.mining, 1) if istanbul, ok := self.engine.(consensus.Istanbul); ok { istanbul.Start(self.chain, self.chain.CurrentBlock, self.chain.HasBadBlock) } // spin up agents for agent := range self.agents { agent.Start() } } func (self *worker) stop() { self.wg.Wait() self.mu.Lock() defer self.mu.Unlock() if atomic.LoadInt32(&self.mining) == 1 { for agent := range self.agents { agent.Stop() } } if istanbul, ok := self.engine.(consensus.Istanbul); ok { istanbul.Stop() } atomic.StoreInt32(&self.mining, 0) atomic.StoreInt32(&self.atWork, 0) } func (self *worker) register(agent Agent) { self.mu.Lock() defer self.mu.Unlock() self.agents[agent] = struct{}{} agent.SetReturnCh(self.recv) } func (self *worker) unregister(agent Agent) { self.mu.Lock() defer self.mu.Unlock() delete(self.agents, agent) agent.Stop() } func (self *worker) update() { defer self.txSub.Unsubscribe() defer self.chainHeadSub.Unsubscribe() defer self.chainSideSub.Unsubscribe() for { // A real event arrived, process interesting content select { // Handle ChainHeadEvent case <-self.chainHeadCh: if h, ok := self.engine.(consensus.Handler); ok { h.NewChainHead() } self.commitNewWork() // Handle ChainSideEvent case ev := <-self.chainSideCh: self.uncleMu.Lock() self.possibleUncles[ev.Block.Hash()] = ev.Block self.uncleMu.Unlock() // Handle TxPreEvent case ev := <-self.txCh: // Apply transaction to the pending state if we're not mining if atomic.LoadInt32(&self.mining) == 0 { self.currentMu.Lock() acc, _ := types.Sender(self.current.signer, ev.Tx) txs := map[common.Address]types.Transactions{acc: {ev.Tx}} txset := types.NewTransactionsByPriceAndNonce(self.current.signer, txs) self.current.commitTransactions(self.mux, txset, self.chain, self.coinbase) self.currentMu.Unlock() } // System stopped case <-self.txSub.Err(): return case <-self.chainHeadSub.Err(): return case <-self.chainSideSub.Err(): return } } } func (self *worker) wait() { for { mustCommitNewWork := true for result := range self.recv { atomic.AddInt32(&self.atWork, -1) if result == nil { continue } block := result.Block work := result.Work // Update the block hash in all logs since it is now available and not when the // receipt/log of individual transactions were created. for _, r := range work.receipts { for _, l := range r.Logs { l.BlockHash = block.Hash() } } for _, log := range work.state.Logs() { log.BlockHash = block.Hash() } // write private transacions privateStateRoot, _ := work.privateState.CommitTo(self.chainDb, self.config.IsEIP158(block.Number())) core.WritePrivateStateRoot(self.chainDb, block.Root(), privateStateRoot) allReceipts := append(work.receipts, work.privateReceipts...) stat, err := self.chain.WriteBlockAndState(block, allReceipts, work.state) if err != nil { log.Error("Failed writing block to chain", "err", err) continue } // check if canon block and write transactions if stat == core.CanonStatTy { // implicit by posting ChainHeadEvent mustCommitNewWork = false } // Broadcast the block and announce chain insertion event self.mux.Post(core.NewMinedBlockEvent{Block: block}) var ( events []interface{} logs = work.state.Logs() ) events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs}) if stat == core.CanonStatTy { events = append(events, core.ChainHeadEvent{Block: block}) } self.chain.PostChainEvents(events, logs) // Insert the block into the set of pending ones to wait for confirmations self.unconfirmed.Insert(block.NumberU64(), block.Hash()) if mustCommitNewWork { self.commitNewWork() } } } } // push sends a new work task to currently live miner agents. func (self *worker) push(work *Work) { if atomic.LoadInt32(&self.mining) != 1 { return } for agent := range self.agents { atomic.AddInt32(&self.atWork, 1) if ch := agent.Work(); ch != nil { ch <- work } } } // makeCurrent creates a new environment for the current cycle. func (self *worker) makeCurrent(parent *types.Block, header *types.Header) error { publicState, privateState, err := self.chain.StateAt(parent.Root()) if