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Abstract

Several trends in the Cyber domain are converging to present an imminent threat

to the safety and prosperity of people and property. Efforts by organizations and na-

tions to automate the administration and functions of Cyber-Physical Systems (CPS)

such as road vehicles and manufacturing plants have the side effect of connecting pre-

viously isolated CPS networks to the global Internet. These CPS networks routinely

have ineffective or no Cyber-security measures in place since they were assumed to

be isolated from remote access when designed. Cyber attacks have consequently in-

creased in sophistication and scope to exploit these newly connected networks. The

threat these trends pose are routinely emphasized by publications and demonstrations

by academic, commercial, and government researchers. One particularly troubling

area of the growing Cyber threat landscape is the remote exploitation of Internet

accessible passenger vehicles.

Several passenger vehicles already being sold in the United States in 2018 have

been shown to be accessible from the Internet and vulnerable to Cyber attacks that

may allow remote control of the vehicle against the driver’s will. Nearly every ma-

jor automotive manufacturer has subsequently announced plans to incorporate au-

tonomous driving features in their future vehicles. These autonomous driving features

are expected to greatly increase the population of Internet accessible vehicles, the

complexity of preventing Cyber attacks, and the scope of control an attacker might

have should they gain remote control of the vehicle.

A significant increase in Cyber-security research and development is necessary to

mitigate the mounting threats to CPS networks in general and automotive networks

in particular. Unfortunately, manufacturers often make significant changes to the
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proprietary protocols and functionality their CPS rely upon. The CPS manufactures

also have several incentives to maintain secrecy regarding these protocols, functions,

and changes over time. These incentives include potential advantages competitors

may gain from public disclosure, adversity to litigation or loss of customer confidence

caused by published findings that products are vulnerable to Cyber attack, and more.

The rate of changes to proprietary protocols, ubiquitous secrecy by manufacturers,

expense and difficulty of attaining working CPS, and other factors all inhibit the

scope and scale of independent Cyber-security research in the CPS network domain.

Automating some of the time consuming and difficult analysis commonly associated

with CPS Cyber-security research may help mitigate these challenges.

This dissertation presents a series of techniques intended to automate the analysis

of proprietary non-text network protocol payloads used by Cyber-Physical Systems

(CPS). These techniques include unsupervised lexical analysis methods for extracting

logically distinct pieces of information from non-text payloads and then enumerating

the correlated and causal relationships that exist among that information. Analyzing

the Controller Area Network (CAN) protocol used by CPS in passenger vehicles, med-

ical electronics, and industrial Internet of Things is used as a proof of concept validate

the consistency and accuracy of these techniques. Empirical validation is performed

using data collected from seventeen passenger vehicle CAN networks. This research

also proposes a series of validation strategies which do not rely upon truth data. These

validations techniques are intended to enable quantifiable research findings regardless

of whether access to proprietary truth data is available.

This research represents the first robust collection of techniques and validation

strategies for automating analysis of CPS network protocols. The avoidance of heuris-

tics and a focus on techniques from the Machine Learning and Life Sciences domains

help ensure this research is generalizable to multiple types of CPS and non-text net-
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work protocols. Furthermore, all of the proposed techniques are unsupervised mean-

ing that no a priori information or truth data is needed to effectively use them.

These unsupervised methods serve as solutions for two problems related to improv-

ing the Cyber-security posture of CPS networks. First, they improve the throughput

and scope of independent Cyber-security audits of proprietary networks by automat-

ing the discovery of data and their relationships. Second, the collective output of

these techniques forms an expansive feature set for the development and testing of

automated auditing methods and Intrusion Detection Systems. Findings generated

using these methods are also expected to accelerate the availability of labeled data

sets which might further improve the frequency, accuracy, and scope of published

Cyber-security research for the CPS network domain.
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ENABLING AUDITING AND INTRUSION DETECTION FOR

PROPRIETARY CONTROLLER AREA NETWORKS

I. Introduction

1.1 Motivation

New methods are consistently developed to remotely gain unauthorized access to

computing systems for fun and profit. While hardware and software vendors usually

develop and deploy patches or fixes to stop these exploits, independent cyber-security

research has unquestionably been an important driver in improving the pace and

quality of those counter-measures. The impending proliferation of cyber-physical

systems (CPS) incorporating persistent Internet connections such as self-driving pas-

senger vehicles and medical electronics presents a growing cyber-security challenge.

Unfortunately, the secretive and proprietary nature of the automotive industry in par-

ticular makes documenting vehicle networks and their CPS a time consuming task.

Such documentation is necessary for independent researchers to perform security au-

dits or develop, test, and validate cyber-security defenses like Intrusion Detection

Systems (IDS).

Security audits of in-production Internet accessible vehicles by Miller and Valasek,

Koscher et. al., and Nie et. al. have clearly demonstrated that independent cyber-

security analysis of automotive networks and CPS are necessary to ensure people,

property, and private information are protected from cyber attacks [21, 22, 23]. In

those examples, as with security audits of traditional computing environments, re-

connaissance and enumeration of the network and systems is a necessary precursor
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to identifying flaws that could be maliciously exploited.

The 2015 Volkswagen emission scandal also highlights the possibility that automo-

tive manufacturers have competitive and financial incentives to deliberately introduce

and conceal misconfigured CPS in their vehicles [24]. At least seven other major Orig-

inal Equipment Manufacturers (OEMs) have since been found to use similar tactics

[25, 26]. These findings further emphasize the importance and urgency for methods to

automate and improve independent cyber-security research in the automotive sector.

They also highlight the need for similar work in other industries, such as medical

electronics and robotics, which may have similar business incentives and technology

[27].

This dissertation focuses on automotive CPS using the Controller Area Network

(CAN) protocol to frame the discussion and findings. This particular domain is

used for four reasons. First, the current scale of self-driving vehicle research and

development taking place in 2018 presents a significant cyber-security challenge in the

near future. Second, the CAN protocol is used by a wide range of industries. Third,

there is a standardized and expedient method for collecting CAN network samples

from passenger vehicles. Fourth, it is relatively easy to find research volunteers who

own a passenger vehicle.

1.2 Research Questions and Document Outline

The following research questions are intended to support the overall objective of

improving the pace and quality of independent research and development of robust

cyber-security measures for networks using CAN and similar protocols. These ques-

tions represent a decomposition of that overall objective into two fundamental tasks:

identify the logically distinct data present in a proprietary CPS network and then dis-

cover relationships between those data. The first task is referred to as lexical analysis
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and the second as semantic analysis. The concepts of lexical analysis and semantic

analysis are discussed in detail in Sections 2.4 and 2.5.

