

https://opcodes.fr / contact@opcodes.fr

15 Rue des Halles, 75001 Paris, France

Code Audit
 for

Coral

Commissioned by

Streamflow Finance

https://opcodes.fr/

Coral Multisig Code Audit

Confidential Client

2

Project Information

Project

Mission Code audit

Client Streamflow Finance

Start Date 08/25/2022

End Date 08/29/2022

Document Revision

Version Date Details Authors

1.0 08/30/2022 Document creation
Thibault MARBOUD

Xavier BRUNI

1.1 08/31/2022 Peer review Baptiste OUERIAGLI

Coral Multisig Code Audit

Confidential Client

3

Table of contents

 1

Project Information 2

Overview 4

Mission Context 4

Mission Scope 4

Project Summary 4

Synthesis 5

Vulnerabilities summary 5

Vulnerabilities & issues table 6

Identified vulnerabilities 6

Identified vulnerabilities 7

Missing check against an approved program upgrade 7

Arbitrary nonce can lead to unusable multisig 9

Integer overflow on sequence number 11

Threshold update does not increment sequence number 13

Users can't deny transaction 14

Code optimization 15

Outdated dependencies 17

Conclusion 18

Coral Multisig Code Audit

Confidential Client

4

Overview

Mission Context

The purpose of the mission was to perform a code audit to discover issues and vulnerabilities

in the mission scope. Comprehensive testing has been performed using automated and manual

testing techniques.

Mission Scope

As defined with Streamflow Finance before the mission, the scope of this assessment was a

multisignature Solana program made by Coral. The source code is open source and available

on the following GitHub repository:

- https://github.com/coral-xyz/multisig / a413b76 (main)

OPCODES engineers were due to strictly respect the perimeter agreed with Streamflow Finance

as well as respect ethical hacking behavior.

Project Summary

Streamflow Finance is building a token vesting application on Solana and wants to support

multisignature.

Multisignature (or multisig) is a solution requiring multiple parties to agree before sending a

transaction. OPCODES engineers encourage Streamflow Finance to use multisig as it will add

an additional security layer to their vesting application. Multisig makes even more sense

considering the recent events with Slope’ wallets hack.

Coral multisig program leverage anchor framework and is relatively short with 400 lines of

code. The program was deployed on 9 different addresses from which 8500 transactions were

processed over a total of 1168 multisig.

https://github.com/coral-xyz/multisig
https://github.com/coral-xyz/multisig/tree/a413b76de3497273a0cd27bcba6c1ac439053b67

Coral Multisig Code Audit

Confidential Client

5

Synthesis

 Security Level: GOOD

The overall security level is considered as good. Coral multisig program correctly

implements a multisignature system and can be safely used by Streamflow Finance.

The assessment demonstrated the presence of 1 medium vulnerability. The multisig program

does not check if a target program has been updated between the transaction creation and

its execution. Multisig parties could approve on a transaction that would result in a different

outcome that what they were expecting.

Three minor vulnerabilities have also been reported. They concern a low probability integer

overflow, an arbitrary nonce that could lead to an unusable multisig and logic bug regarding

threshold update.

OPCODES also added 3 informational issues to this report. They represent possible

improvements and do not lead to any exploitable scenario but may enforce bad practices.

Vulnerabilities summary

Total vulnerabilities 7

 Critical 0

 Major 0

 Medium 1

 Minor 3

 Informational 3

Coral Multisig Code Audit

Confidential Client

6

Vulnerabilities & issues table

Identified vulnerabilities

Ref Vulnerability title Severity Remediation effort

#1
Missing check against an approved

program upgrade
 Medium Medium

#2
Arbitrary nonce can lead to

unusable multisig
 Minor Low

#3
Integer overflow on sequence

number
 Minor Low

#4
Threshold update does not

increment sequence number
 Minor Low

#5 Users can't deny transaction Informative Medium

#6 Code optimization Informative Medium

#7 Outdated dependencies Informative Low

Coral Multisig Code Audit

Confidential Client

7

Identified vulnerabilities

Missing check against an approved program upgrade

Severity Remediation effort

 Medium Medium

Description

Solana programs can be upgraded, and an update could occur between a transaction creation

and its execution.

OPCODES engineers think that this issue is relevant as a lot of Solana programs are being

upgraded in the shadows, without users knowing it.

Scope

Multisig program

Risk

A targeted program could be upgraded between a transaction creation/approval and its

execution. This could result in an unintended behavior that the involved parties did not

originally agree on.