err != nil { return err } work := &Work{ config: self.config, signer: types.MakeSigner(self.config, header.Number), state: publicState, ancestors: set.New(), family: set.New(), uncles: set.New(), header: header, createdAt: time.Now(), privateState: privateState, } // when 08 is processed ancestors contain 07 (quick block) for _, ancestor := range self.chain.GetBlocksFromHash(parent.Hash(), 7) { for _, uncle := range ancestor.Uncles() { work.family.Add(uncle.Hash()) } work.family.Add(ancestor.Hash()) work.ancestors.Add(ancestor.Hash()) } // Keep track of transactions which return errors so they can be removed work.tcount = 0 self.current = work return nil } func (self *worker) commitNewWork() { self.mu.Lock() defer self.mu.Unlock() self.uncleMu.Lock() defer self.uncleMu.Unlock() self.currentMu.Lock() defer self.currentMu.Unlock() tstart := time.Now() parent := self.chain.CurrentBlock() tstamp := tstart.Unix() if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 { tstamp = parent.Time().Int64() + 1 } // this will ensure we're not going off too far in the future if now := time.Now().Unix(); tstamp > now+1 { wait := time.Duration(tstamp-now) * time.Second log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait)) time.Sleep(wait) } num := parent.Number() header := &types.Header{ ParentHash: parent.Hash(), Number: num.Add(num, common.Big1), GasLimit: core.CalcGasLimit(parent), GasUsed: new(big.Int), Extra: self.extra, Time: big.NewInt(tstamp), } // Only set the coinbase if we are mining (avoid spurious block rewards) if atomic.LoadInt32(&self.mining) == 1 { header.Coinbase = self.coinbase } if err := self.engine.Prepare(self.chain, header); err != nil { log.Error("Failed to prepare header for mining", "err", err) return } // If we are care about TheDAO hard-fork check whether to override the extra-data or not if daoBlock := self.config.DAOForkBlock; daoBlock != nil { // Check whether the block is among the fork extra-override range limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange) if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 { // Depending whether we support or oppose the fork, override differently if self.config.DAOForkSupport { header.Extra = common.CopyBytes(params.DAOForkBlockExtra) } else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) { header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data } } } // Could potentially happen if starting to mine in an odd state. err := self.makeCurrent(parent, header) if err != nil { log.Error("Failed to create mining context", "err", err) return } // Create the current work task and check any fork transitions needed work := self.current if self.config.DAOForkSupport && self.config.DAOForkBlock != nil && self.config.DAOForkBlock.Cmp(header.Number) == 0 { misc.ApplyDAOHardFork(work.state) } pending, err := self.eth.TxPool().Pending() if err != nil { log.Error("Failed to fetch pending transactions", "err", err) return } txs := types.NewTransactionsByPriceAndNonce(self.current.signer, pending) work.commitTransactions(self.mux, txs, self.chain, self.coinbase) // compute uncles for the new block. var ( uncles []*types.Header badUncles []common.Hash ) for hash, uncle := range self.possibleUncles { if len(uncles) == 2 { break } if err := self.commitUncle(work, uncle.Header()); err != nil { log.Trace("Bad uncle found and will be removed", "hash", hash) log.Trace(fmt.Sprint(uncle)) badUncles = append(badUncles, hash) } else { log.Debug("Committing new uncle to block", "hash", hash) uncles = append(uncles, uncle.Header()) } } for _, hash := range badUncles { delete(self.possibleUncles, hash) } // Create the new block to seal with the consensus engine if work.Block, err = self.engine.Finalize(self.chain, header, work.state, work.txs, uncles, work.receipts); err != nil { log.Error("Failed to finalize block for sealing", "err", err) return } // We only care about logging if we're actually mining. if atomic.LoadInt32(&self.mining) == 