quorum/core/types/transaction.go

504 lines
15 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package types
import (
"container/heap"
"crypto/ecdsa"
"encoding/json"
"errors"
"fmt"
"io"
"math/big"
"sync/atomic"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
)
var ErrInvalidSig = errors.New("invalid transaction v, r, s values")
var (
errMissingTxSignatureFields = errors.New("missing required JSON transaction signature fields")
errMissingTxFields = errors.New("missing required JSON transaction fields")
)
type Transaction struct {
data txdata
// caches
hash atomic.Value
size atomic.Value
from atomic.Value
}
type txdata struct {
AccountNonce uint64
Price, GasLimit *big.Int
Recipient *common.Address `rlp:"nil"` // nil means contract creation
Amount *big.Int
Payload []byte
V byte // signature
R, S *big.Int // signature
}
type jsonTransaction struct {
Hash *common.Hash `json:"hash"`
AccountNonce *hexUint64 `json:"nonce"`
Price *hexBig `json:"gasPrice"`
GasLimit *hexBig `json:"gas"`
Recipient *common.Address `json:"to"`
Amount *hexBig `json:"value"`
Payload *hexBytes `json:"input"`
V *hexUint64 `json:"v"`
R *hexBig `json:"r"`
S *hexBig `json:"s"`
}
// NewContractCreation creates a new transaction with no recipient.
func NewContractCreation(nonce uint64, amount, gasLimit, gasPrice *big.Int, data []byte) *Transaction {
if len(data) > 0 {
data = common.CopyBytes(data)
}
return &Transaction{data: txdata{
AccountNonce: nonce,
Recipient: nil,
Amount: new(big.Int).Set(amount),
GasLimit: new(big.Int).Set(gasLimit),
Price: new(big.Int).Set(gasPrice),
Payload: data,
R: new(big.Int),
S: new(big.Int),
}}
}
// NewTransaction creates a new transaction with the given fields.
func NewTransaction(nonce uint64, to common.Address, amount, gasLimit, gasPrice *big.Int, data []byte) *Transaction {
if len(data) > 0 {
data = common.CopyBytes(data)
}
d := txdata{
AccountNonce: nonce,
Recipient: &to,
Payload: data,
Amount: new(big.Int),
GasLimit: new(big.Int),
Price: new(big.Int),
R: new(big.Int),
S: new(big.Int),
}
if amount != nil {
d.Amount.Set(amount)
}
if gasLimit != nil {
d.GasLimit.Set(gasLimit)
}
if gasPrice != nil {
d.Price.Set(gasPrice)
}
return &Transaction{data: d}
}
// DecodeRLP implements rlp.Encoder
func (tx *Transaction) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, &tx.data)
}
// DecodeRLP implements rlp.Decoder
func (tx *Transaction) DecodeRLP(s *rlp.Stream) error {
_, size, _ := s.Kind()
err := s.Decode(&tx.data)
if err == nil {
tx.size.Store(common.StorageSize(rlp.ListSize(size)))
}
return err
}
// MarshalJSON encodes transactions into the web3 RPC response block format.
func (tx *Transaction) MarshalJSON() ([]byte, error) {
hash, v := tx.Hash(), uint64(tx.data.V)
return json.Marshal(&jsonTransaction{
Hash: &hash,
AccountNonce: (*hexUint64)(&tx.data.AccountNonce),
Price: (*hexBig)(tx.data.Price),
GasLimit: (*hexBig)(tx.data.GasLimit),
Recipient: tx.data.Recipient,
Amount: (*hexBig)(tx.data.Amount),
Payload: (*hexBytes)(&tx.data.Payload),
V: (*hexUint64)(&v),
R: (*hexBig)(tx.data.R),
S: (*hexBig)(tx.data.S),
})
}
// UnmarshalJSON decodes the web3 RPC transaction format.