Remediation

OPCODES engineers would recommend adding a security check in the execute_transaction

instruction to ensure that the target program was not updated.

This can be done by first, storing the slot upon a transaction creation.

Coral Multisig Code Audit

Confidential Client

8

 pub fn create_transaction(
 ctx: Context<CreateTransaction>,
 pid: Pubkey,
 accs: Vec<TransactionAccount>,
 data: Vec<u8>,
) -> Result<()> {
 [...]
 let tx = &mut ctx.accounts.transaction;
 [...]
+ let clock = Clock::get()?;
+ tx.slot = clock.slot - 1;
 Ok(())
 }

 #[account]
 pub struct Transaction {
 [...]
 pub did_execute: bool,
 // Owner set sequence number.
 pub owner_set_seqno: u32,
+ // Transaction creation slot
+ pub slot: u64
 }

Then, when the transaction is about to be executed, the multisig program should read the

ProgramData account and ensure that the slot is not bigger than the transaction ’s slot. The

multisig program should also ensure that the ProgramData account is legit by deserializing

the Program account and comparing both public keys.

Note: Native programs don’t have a ProgramData account, this is the case for the System

program and BPFLoader program. A whitelist may be needed to skip this security check for those

programs.

Note: Adding a new field in the Transaction struct will result in a more expensive rent. Frontend

applications may have to update their code to ensure that they are creating rent-exempted

accounts.

Coral Multisig Code Audit

Confidential Client

9

Arbitrary nonce can lead to unusable multisig

Severity Remediation effort

 Minor Low

Description

Upon the creation of a new multisig account, users must pass the nonce of the

multisig_signer account that will be the PDA used to sign the transactions.

programs/multisig/src/lib.rs (L33)

pub fn create_multisig(
 ctx: Context<CreateMultisig>,
 owners: Vec<Pubkey>,
 threshold: u64,
 nonce: u8,
) -> Result<()> {
 assert_unique_owners(&owners)?;
 require!(
 threshold > 0 && threshold <= owners.len() as u64,
 InvalidThreshold
);
 require!(!owners.is_empty(), InvalidOwnersLen);

 let multisig = &mut ctx.accounts.multisig;
 multisig.owners = owners;
 multisig.threshold = threshold;
 multisig.nonce = nonce;
 multisig.owner_set_seqno = 0;
 Ok(())
}

Scope

Multisig program

Risk

It is possible to create a multisig account with an arbitrary nonce that will lead to a

multisig_signer account that does lie on the ed25519 curve. This would result in a multisig

Coral Multisig Code Audit

Confidential Client

10

that is unable to sign transactions. It could also be used as a social attack in order to trick

parties into giving authority to a broken multisig.

Remediation

OPCODES engineers recommend adding a security check in the create_multisig instruction

to ensure that the given nonce is correct.

It can be done by with the create_program_address method of the Pubkey struct:

https://docs.rs/solana-program/1.11.10/solana_program/pubkey/struct.Pubkey.html

https://docs.rs/solana-program/1.11.10/solana_program/pubkey/struct.Pubkey.html#method.create_program_address

Coral Multisig Code Audit

Confidential Client

11

Integer overflow on sequence number

Severity Remediation effort

 Minor Low

Description

When updating the owners of a multisig, the program unsafely increments a sequence number.

programs/multisig/src/lib.rs (L121)

pub fn set_owners(ctx: Context<Auth>, owners: Vec<Pubkey>) -> Result<()> {
 assert_unique_owners(&owners)?;
 require!(!owners.is_empty(), InvalidOwnersLen);

 let multisig = &mut ctx.accounts.multisig;

 if (owners.len() as u64) < multisig.threshold {
 multisig.threshold = owners.len() as u64;
 }

 multisig.owners = owners;
 multisig.owner_set_seqno += 1;

 Ok(())
}

Scope

Multisig program

Risk

The field owner_set_seqno could overflow and previous transactions with different owners

could be approved and executed.

Remediation

Even if the probability is low, OPCODES engineers recommend adding an overflow check. It can

be globally by adding the following lines to the cargo.toml file.

Coral Multisig Code Audit

Confidential Client

12

[profile.release]
overflow-checks = true

Alternatively, when it makes more sense to do overflow checks on case-by-case basis the

following functions should be used: checked_mul, checked_div, checked_add or

checked_sub.

multisig.owner_set_seqno = multisig
 .owner_set_seqno
 .checked_add(1)
 .ok_or(ErrorCode::Overflow)?;

Note: There already is an unused error code for overflows.