By developing unsupervised methods for accomplishing these tasks, independent

researchers can quickly gain an initial understanding of a particular CPS network

necessary to pursue their specific goals. The term unsupervised refers to methods

which require little or no input beyond the data set being analyzed. The need for a

validation strategy for each proposed unsupervised method is the basis for the third

research question.

• Research Question 1: Is there a robust method for unsupervised lexical anal-

ysis of proprietary automotive CAN payloads given little or no truth data?

• Research Question 2: What unsupervised semantic analysis of automotive

time series is possible given little or no truth data?

• Research Question 3: What are viable validation methods for unsupervised

lexical and semantic analysis of automotive CAN data when little or no truth

data are available?

Chapter II provides information about cyber-physical systems (CPS), the CAN

protocol, lexical and semantic analysis, automated reverse engineering, Empirical

Data Modeling (EDM), and other related work. Data collection and related research

methods are discussed in Chapter III. Research Question 1 is the focus of Chapter

IV. Chapters V and VI present semantic analysis techniques to address Research

Question 2. Validation methods related to Research Question 3 are discussed in each

chapter. Table 1 provides a summary of the relationship between research questions

and chapters as well as how the output of each chapter serves as the input to the

following chapter. Final conclusions are presented in Chapter VII followed by a brief

discussion of future work in Chapter VIII.
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Table 1. Outline of the Input and Output Linking Research Questions and Their
Associated Chapters

Data Collection
Chapter III

Research Question 1
Lexical Analysis

Chapter IV

Research Question 2
Semantic Analysis
Chapters V & VI

Input
- Driving Route
- Driving Conditions
- Driver Input

Output of
Data Collection

Output of
Lexical Analysis

Output
- Arbitration IDs
- Payloads

- Payload Compositions
- Time Series (Signals)

- Correlated Relationships
- Causal Relationships
- Predictive Models

1.3 Contributions

The major contributions of this dissertation are the following:

1. The first known unsupervised time series extraction pipeline for the CAN pro-

tocol used by CPS networks in the automotive, medical, and robotics industries,

among others.

2. The combination of Empirical Dynamic Modeling (EDM) with the time series

extraction pipeline to enumerate correlated and causal relationships in vehicular

networks and create accurate models of those networks without truth data.

3. A comprehensive set of metrics and strategies for evaluating unsupervised lexical

and semantic analysis methods for CAN networks when little or no truth data

is available.
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II. Related Work

Each section in this chapter focuses on a particular field of research or technol-

ogy. A brief background on cyber-physical systems (CPS) and time series data is

provided in Section 2.21. Section 2.3 introduces the Controller Area Network (CAN)

protocol and its use in the automotive industry. The concept of lexical analysis in

the context of CAN payload reverse engineering (RE) is introduced in Section 2.4.

Previous network protocol RE proposals are discussed in Section 2.5. Section 2.5 also

introduces the RE pipeline linking Chapters IV and V and its influences from prior

work. The unsupervised clustering method used in that pipeline—Agglomerative Hi-

erarchical Clustering—is introduced in Section 2.6. Section 2.7 discusses Empirical

Data Modeling (EDM) techniques used in Chapter VI followed by an introduction to

verification and validation (V&V) techniques in Section 2.8.

The dissertation uses the field of compiler design to frame the terminology, tech-

niques, and objectives of Chapters IV and V. This decision is based on the reality

that there is a definitively correct interpretation for every payload in a CAN network

and data identified using that interpretation represents some specific logical or phys-

ical process. That definitive interpretation was engineered by the vehicle’s Original

Equipment Manufacturer (OEM) and is confidentially shared with mechanics and

component manufacturers via a Database CAN (DBC) file. This closely mirrors the

problem of designing a computer program compiler which must interpret a program

according to the definitive rules specified by the programing language [29].

Proposed automated RE approaches in a domain which feature deterministic re-

lationships between input and its interpretation should therefore resemble compiler

design. The field of natural language processing (NLP) is a testament to this obser-

vation. In almost every sub-field of study in NLP, from machine-aided translation

1A time series is a univariate sequence of values ordered by the time observed [28].
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to data mining, the first tasks performed are lexical and semantic analysis of the

raw data [30, 31, 32, 33, 34, 35]. Thus, the RE pipeline linking Chapters IV and

V is intended to decompose the task of automated RE using the proven sequence of

subtasks used by compiler design and NLP. This framework of loosely coupled lexical

and semantic analysis subtasks frames the sequence and scope of Chapters IV and

V and their associated research questions proposed in Section 1.2. However, how

unsupervised lexical and semantic analysis can be implemented without truth data

or significant a priori information remains a largely unexplored area in published

research.

A wide range of fields were considered in pursuit of robust techniques, metrics,

and features which are viable for unsupervised lexical and semantic analysis in the

context of CAN payload reverse engineering (RE). Examples of this breadth include

consideration of the Needleman-Wunsch and BLAST sequence alignment algorithms

from the bioinformatics community, various statistical machine learning methods,

linear regression techniques, and slightly more exotic mathematical methods such as

wavelet ANOVA, exploratory factor analysis (EFA), and principal component analysis

(PCA) [28, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. Each of these techniques have been

used to answer research questions similar to those offered in Section 1.2; however, none

of them were found to be viable or sufficiently robust in the context of automotive

network reverse engineering (RE) and analysis. Ultimately, the approaches presented

in Chapters IV, V, and VI address the research questions using a combination of nine

concepts employed as summarized in Table 2.

2.1 Reverse Engineering and Expert Systems

The use of greedy search and a bespoke validation metric—alignment score—in

Chapters IV and V may justifiably raise concern that the proposals are some kind of
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Table 2. Summary of Lexical Analysis, Semantic Analysis, and Validation Techniques
Discussed

Data Collection
Chapter III

Payload
Lexical Analysis

Chapter IV

Time Series
Semantic Analysis
Chapters V & VI

Implementation
- Exclusive Or
- Greedy Search

- Shannon Diversity Index
- Pearson’s ρ
- Agglomerative Clustering
- EDMa

Validation
- Jaccard Index
- Dynamic Time
Warping

- Jaccard Index
- Alignment Scoreb

- Jaccard Index
- EDM

aEDM encompasses several techniques based upon Takens’ Theorem. See Section 2.7
bAlignment Score is novel metric introduced in Section 2.8

expert system rife with unadvertised errors, faulty assumptions, or simply too targeted

to be of serious academic or commercial interest. The RE pipeline introduced in

Section 2.5 which links Chapters IV and V meets one definition of an expert system: “a

computer model of expert human reasoning, reaching the same conclusions the expert

would reach if faced with a comparable problem” [47]. One type of expert system

by this definition are “rule-based systems based upon identifiable human expertise

[...such as...] Exper-TAX [...] to give advice on corporate tax planning, ONCOCIN

[...] which helps doctors determine appropriate treatments for chemotherapy patients,

and CLASS [...which] supports commercial loan decisions in a bank” [47].