func (tx *Transaction) UnmarshalJSON(input []byte) error {
var dec jsonTransaction
if err := json.Unmarshal(input, &dec); err != nil {
return err
}
// Ensure that all fields are set. V, R, S are checked separately because they're a
// recent addition to the RPC spec (as of August 2016) and older implementations might
// not provide them. Note that Recipient is not checked because it can be missing for
// contract creations.
if dec.V == nil || dec.R == nil || dec.S == nil {
return errMissingTxSignatureFields
}
if !crypto.ValidateSignatureValues(byte(*dec.V), (*big.Int)(dec.R), (*big.Int)(dec.S), false) {
return ErrInvalidSig
}
if dec.AccountNonce == nil || dec.Price == nil || dec.GasLimit == nil || dec.Amount == nil || dec.Payload == nil {
return errMissingTxFields
}
// Assign the fields. This is not atomic but reusing transactions
// for decoding isn't thread safe anyway.
*tx = Transaction{}
tx.data = txdata{
AccountNonce: uint64(*dec.AccountNonce),
Recipient: dec.Recipient,
Amount: (*big.Int)(dec.Amount),
GasLimit: (*big.Int)(dec.GasLimit),
Price: (*big.Int)(dec.Price),
Payload: *dec.Payload,
V: byte(*dec.V),
R: (*big.Int)(dec.R),
S: (*big.Int)(dec.S),
}
return nil
}
func (tx *Transaction) Data() []byte { return common.CopyBytes(tx.data.Payload) }
func (tx *Transaction) Gas() *big.Int { return new(big.Int).Set(tx.data.GasLimit) }
func (tx *Transaction) GasPrice() *big.Int { return new(big.Int).Set(tx.data.Price) }
func (tx *Transaction) Value() *big.Int { return new(big.Int).Set(tx.data.Amount) }
func (tx *Transaction) Nonce() uint64 { return tx.data.AccountNonce }
func (tx *Transaction) CheckNonce() bool { return true }
func (tx *Transaction) To() *common.Address {
if tx.data.Recipient == nil {
return nil
} else {
to := *tx.data.Recipient
return &to
}
}
// Hash hashes the RLP encoding of tx.
// It uniquely identifies the transaction.
func (tx *Transaction) Hash() common.Hash {
if hash := tx.hash.Load(); hash != nil {
return hash.(common.Hash)
}
v := rlpHash(tx)
tx.hash.Store(v)
return v
}
// SigHash returns the hash to be signed by the sender.
// It does not uniquely identify the transaction.
func (tx *Transaction) SigHash() common.Hash {
return rlpHash([]interface{}{
tx.data.AccountNonce,
tx.data.Price,
tx.data.GasLimit,
tx.data.Recipient,
tx.data.Amount,
tx.data.Payload,
})
}
func (tx *Transaction) Size() common.StorageSize {
if size := tx.size.Load(); size != nil {
return size.(common.StorageSize)
}
c := writeCounter(0)
rlp.Encode(&c, &tx.data)
tx.size.Store(common.StorageSize(c))
return common.StorageSize(c)
}
// From returns the address derived from the signature (V, R, S) using secp256k1
// elliptic curve and an error if it failed deriving or upon an incorrect
// signature.
//
// From Uses the homestead consensus rules to determine whether the signature is
// valid.
//
// From caches the address, allowing it to be used regardless of
// Frontier / Homestead. however, the first time called it runs
// signature validations, so we need two versions. This makes it
// easier to ensure backwards compatibility of things like package rpc
// where eth_getblockbynumber uses tx.From() and needs to work for
// both txs before and after the first homestead block. Signatures
// valid in homestead are a subset of valid ones in Frontier)
func (tx *Transaction) From() (common.Address, error) {
return doFrom(tx, true)
}
// FromFrontier returns the address derived from the signature (V, R, S) using
// secp256k1 elliptic curve and an error if it failed deriving or upon an
// incorrect signature.
//
// FromFrantier uses the frontier consensus rules to determine whether the
// signature is valid.