Coral Multisig Code Audit

Confidential Client

13

Threshold update does not increment sequence number

Severity Remediation effort

 Minor Low

Description

Coral Multisig program allows parties to change the threshold number, which represent the

number of users required to sign a transaction before it can be executed.

Updating the threshold does not invalidate previously created transaction.

Scope

Multisig program

Risk

Multisig parties could accept to reduce the threshold number thinking that transactions

created before will still need the previous threshold.

Remediation

As a precaution, OPCODES engineers recommend incrementing the owner_set_seqno inside

the change_threshold instruction. It will prevent the execution of transactions created

before a threshold update.

Coral Multisig Code Audit

Confidential Client

14

Users can't deny transaction

Severity Remediation effort

 Informational Medium

Description

 A transaction cannot be refused by parties.

Scope

Multisig program

Risk

This is an informational issue; It does not lead to any exploitable scenario. But over time

transactions may accumulate and a user could inadvertently accept the wrong transaction.

Remediation

OPCODES engineers think that it makes sense to have a deny_transaction allowing users to

refuse the signature of a transaction.

Coral Multisig Code Audit

Confidential Client

15

Code optimization

Severity Remediation effort

 Informational Medium

Description

Some part of the code could be simplified and optimized, leading to a more straightforward

and easier to maintain code.

Scope

Multisig program

Risk

This is an informational issue; It does not lead to any exploitable scenario.

Remediation

OPCODES engineers would recommend adding a check in the create_transaction to ensure

that the multisig_signer account is indeed present as a signer. If not, the transaction

should be refused, as it does not require the multisig signature.

After adding this check, the execute_transaction instruction could be simplified. Indeed,

the following lines could be deleted.

programs/multisig/src/lib.rs (L171)

 let mut ix: Instruction = (*ctx.accounts.transaction).deref().into();
- ix.accounts = ix
- .accounts
- .iter()
- .map(|acc| {
- let mut acc = acc.clone();
- if &acc.pubkey == ctx.accounts.multisig_signer.key {
- acc.is_signer = true;
- }

Coral Multisig Code Audit

Confidential Client

16

- acc
- })
- .collect();
 let multisig_key = ctx.accounts.multisig.key();
 let seeds = &[multisig_key.as_ref(), &[ctx.accounts.multisig.nonce]];
 let signer = &[&seeds[..]];
 let accounts = ctx.remaining_accounts;
 solana_program::program::invoke_signed(&ix, accounts, signer)?;

Now, the multisig_signer account is unnecessary, and it can be removed from the

ExecuteTransaction struct, reducing the transaction size.

programs/multisig/src/lib.rs (L231)

 #[derive(Accounts)]
 pub struct ExecuteTransaction<'info> {
 #[account(constraint = multisig.owner_set_seqno == transaction.owner_set_seqno)]
 multisig: Box<Account<'info, Multisig>>,
- /// CHECK: multisig_signer is a PDA program signer. Data is never read or …
- #[account(
- seeds = [multisig.key().as_ref()],
- bump = multisig.nonce,
-)]
- multisig_signer: UncheckedAccount<'info>,
 #[account(mut, has_one = multisig)]
 transaction: Box<Account<'info, Transaction>>,
 }

Coral Multisig Code Audit

Confidential Client

17

Outdated dependencies

Severity Remediation effort

 Informative Low

Description

The following crate could be updated:

Crate Current version Latest version

anchor-lang 0.24.2 0.25.0

Scope

Multisig program

Risk

This is an informational issue; At the time of writing this report, it does not represent any risk

but may enforce bad practices.

Remediation

It is considered a good practice to update dependencies when possible.

Coral Multisig Code Audit

Confidential Client

18

Conclusion

Coral multisig program is a great piece of software that correctly implements multisignatures.

The assessment did not report any critical findings. Therefore, the program can be safely used

by Streamflow Finance.

OPCODES engineers still recommend fixing the vulnerabilities reported. Especially the medium

severity issue regarding the missing program upgrade check before a transaction execution. It

will prevent multisig parties to agree on a transaction that would lead to a different outcome

that what they were expecting. Concerning the threshold update, OPCODES team think that it

should invalidate previously created transaction. Fixing this issue does not require a huge

change and will protect unaware users. As a precaution overflow checks should also be

implemented.

Finally, informational issues represent possible improvement that c ould be made to the

original program. OPCODES engineers would recommend fixing them if they are meaningful to

you.