As of 2018 expert system research has been dwarfed by statistical machine learning,

deep learning, and statistical analysis methods. Thus, proposals resembling an expert

system understandably raise concern that they are ultimately a failure to understand

and apply these newer methods. The automated RE proposals discussed in Section

2.5 often use some of these newer analysis techniques; however, they may still fit the

definition of expert systems due to heavy reliance on heuristics.

The automated RE pipeline detailed in Chapters IV and V differs from 20th cen-
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tury expert systems and many other automated RE proposals in that there is no use

of heuristics. Instead, the reverse engineering (RE) effort is reduced to a series of dis-

tance measurements and tunable threshold parameters which is functionally similar

to statistical machine learning methods. This is not to say there is no expert knowl-

edge incorporated into these methods. However, the insights focus on system or data

encoding idiosyncrasies rather than heuristic assumptions about data produced by

the system.

The approach in Chapter IV depends upon insight that the least significant bit

(LSB) of continuous numerical data transitions more frequently than the most signif-

icant bit (MSB). The techniques presented in Chapter V rely upon the insight that

continuous numerical data in automotive networks reliably have a larger Shannon

Index—a measure of population diversity—than non-continuous data [48]. Chapter

V also relies on the observation that automotive networks necessarily contain sets of

highly correlated time series. An example of this observation is that passenger vehi-

cles always have two or more wheels which exhibit highly correlated behavior such as

rotations per minute (RPM) over time.

Research in the field of automated RE is a delicate balance between reducing

and defining a problem space using expert human insight while developing methods

which are robust by not relying on that same (potentially faulty, biased, incomplete,

or inaccurate) insight. We propose that the automated RE methods presented in

Chapters IV and V strike an appropriate balance between the competing goals of using

expert insight to identify and understand the problem space while remaining robust

with respect to variations in network configuration and operational conditions. This

position is supported by the overwhelmingly positive findings presented in Sections

4.4 and 5.4.
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Relying on Life Sciences Research.

The automated reverse engineering (RE) proposals in Chapters IV and V have

very little methodological similarity with the superficially similar proposals discussed

in Section 2.5 for three important reasons. The first is the opinion that many of those

proposals are effectively expert systems due to heavy reliance on expertly developed

heuristics. The RE methods presented in Chapters IV and V deliberately avoid

heuristics. The second differentiating factor is practically all published research is

focused on analyzing text-based application layer protocols [50, 49, 9, 51, 52]. The

methods presented in this paper are based on analyzing payloads of a single known

protocol-Controller Area Network (CAN)-which is not text-based. The key differences

are the difficulty of lexical analysis and the assumption that the vast majority of

data are time series generated by a CPS. Third, many of these proposals attempt

to perform lexical and semantic analysis simultaneously. Research in the fields of

compiler design and NLP demonstrate that these tasks should be independent.

We propose the difference between translating sentences written using Japanese

Katakana and English is a reasonable analogy to the difference in lexical analysis

between existing research and the problem addressed by this research. Automated

translation of either language certainly shares similarities once the words in a sentence

and their ordering have been identified. However, with text-based network protocols

and English there is a finite set of delimiters that are almost always present between

‘words’. Thus, the lexical analysis phase proposed in related work is almost always a

trivial process using a set of delimiter characters known a priori [50, 49, 9, 51, 52].

Sentences written with Japanese Katakana and CAN payloads do not use explicit

delimiters. This makes ‘word’ discovery non-trivial in these contexts.

Another distinguishing factor between the research presented in this dissertation

and other automated network protocol RE proposals is the scale of potential types
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of data present in the network. Much of the discussion in proposals for reverse

engineering (RE) text-based protocols deals with differentiating different types of data

such as text, numbers, and various meta-data. Automotive networks are assumed

to be almost exclusively populated by cyber-physical systems (CPS) which produce

time series data. This difference has a significant impact on the assumptions and

techniques that are viable in either context.

Avoidance of heuristics, the difficulty of lexical analysis, and the predictable pres-

ence of time series data are the reasons this chapter includes very little analysis about

how to build upon, improve, or otherwise be significantly informed by other auto-

mated RE research. These factors also explain why this dissertation instead draws

heavily from life sciences research. Techniques from the life sciences domains—such

as Empirical Data Modeling (EDM)—are frequently developed with the expectation

that no definitive truth data exists to test research hypothesis or develop models [53].

Those techniques are also commonly focused on examining time series data. Thus,

the statistics and techniques used throughout this dissertation are predominantly

re-purposed from research in the life science domains.

2.2 Cyber-Physical Systems and Time Series Data

The Association for Computing Machinery(ACM) Transactions on Cyber-Physical

Systems (TCPS) defines Cyber Physical Systems (CPS) as follows:

Cyber-Physical Systems (CPS) has emerged as a unifying name for sys-
tems where the cyber parts, i.e., the computing and communication parts,
and the physical parts are tightly integrated, both at the design time and
during operation. Such systems use computations and communication
deeply embedded in and interacting with physical processes to add new
capabilities to physical systems. These cyber-physical systems range from
miniscule (pace makers) to large-scale (a national power-grid). [54]
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The output of CPS monitoring physical processes is often time series data repre-

senting the state of those processes over time. Examples of time series in a passenger

vehicle might be measurements by an Electronic Control Unit (ECU) monitoring the

front right wheel’s rotations per minute (RPM), steering wheel angle, or engine RPM.

Analysis of time series data is an active field of study with many unique and inter-

esting approached. The National Institute of Science and Technology (NIST) frames

the field of time series analysis in the following terms:

Time series analysis accounts for the fact that data points taken over time
may have an internal structure (such as autocorrelation, trend or seasonal
variation) that should be accounted for. [28]

A requirement for many univariate time series analysis techniques is that the

data are stationary. “A stationary process has the property that the mean, variance

and autocorrelation structure do not change over time. Stationarity can be defined

in precise mathematical terms, but for our purpose we mean a flat looking series,

without trend, constant variance over time, a constant autocorrelation structure over

time and no periodic fluctuations (seasonality)” [28]. Fig. 1 presents some examples

of time series with plots (b) and (g) representing examples of stationary time series.