//
// FromFrontier caches the address, allowing it to be used regardless of
// Frontier / Homestead. however, the first time called it runs
// signature validations, so we need two versions. This makes it
// easier to ensure backwards compatibility of things like package rpc
// where eth_getblockbynumber uses tx.From() and needs to work for
// both txs before and after the first homestead block. Signatures
// valid in homestead are a subset of valid ones in Frontier)
func (tx *Transaction) FromFrontier() (common.Address, error) {
return doFrom(tx, false)
}
func doFrom(tx *Transaction, homestead bool) (common.Address, error) {
if from := tx.from.Load(); from != nil {
return from.(common.Address), nil
}
pubkey, err := tx.publicKey(homestead)
if err != nil {
return common.Address{}, err
}
var addr common.Address
copy(addr[:], crypto.Keccak256(pubkey[1:])[12:])
tx.from.Store(addr)
return addr, nil
}
// Cost returns amount + gasprice * gaslimit.
func (tx *Transaction) Cost() *big.Int {
total := new(big.Int).Mul(tx.data.Price, tx.data.GasLimit)
total.Add(total, tx.data.Amount)
return total
}
// SignatureValues returns the ECDSA signature values contained in the transaction.
func (tx *Transaction) SignatureValues() (v byte, r *big.Int, s *big.Int) {
return tx.data.V, new(big.Int).Set(tx.data.R), new(big.Int).Set(tx.data.S)
}
func (tx *Transaction) publicKey(homestead bool) ([]byte, error) {
if !crypto.ValidateSignatureValues(tx.data.V, tx.data.R, tx.data.S, homestead) {
return nil, ErrInvalidSig
}
// encode the signature in uncompressed format
r, s := tx.data.R.Bytes(), tx.data.S.Bytes()
sig := make([]byte, 65)
copy(sig[32-len(r):32], r)
copy(sig[64-len(s):64], s)
sig[64] = tx.data.V - 27
// recover the public key from the signature
hash := tx.SigHash()
pub, err := crypto.Ecrecover(hash[:], sig)
if err != nil {
return nil, err
}
if len(pub) == 0 || pub[0] != 4 {
return nil, errors.New("invalid public key")
}
return pub, nil
}
// WithSignature returns a new transaction with the given signature.
// This signature needs to be formatted as described in the yellow paper (v+27).
func (tx *Transaction) WithSignature(sig []byte) (*Transaction, error) {
if len(sig) != 65 {
panic(fmt.Sprintf("wrong size for signature: got %d, want 65", len(sig)))
}
cpy := &Transaction{data: tx.data}
cpy.data.R = new(big.Int).SetBytes(sig[:32])
cpy.data.S = new(big.Int).SetBytes(sig[32:64])
cpy.data.V = sig[64]
return cpy, nil
}
func (tx *Transaction) SignECDSA(prv *ecdsa.PrivateKey) (*Transaction, error) {
h := tx.SigHash()
sig, err := crypto.SignEthereum(h[:], prv)
if err != nil {
return nil, err
}
return tx.WithSignature(sig)
}
func (tx *Transaction) String() string {
var from, to string
if f, err := tx.From(); err != nil {
from = "[invalid sender]"
} else {
from = fmt.Sprintf("%x", f[:])
}
if tx.data.Recipient == nil {
to = "[contract creation]"
} else {
to = fmt.Sprintf("%x", tx.data.Recipient[:])
}
enc, _ := rlp.EncodeToBytes(&tx.data)
return fmt.Sprintf(`
TX(%x)
Contract: %v
From: %s
To: %s
Nonce: %v
GasPrice: %v
GasLimit %v
Value: %v
Data: 0x%x
V: 0x%x
R: 0x%x
S: 0x%x
Hex: %x
`,
tx.Hash(),
len(tx.data.Recipient) == 0,
from,
to,
tx.data.AccountNonce,
tx.data.Price,
tx.data.GasLimit,
tx.data.Amount,
tx.data.Payload,
tx.data.V,
tx.data.R,
tx.data.S,
enc,
)
}
// Transaction slice type for basic sorting.