1 { log.Info("Commit new mining work", "number", work.Block.Number(), "txs", work.tcount, "uncles", len(uncles), "elapsed", common.PrettyDuration(time.Since(tstart))) self.unconfirmed.Shift(work.Block.NumberU64() - 1) } self.push(work) } func (self *worker) commitUncle(work *Work, uncle *types.Header) error { hash := uncle.Hash() if work.uncles.Has(hash) { return fmt.Errorf("uncle not unique") } if !work.ancestors.Has(uncle.ParentHash) { return fmt.Errorf("uncle's parent unknown (%x)", uncle.ParentHash[0:4]) } if work.family.Has(hash) { return fmt.Errorf("uncle already in family (%x)", hash) } work.uncles.Add(uncle.Hash()) return nil } func (env *Work) commitTransactions(mux *event.TypeMux, txs *types.TransactionsByPriceAndNonce, bc *core.BlockChain, coinbase common.Address) { gp := new(core.GasPool).AddGas(env.header.GasLimit) var coalescedLogs []*types.Log for { // Retrieve the next transaction and abort if all done tx := txs.Peek() if tx == nil { break } // Error may be ignored here. The error has already been checked // during transaction acceptance is the transaction pool. // // We use the eip155 signer regardless of the current hf. from, _ := types.Sender(env.signer, tx) // Check whether the tx is replay protected. If we're not in the EIP155 hf // phase, start ignoring the sender until we do. if tx.Protected() && !env.config.IsEIP155(env.header.Number) { log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", env.config.EIP155Block) txs.Pop() continue } // Start executing the transaction env.state.Prepare(tx.Hash(), common.Hash{}, env.tcount) err, logs := env.commitTransaction(tx, bc, coinbase, gp) switch err { case core.ErrGasLimitReached: // Pop the current out-of-gas transaction without shifting in the next from the account log.Trace("Gas limit exceeded for current block", "sender", from) txs.Pop() case core.ErrNonceTooLow: // New head notification data race between the transaction pool and miner, shift log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce()) txs.Shift() case core.ErrNonceTooHigh: // Reorg notification data race between the transaction pool and miner, skip account = log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce()) txs.Pop() case nil: // Everything ok, collect the logs and shift in the next transaction from the same account coalescedLogs = append(coalescedLogs, logs...) env.tcount++ txs.Shift() default: // Strange error, discard the transaction and get the next in line (note, the // nonce-too-high clause will prevent us from executing in vain). log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err) txs.Shift() } } if len(coalescedLogs) > 0 || env.tcount > 0 { // make a copy, the state caches the logs and these logs get "upgraded" from pending to mined // logs by filling in the block hash when the block was mined by the local miner. This can // cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed. cpy := make([]*types.Log, len(coalescedLogs)) for i, l := range coalescedLogs { cpy[i] = new(types.Log) *cpy[i] = *l } go func(logs []*types.Log, tcount int) { if len(logs) > 0 { mux.Post(core.PendingLogsEvent{Logs: logs}) } if tcount > 0 { mux.Post(core.PendingStateEvent{}) } }(cpy, env.tcount) } } func (env *Work) commitTransaction(tx *types.Transaction, bc *core.BlockChain, coinbase common.Address, gp *core.GasPool) (error, []*types.Log) { snap := env.state.Snapshot() privateSnap := env.privateState.Snapshot() receipt, privateReceipt, _, err := core.ApplyTransaction(env.config, bc, &coinbase, gp, env.state, env.privateState, env.header, tx, env.header.GasUsed, vm.Config{}) if err != nil { env.state.RevertToSnapshot(snap) env.privateState.RevertToSnapshot(privateSnap) return err, nil } env.txs = append(env.txs, tx) env.receipts = append(env.receipts, receipt) logs := receipt.Logs if privateReceipt != nil { logs = append(receipt.Logs, privateReceipt.Logs...) env.privateReceipts = append(env.privateReceipts, privateReceipt) } return nil, logs }