Time series analysis techniques requiring time series are stationary are not viable

for time series produced by automotive CPS networks. The driver input and driving

conditions are arbitrary and produce data which do not fit the definition of stationary

time series. Exponential smoothing and Auto-Regressive Integrated Moving Average

(ARIMA) models are examples of time series analysis methods intended to enable

modeling non-stationary time series [1, 44]. EDM techniques introduced in Section

2.7 are compelling methods for analyzing non-stationary time series and the focus of

Chapter VI.
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Figure 1. Examples of Time Series Plots: “(a) Google stock price for 200 consecutive
days; (b) Daily change in the Google stock price for 200 consecutive days; (c) Annual
number of strikes in the US; (d) Monthly sales of new one-family houses sold in the
US; (e) Annual price of a dozen eggs in the US (constant dollars); (f) Monthly total of
pigs slaughtered in Victoria, Australia; (g) Annual total of lynx trapped in the McKen-
zie River district of north-west Canada; (h) Monthly Australian beer production; (i)
Monthly Australian electricity production.” [1]

2.3 Controller Area Network (CAN)

The CAN protocol (ISO 11898) and its physical bus design were developed and

patented by a German company named Bosch in the 1980s [55, 56]. It is a data-link

layer protocol which is commonly used in the automotive, industrial manufacturing,

and medical electronic industries, among others, due to its relatively low cost, low

physical weight, and architectural simplicity [27, 55, 57, 58, 59, 60]. A CPS network

using the CAN protocol is typically implemented using one or more frame formats.
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These formats include the standard format shown in Fig. 2, the extended format

shown in Fig. 3, and the Flexible Data Rate (CAN-FD) format shown in Fig. 4. These

formats are backwards compatible. The extended format enables more message IDs.

The CAN-FD format enables payload sizes larger than eight bytes and a potential

transmission rate increase from 1Mbps to 4Mbps [3, 61]. Only the arbitration ID

(Arb ID) and payload sections of the frame are variable in all three message formats.

The remaining portions of the frame are flags and error checking bits with have a

deterministic relationship to the Arb ID and payload used.

CAN in the Automotive Industry.

Automotive CAN networks are used as the proof of concept for analyzing pro-

prietary CPS networks based on stateless binary protocols for three reasons. First,

U.S. federal regulation requires passenger vehicles produced in 2008 and later to pro-

vide an On Board Diagnostics (OBD)-II interface in the cabin which uses the CAN

protocol for communication [62, 63, 64, 65]. This facilitates relatively easy collec-

tion of real network data. Second, we empirically found that most passenger vehicles

use the standard or extended frame formats specified in ISO 11898-1:2015 [2]. This

means the maximum data per CAN frame is eight bytes. This bounds the complexity

of examining CAN network traffic logs. Third, the requirement to use CAN in all

passenger vehicles ensures a standardized and relatively easy method is available to

collect logs from a range of manufacturers, vehicle types, and model years. Testing

reverse engineering and analysis techniques using a breadth of network configurations

is intended to improve confidence that those techniques are robust.

The multi-cast and clear-text nature of CAN bus networks are the primary reasons

data collected using a vehicle’s OBD-II interface is effective. Unless the manufacturer

specifically isolates the interface using some kind of filter, many of the CAN frames
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Figure 2. ISO 11898-1 Controller Area Network Standard Message Format [2]

Copyright International Organization for Standardization 
Provided by IHS under license with ISO Sold to:IHS Standards Store Purchase, 348409

Not for Resale,05/17/2006 11:48:43 MDTNo reproduction or networking permitted without license from IHS

Figure 3. ISO 11898-1 Controller Area Network Extended Message Format [2]

Figure 4. ISO 11898-1 Controller Area Network Flexible Data Rate Message Format
[3]
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normally transmitted by Electronic Control Units (ECU)2 in the vehicle are observ-

able from the OBD-II interface. Only one vehicle studied appeared to implement

filtering in this manner3. Fig. 5 is an example wiring harness used by a passenger

vehicle. One end point of the harness will be the OBD-II interface which is located

under the steering column in passenger vehicles.

Table 3 provides a summary of the proprietary and non-proprietary standards

2Electronic Control Unit (ECU) is the term commonly used to refer to cyber-physical systems in
the automotive industry

3The 17 vehicles studied all included an internal combustion engine. Fully electric vehicles studied
appear to use Automotive Ethernet instead of CAN as their primary network protocol [4, 23, 66].
These electric vehicles did not generate CAN data observable from the OBD-II interface during
normal use

Figure 5. A Typical Wiring Harness In A Passenger Vehicle [4]
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Table 3. Legislated emissions-related OBD/WWH-OBD diagnostic specifications ap-
plicable to the OSI layers [20]

Applicability OSI 7 layers
Emissions-related OBD communication

requirements
Emissions-related WWH-OBD
communication requirements

Seven layer
according to

ISO/IEC
7498-1

and
ISO/IEC

10731

Application (layer 7) ISO 15031-5/SAE J1979 ISO 27145-3

Presentation
(layer 6)

ISO 15031-2, ISO 15031-5, ISO 15031-6 ISO 27145-2

SAE J1930-DA, SAE J1979-DA, SAE J2012-DA
SAE J1930-DA, SAE J1979-DA,

SAE J2012-DA

Session (layer 5) Not Applicable ISO 14229-2

Transport (layer 4)
ISO 15031-5

ISO
14230-4

ISO
15765-2

ISO
15765-4

ISO
15765-2

ISO
15765-4

ISO
13400-2Network (layer 3)

Data link (layer 2)
SAE
J1850

ISO
9141-2

ISO
14230-2

ISO 11898-1,
-2

ISO 11898-1,
-2

ISO
13400-3Physical (layer 1)

ISO
14230-1

used by light duty and heavy duty (>8,500 pounds) vehicles in the United States.

Note that most of these standards continue to use CAN as the data-link layer for

their implementation. While these standards are published by the Society of Auto-

motive Engineers (SAE) and the International Standards Organization (ISO), CAN

frame payloads in passenger vehicles primarily use unpublished proprietary format-

ting which varies by manufacturer, model, and model year [2, 67, 68].

Accurate payload interpretation is only possible using Data Base CAN (DBC) files

provided by the Original Equipment Manufacturer (OEM) to licensed mechanics and

equipment vendors. At least one manufacturer even prevents mechanics from directly

accessing this information by requiring all vehicle network Measurement, Calibration,

and Diagnostics (MCD) services be done over the Internet using remote OEM servers

[69]. Fig. 6, 7, and 8 are examples of the proprietary hardware and software used by

mechanics to access and use DBC files to interpret a vehicle’s CAN payloads.