type Transactions []*Transaction
// Len returns the length of s
func (s Transactions) Len() int { return len(s) }
// Swap swaps the i'th and the j'th element in s
func (s Transactions) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// GetRlp implements Rlpable and returns the i'th element of s in rlp
func (s Transactions) GetRlp(i int) []byte {
enc, _ := rlp.EncodeToBytes(s[i])
return enc
}
// Returns a new set t which is the difference between a to b
func TxDifference(a, b Transactions) (keep Transactions) {
keep = make(Transactions, 0, len(a))
remove := make(map[common.Hash]struct{})
for _, tx := range b {
remove[tx.Hash()] = struct{}{}
}
for _, tx := range a {
if _, ok := remove[tx.Hash()]; !ok {
keep = append(keep, tx)
}
}
return keep
}
// TxByNonce implements the sort interface to allow sorting a list of transactions
// by their nonces. This is usually only useful for sorting transactions from a
// single account, otherwise a nonce comparison doesn't make much sense.
type TxByNonce Transactions
func (s TxByNonce) Len() int { return len(s) }
func (s TxByNonce) Less(i, j int) bool { return s[i].data.AccountNonce < s[j].data.AccountNonce }
func (s TxByNonce) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// TxByPrice implements both the sort and the heap interface, making it useful
// for all at once sorting as well as individually adding and removing elements.
type TxByPrice Transactions
func (s TxByPrice) Len() int { return len(s) }
func (s TxByPrice) Less(i, j int) bool { return s[i].data.Price.Cmp(s[j].data.Price) > 0 }
func (s TxByPrice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *TxByPrice) Push(x interface{}) {
*s = append(*s, x.(*Transaction))
}
func (s *TxByPrice) Pop() interface{} {
old := *s
n := len(old)
x := old[n-1]
*s = old[0 : n-1]
return x
}
// TransactionsByPriceAndNonce represents a set of transactions that can return
// transactions in a profit-maximising sorted order, while supporting removing
// entire batches of transactions for non-executable accounts.
type TransactionsByPriceAndNonce struct {
txs map[common.Address]Transactions // Per account nonce-sorted list of transactions
heads TxByPrice // Next transaction for each unique account (price heap)
}
// NewTransactionsByPriceAndNonce creates a transaction set that can retrieve
// price sorted transactions in a nonce-honouring way.
//
// Note, the input map is reowned so the caller should not interact any more with
// if after providng it to the constructor.
func NewTransactionsByPriceAndNonce(txs map[common.Address]Transactions) *TransactionsByPriceAndNonce {
// Initialize a price based heap with the head transactions
heads := make(TxByPrice, 0, len(txs))
for acc, accTxs := range txs {
heads = append(heads, accTxs[0])
txs[acc] = accTxs[1:]
}
heap.Init(&heads)
// Assemble and return the transaction set
return &TransactionsByPriceAndNonce{
txs: txs,
heads: heads,
}
}
// Peek returns the next transaction by price.
func (t *TransactionsByPriceAndNonce) Peek() *Transaction {
if len(t.heads) == 0 {
return nil
}
return t.heads[0]
}
// Shift replaces the current best head with the next one from the same account.
func (t *TransactionsByPriceAndNonce) Shift() {
acc, _ := t.heads[0].From() // we only sort valid txs so this cannot fail
if txs, ok := t.txs[acc]; ok && len(txs) > 0 {
t.heads[0], t.txs[acc] = txs[0], txs[1:]
heap.Fix(&t.heads, 0)
} else {
heap.Pop(&t.heads)
}
}
// Pop removes the best transaction, *not* replacing it with the next one from
// the same account. This should be used when a transaction cannot be executed
// and hence all subsequent ones should be discarded from the same account.
func (t *TransactionsByPriceAndNonce) Pop() {
heap.Pop(&t.heads)
}