Access to OEM provided DBC files may not guarantee a completely accurate view

of a vehicle’s network. This reality has become more apparent since the 2015 Volk-

swagen emission scandal caused increased scrutiny across the industry [24]. As of

2018, at least seven other OEMs have been found to manufacture vehicle networks

16



Figure 6. wiTECH Micropod II Diagnostics and ECU Reprogramming Tool for Vehicles
Manufactuered by Fiat Chrysler Automobiles (FCA). [5]

which appear to deliberately misrepresent at least emissions and power train informa-

tion gathered using SAE J1979 diagnostics information requested using the OBD-II

interface [20, 25, 26]. These kinds of OEM generated faults are especially concerning

considering that the CAN protocol in particular and OEM financial incentives in gen-

eral may also apply to the medical equipment and robotic manufacturing industries

[27, 59].

Society of Automotive Engineers (SAE) J1979 Diagnostic Protocol.

SAE J1979 is a useful source of truth data for testing automated reverse engineer-

ing methods regardless of potential deliberate misconfiguration by OEMs. SAE J1979

is the United States (U.S.) federally mandated diagnostics standard for requesting in-

formation from light duty passenger vehicles [20, 62, 70]. The standard consists of

nine different service modes with mode $01 corresponding to requests for the current

state of the vehicle. Requests for information are made using a Parameter ID (PID)

with each PID in a given service mode corresponding to a particular function in the

vehicle. Table 4 lists some PIDs for mode $01 which are useful features in the con-

text of testing automated CAN payload reverse engineering techniques. All ECUs
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Figure 7. wiTECH Diagnostics and ECU Reprogramming Software for Vehicles Man-
ufactuered by Fiat Chrysler Automobiles (FCA). [6]

Figure 8. Honda / Acura Modular Vehicle Communications Interface (MVCI). [7]
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in a vehicle capable of supporting a diagnostic must respond with the specific PIDs

they support when a broadcast request is made using service $01 PID $00 [20]. This

allows researchers to determine which diagnostic information they can request from

a particular vehicle during data collection.

Table 4. Examples of SAE J1979 Service $01 Diagnostic Requests Related to Locomo-
tion and Driver Input [20]

PID
(hex)

PID
(Dec)

Bytes
Returned

Description
Minimum

Value
Maximum

Value
Units Formula

0C 12 2 Engine RPM 0 16,383.75 rpm
256A+B

4

0D 13 1 Vehicle speed 0 255 km/h A

11 17 1 Throttle position 0 100 %
100

255
A

45 69 1 Relative throttle position 0 100 %
100

255
A

5A 90 1 Relative accelerator pedal position 0 100 %
100

255
A

61 97 1 Driver’s demand engine - percent torque -125 130 % A− 125

62 98 1 Actual engine - percent torque -125 130 % A− 125

63 99 2 Engine reference torque 0 65,535 Nm 256A+B

2.4 CAN Payload Lexical Analysis

The concept of lexical analysis is taken from compiler design in computer science.

Compilers are the software tools which convert a program into a series of operations

that can run on computer hardware [29]. Lexical analysis is the first step of a compiler

which uses human readable programming code as an input. The first step of lexical

analysis is the tokenization process which identifies the individual logical units, or

tokens, that code consists of. For example, the following code snippet results in the

nine tokens ‘for’, ‘x’, ‘in’, ‘range’, ‘(’, ‘0’, ‘,’, ‘10’, ‘)’:

for x in range(0, 10)

If the f and o in the token ‘for’ are incorrectly separated during tokenization,

then the subsequent steps in the compiler should fail. The compilation should also
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fail if the tokens ‘(’ and ‘0’ are not separated during tokenization.

We define the tokenization of CAN payloads as the process of identifying the

logically distinct time series present within payloads using the same arbitration ID.

Individual time series extracted through tokenization are referred to as signals or

tokens for the remainder of this dissertation.

As an example, imagine the RPM signals for two of a vehicle’s wheels and a

checksum are all contained in the set of 64-bit payloads using a CAN arbitration

ID of 0xA15. The two RPM measurements and checksum are each 8-bit signals. A

possible tokenization would be the set of start and stop indices: (0, 7), (8, 15), (56,

63). The bit positions 16 through 55 are padding bits which are consistently 1 or 0 in

every observed payload using ID 0xA15. Fig. 9 depicts this hypothetical tokenization

scenario.

We empirically found that tokenization is necessary to correctly interpret CAN

message payloads. This is because a series of payloads using a shared arbitration ID

often contains multiple sensor readings concatenated together. This observation is

echoed by other third party automotive CAN research findings [8, 21]. The correct

tokenization for a particular arbitration IDs (Arb ID) payload is known by vehicle

Original Equipment Manufacturers (OEMs) but strictly protected as trade secrets.

The following definitions and names are used when discussing the payload tok-

enization process.

• Let XID refer to the matrix of chronologically ordered payloads using Arb ID

Token 1: (0, 7) Token 2: (8, 15) Token 3: (56, 63)

Bit 0 ….. Bit 7 Bit 8 …. Bit 15 Padding Bit 56 …. Bit 63

Wheel #1 RPM Wheel #2 RPM Bits Checksum

Figure 9. Example Tokenization Result for a 64-bit CAN Payload
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‘ID’.

– Let XID,i refer to the ith row in the matrix XID. This row represents one

observed payload of n bits.

• XID is comprised of an ordered sequence of bit positions xj ∈ XID where 0 ≤

j ≤ n. n is the bit width of the matrix of payloads XID.

– x0 ∈ XID refers to the leftmost bit position in the set of payloads XID.

xn ∈ XID refers to the right most bit position.

– This reference format is for notation purposes only and is not intended to

imply that the set of payloads XID use big-endian bit ordering4.

• For a given sample of observed CAN traffic, let XID be represented by an I×J

matrix with i observed payloads each comprised of j bit positions.

• Let each time series token embedded in the set of payloads XID be represented

by tk. k is the index for a given token within a composition Compm(XID) of

XID.

– The term composition of n is taken from combinatorics and refers to the

set of all ordered sets of positive integers whose sum equals n [71]. For

example, the compositions of 3 is the set {(1+1+1), (1+2), (2+1), (3)}.

– There are 2n−1 unique compositions for a payload of bit width n [71].

– The subscript m in Compm(XID) is used to differentiate unique composi-

tions of XID.

4The terms big endian and little endian refer to the decision to place the most significant bit
for a piece of data in the first or last memory address. This decision is often expressed as deciding
whether the left most bit in a series of bits represents the most significant bit or the least significant
bit. An analogy to written language is whether words should be read from right to left or left to
right
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Using these definitions, the example shown in Fig. 9 may be represented by the

set of tokens {t0, t1, t2, t3}. t0 and t1 correspond to the two wheel RPM signals, t2 the

padding bits, and t3 the checksum. t0 is the set of bit positions {x0, x1, x2, x3, x4, x5, x6, x7}.

The composition Compm(X) for Fig. 9 is the ordered set of token bit widths {8, 8, 40, 8}.

There are 264−1 = 9, 223, 372, 036, 854, 775, 808 possible compositions of this 64-bit

payload.

Assumptions and Hypothesis for CAN Payload Tokenization.

The following hypothesis are made regarding CAN payload lexical analysis.

• Lemma 1: ∀XID,i ∈ XID : ||XID,i|| = ||XID,i+1||.

– For all observed CAN message payloads XID,i for a given ID, the car-

dinality (bit width) of the payloads are constant. Empirical findings in

this dissertation and reports by Miller and Valasek have shown this is a

reasonable assumption for the vast majority of CAN frames observed in

passenger vehicle CAN bus networks [21]. Developing methods to analyze

payload populations which violate this lemma is reserved for future work.

• Lemma 2: ∀xj ∈ XID ∃tk ∈ Compm(XID) : xj ∈ tk ∧ xj 6∈ tn6=k.

– For every bit position xj in a set of payloads XID,i, there exists one and

only one token tk in a given composition Compm(XID) which contains xj.

This lemma ensures that all bit positions xj comprising XID are accounted

for in every Compm(XID) and the set of time series tokens tk defining each

Compm(XID) are disjoint sets of bit positions xj.

• Lemma 3: ∀XID,i ∈ XID : Compm(XID,i) ≡ Compm(XID,i+1)

– The composition of all observed payloads XID,i using arbitration ID ‘ID’

are identical. As with Lemma 1, this assumption is reasonable based
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on empirical research using passenger vehicles manufactured by several

OEMs. Developing methods to analyze payload populations which violate

this lemma is reserved for future work.

The input of CAN tokenization is a series of chronologically-ordered CAN payloads

which share the same arbitration ID XID within a sample of CAN network traffic. The

output of CAN tokenization is the composition Compm(XID) of XID which enables

correct interpretation of each logically-distinct signal within XID. Signals extracted

in this manner also form part of the output of CAN payload lexical analysis.

Correct payload tokenization and labeling of CAN signals enables a broad range

of research. Chapters V and VI use the output of CAN payload tokenization to

search for correlated and causal relationships among signals present in a vehicle CAN

network. Chapter VI also uses these signals to make predictive models of each other.

Related research has shown that it is possible to identify who is driving a vehicle out

of a population of known drivers using the brake pedal signal [40].

2.5 Automated Reverse Engineering (RE) of Network Protocols

The concept of automated protocol reverse engineering (RE) using observed net-

work traffic is an active area of research. Practically all published research is focused

on analyzing text-based protocols with the goal of facilitating deep packet inspec-

tion [9, 49, 50, 51, 52]. Prior research has uncovered multiple remote exploits of

Internet capable vehicles which includes being able to take full control of the vehicle

[21, 23, 72, 73, 74]. However, these findings were achieved through manual RE and ex-

ploit development. These manual RE efforts included RE a limited number of CAN

payload compositions for specific vehicles [21, 22, 75, 76, 77]. Only a proposal by

Moti Markovitz and Avishai Wool from the Tel Aviv University attempted a general

method for uncovering proprietary CAN payload configurations.
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Automated RE of Non-Text Network Protocol Payloads.

As of 2018 the approach proposed by Markovitz and Wool is the only published

method found to address the problem of automated RE of non-text based network

protocol payloads [8]. Their approach iteratively considers all possible tokens tk for

a given set of payloads XID. Their method first counts the number of unique levels

found in each signal produced using a particular subset of bit positions defined by

tk. The final composition of signals Compm(XID) is then selected using a greedy

approach with the following three phases.

1. Constant Tokens: time series defined by the set of bit positions in tk with

one unique level are considered for inclusion into Compm(XID). The tokens tk

with a larger bit-width ||tk|| are preferred over other ‘constant’ tokens with an

intersecting set of bit positions xj ∈ tk (satisfying lemma 2). Once all ‘constant’

tokens have either been added to Compm(XID) or removed from the popula-

tion of candidates generated during the initial brute force token generation, all

remaining candidate tokens with bit positions intersecting one or more of the

‘constant’ tokens added to Compm(XID) are also removed from the population

of candidate tokens.

2. Multi-Value Tokens: signals defined by the set of bit positions in tk with

more than one unique level and whose total unique levels are below a heuristic

threshold are considered ‘Multi-Value’ tokens. As with ‘constant’ tokens, inter-

secting tokens are added to Compm(XID) prioritized by the largest bit width

||tk||. All intersecting candidate tokens are removed from the population of

candidates being considered for inclusion into the composition Compm(XID).

3. Signal/Counter Tokens: All remaining tokens are added to Compm(XID) us-

ing the heuristic
||unique values||2

2||tk||
. Tokens tk are iteratively added to Compm(XID)
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as ‘signal/counter’ tokens until all bit positions xi ∈ XID are included in the

final composition Compm(XID) (satisfying lemma 2).

Figure 10. ‘Field Classification Accuracy’ Validation Results of the CAN Payload
Tokenization Method Proposed by Markovitz and Wool [8]

Markovitz and Wool report that this greedy approach had mixed success using a

simulated CAN bus containing 10 different arbitration IDs. Fig. 10 show the summary

results of the tokenization accuracy for 10 simulated arbitration IDs. The horizontal

axis is an index of the ten simulated arbitration IDs. The y-axis is a compound

metric for tokenization accuracy which includes two factors. First, the accuracy of

the algorithm’s inferred composition compared to the true composition forms a score

from 0 to 63. Second, each bit position xj ∈ XID is scored based on whether it is

correctly labeled using one of the three types described earlier. Unfortunately, the

exact formula for computing these two factors and combining them is not clearly

defined. The method for converting the combined score into the percentage values

shown in Fig. 10 is also unclear. Despite not having a precise way for interpreting their

results, Markovitz and Wool explicitly note that their payload tokenization method

performed inconsistently and inaccurately.

The subset selection technique presented in Section 5.2 uses the Shannon Diversity
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Index which is notionally similar to the heuristics used by Markovitz and Wool [8,

48]. However, the statistic is used once tokenization is already complete. Thus,

the pipeline shown in Fig. 11 linking Chapters IV and V is assumed to be the first

proposal for robust automated RE of payloads for a non-text network protocol.

Unsupervised and Semi-Supervised Reverse Engineering.

Group Payloads by Arbitration ID

Data Preprocessing

Lexical Analysis

Semantic Analysis

Signal Subset SelectionSignal Correlation

Signal Clustering & Labeling

TANG Generation

Bit Level Clustering

Figure 11. Unsupervised CAN Payload Reverse Engineering Pipeline

Chapters IV and V describe the unsupervised RE pipeline shown in Fig. 11. This

proposed pipeline is loosely based on the computer program compiler phases presented

in the book The Theory of Parsing, Translation, and Compiling by Alfred V. Aho

and Jeffrey D. Ullman [29]. The concepts of lexical analysis, seperating a piece of

data into its logically unique tokens, and semantic analysis, applying meaning to each

token produced during lexical analysis, are the main ideas taken from that work.

The pipeline also incorporates the concept of label propagation from the semi-

supervised RE pipeline proposed by Glennan et al. [9]. Label propagation refers to

the idea of using unsupervised clustering with partially labeled data to produce fully

labeled data prior to training a supervised classifier. Examples of supervised algo-

rithms that require labeled training data are k-Nearest Neighbors (k-NN), Support
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Vector Machines (SVM), Quadratic Discriminant Analysis (QDA), and Neural Nets

[78, 79]. The intent of label propagation is to cluster data and copy labels within each

cluster to the unlabeled subset in the same cluster. The semi-supervised approach by

Glennan et al. achieved label propagation using 17 statistical features of tokens and

the k-Means clustering algorithm [9]. These statistical features are listed in Table

5. Unfortunately, none of the features used by Glennan et al. are viable within the

context of constant payload sizes and a non-text multi-cast protocol such as CAN.

Table 5. Feature Set Used by Glennan, Lackie, and Erfrani in Their Semi-Supervised
Reverse Engineering Pipeline [9]

Feature Category Description # of Features

Bytes (Forwards) Minimum, maximum, and standard deviation of packets 3

Bytes (Backwards) Mean, maximum, and standard deviation of packets 3

Inter Packet Time (Forwards) Minimum, mean, maximum, and standard deviation of inter packet time in the forward direction 4

Inter Packet Time (Backwards) Mean, maximum, and standard deviation of inter packet time in the reverse direction 3

Duration Duration of the flow 1

Flag Whether there was a PSH flag in the forward direction 1

Headers Total size of the headers in each direction 2

The label propagation proposal in Glennan et al. updates unlabeled tokens accord-

ing to the most common labels already attached to tokens in the cluster. Tokens in

clusters with few or no labeled members are assigned the ‘unknown’ label. This pro-

duced a completely labeled data set. The pipeline used by Glennan et al. to achieve

label propagation is presented in Fig. 12. This semi-supervised pipeline was published

Figure 12. A semi-supervised classifier framework presented by Glennan et al. which
is an extension of prior work by Zhang et al. [9, 10]
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in 2016 and represents the latest iteration of label propagation proposed Erman et al.

in 2006 and subsequently extended by Wang et al. in 2011 and Zhang et al. in 2012

[10, 19, 80].

The substantial differences between domains mentioned in this section and Section

2.1 resulted in equally substantial differences between the specific clustering imple-

mentations. If future research uncovers robust features for measuring signal similar-

ity beyond pairwise statistics such as the Pearson’s Correlation Coefficient (PCC) or

generates a sufficient quantity of labeled data for training a classifier, it may become

viable to use the k-means clustering algorithm and a classifier to extend the unsuper-

vised pipeline shown in Fig. 11 to more closely resemble the semi-supervised pipeline

shown in Fig. 12.

In the context of this dissertation, the goal of clustering during semantic analysis

is to apply placeholder labels to approximately continuous numerical signals present

in a set of CAN payloads XID. An IDS or extensions to the pipeline shown in Fig. 11

can use truth data such as SAE J1979 diagnostic information, manual classification,

or a trained classifier to replace these placeholders with something more semantically

meaningful such as “vehicle speed” [20]. Techniques to correctly tokenize other types

of signals is reserved for future work. However, the subset selection and clustering

techniques presented in Chapter V provide methods for identifying tokens that should

be re-evaluated. Thus, any future work can extend the pipeline shown in Fig. 11

with another lexical analysis phase designed specifically for tokens classified as non-

continuous data.

Appendix A provides additional discussion about recent automated network traffic

RE research. That discussion is ultimately tangential to the work presented in this

dissertation but may be useful information for related research.
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2.6 Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering (AHC) is an unsupervised clustering “ap-

proach which does not require that...a particular choice of K [clusters be selected].

Hierarchical clustering has an added advantage over K-mean clustering [and other

alternatives] in that it results in an attractive tree-based representation of the ob-

servations, called a dendrogram. [...] Bottom-up or agglomerative clustering...refers

to the fact that a dendrogram (generally depicted as an upside-down tree...) is built

starting from the leaves and combining clusters up to the trunk” [11].

AHC is particularly well suited for clustering correlated signals extracted from a

vehicle CAN bus network for the following reasons:

1. There is no requirement to know the number of semantically distinct groups of

signals within the network a priori

2. It is possible to apply the algorithm using only a single pairwise distance mea-

surement such as Pearson’s Correlation Coefficient (PCC)

3. Dendrograms provide an intuitive method for understanding how different max-

imum cluster distance threshold values affect the clustering results

AHC may be most easily introduced by first explaining how to interpret a dendro-

gram. Fig. 13 from “An Introduction to Statistical Learning” by James et al. provides

a small set of 9 observations arrayed in 2-dimensional space according to features X1

and X2 and a dendrogram produced using ACH. Looking at the dendrogram on the

left, it is possible to determine that that “observations 5 and 7 are quite similar to

each other, as are observations 1 and 6. However, observation 9 is no more similar to

observation 2 than it is to observations 8, 5, and 7, even though observation 2, 8, 5,

and 7 all fuse with observation 9 at the same height, approximately 1.8” [11]. The

scatter plot of the same observations on the right hand side of Fig. 13 reinforces these
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Figure 13. Example Data Set and Dendrogram Produced Using Agglomerative Hier-
archical Clustering [11]

style of conclusions made using the dendrogram by observing the similar euclidean

distance (straight line distance) between observation 9 and observations 2, 8, 5, and 7.

Thus, when interpreting dendrograms it is important to understand that the distance

between two observations or branches is defined exclusively by the position on the

y-axis where they are first merged; horizontal proximity between observations and

branches is somewhat arbitrary and does not indicate information about similarity.

Fig. 14 is an example of a dendrogram produced from one of the vehicles studied

for this dissertation. Each leaf at the bottom of the tree represents a single signal

extracted using the unsupervised reverse engineering (RE) pipeline introduced in

Section 2.5. Clusters are produced by selecting a maximum distance threshold for

branches of the dendrogram. Such a threshold may be visualized as a horizontal cut

across the tree. In this case, a maximum distance of threshold of 0.2 is reflected

by a dashed grey line5. Any branches and their leaves below that threshold form

clusters. The different red, teal, purple, and green branches reflect 5 different clusters

5The threshold value of 0.2 was arbitrarily selected based on subjective expert opinion. It is
assumed that some expert insight about the specific OEM or model being analyzed will be needed
when selecting this maximum distance threshold.
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Figure 14. Example Dendrogram of Agglomerative Hierarchical Clustering for a Pas-
senger Vehicle

31



of signals produced using AHC and this particular threshold value. All remaining

signals marked by blue are left as individual observations.

The actual AHC algorithm is implemented by iteratively considering pairs of ob-

servations or clusters. “Starting at the bottom of the dendrogram, each of the n

observations is treated as its own cluster. The two clusters that are most similar to

each other are then fused so that there are now are n − 1 clusters. Next the two

clusters that are most similar to each other are fused again, so that there are now

n − 2 clusters. The algorithm proceeds in this fashion until all of the observations

belong to one single cluster, and the dendrogram is complete” [11].

To perform the iterative pairwise similarity measurement, two pieces of informa-

tion are needed: a dissimilarity measurement between each pair of observations and

a strategy for measuring the dissimilarity between clusters. The dissimilarity metric

used to produce Fig. 14 is introduced in Chapter V. The strategy for measuring dis-

similarity between clusters is referred to as linkage. Table 6 provides a summary of

some linkage strategies often used with AHC.

2.7 Empirical Data Modeling (EDM)

The field of Empirical Data Modeling (EDM) “is based on the mathematical the-

ory of reconstructing system attractors from time series data” introduced by Floris

Takens in a 1981 paper [12, 81]. EDM is focused on modeling nonlinear dynamic

systems using observational time series data. The lack of assumptions, focus on ob-

servational time series data, and largely unsupervised nature make EDM well suited

for the automated reverse engineering domain.

Fig. 15 provides a summarized visual explanation for the main ideas involved

in Takens’ Theorem and EDM. In part (A), the Lorenz attractor is presented as

an example of a dynamic system. If observations are made over time using only
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Figure 15. “Empirical dynamic modeling: (A) Example Lorenz system. The attractor
manifold M is the set of states that the system progresses through time. Projection of
the system state from M to the coordinate axis X generates a time series. (B) Lags
of the time series X are used as coordinate axes to construct the shadow manifold MX

which is diffeomorphic (maps 1:1) to the original manifold M . The visual similarity
between MX and M is apparent” [12]
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Table 6. A Summary and Visualization of Four Linkage Methods for Agglomerative
Hierarchical Clustering

Linkage Description Visualization

Complete Intercluster dissimilarity is the maximum pairwise dissimilarity
observed between an observation in cluster A and cluster B.

Single Intercluster dissimilarity is the minimum pairwise dissimilarity
observed between an observation in cluster A and cluster B.

Average Intercluster dissimilarity is the average of all pairwise dissimilarity
observed between observations in cluster A and cluster B.

Centroid Intercluster dissimilarity is the measured using the centroid for
cluster A (the mean of observations) and the centroid for cluster B.

one dimension of the attractor, then time series data is collected. As shown in (B),

univariate time series data can be converted to a higher dimensional representation by

using time lagged versions of itself as additional dimensions. The resulting manifold is

referred to as a shadow manifold with an example shown in (C) [12]. Takens showed

that shadow manifolds created in this manner are diffeomorphic (map one-to-one) to

the original attractor manifold M .

Sugihara et al. demonstrated that the diffeomorphic property of shadow manifolds

can be leveraged to discover whether two time series belong to the same dynamic

system and are thus causally related [13]. Sugihara et al. showed that the diffeo-

morphic relationship between the original attractor manifold M and each shadow

manifold means they are also diffeomorphic with respect to each other. Thus, if two

shadow manifolds are shown to be diffeomorphic with respect to each other, they

may be assumed to belong to the same dynamic system. A technique called Con-
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M

MX
MY

m(t) = [X(t),Y(t),Z(t)]

x(t) = [X(t),X(t-𝜏),X(t-2𝜏)]

y(t) = [Y(t),Y(t-𝜏),Y(t-2𝜏)]

Figure 16. “Convergent cross mapping (CCM) tests for correspondence between
shadow manifolds. This example based on the canonical Lorenz system (a coupled
system in X, Y,and Z...) shows the attractor manifold for the original system (M) and
two shadow manifolds, MX and MY , constructed using lagged-coordinate embeddings of
X and Y, respectively (lag=τ). Because X and Y are dynamically coupled, points that
are nearby on MX (e.g., within the red ellipse) will correspond temporally to points
that are nearby on MY (e.g., within the green circle). That is, the points inside the red
ellipse and green circle will have corresponding time indices (values for t). This enables
us to estimate states across manifolds using Y to estimate the state of X and vice versa
using nearest neighbors. With longer time series, the shadow manifolds become denser
and the neighborhoods (ellipses of nearest neighbors) shrink, allowing more precise
cross-map estimates...” [13]
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vergent Cross Mapping (CCM) quantifies the predictive power between two shadow

manifolds hypothesized to belong to the same dynamic system to infer the presence

and magnitude of causality between the time series data used to create them [13].

The idea of cross mapping is based on testing whether an arbitrary point and its

nearest neighbors in one shadow manifold can accurately predict a point and its near-

est neighbors in another shadow manifold. Fig. 16 originally presented by Sugihara

et al. provides a visual example of this idea [13]. Sugihara et al. demonstrated that

iteratively increasing the library (sample) size used to create the respective shadow

manifolds should result in increased prediction accuracy if they are diffeomorphic.

They also showed that the increased cross mapping prediction skill with respect to

larger library sizes should also converge to some maximum limit [13, 82].

In the context of unsupervised mapping of logical relationships in automotive

CAN networks, CCM may be very useful for finding important relationships among

observed CAN payloads which would otherwise go unnoticed without heuristics or hu-

man assistance. The findings in Chapter VI demonstrate that EDM can significantly

extend the utility of the unsupervised CAN Payload Reverse Engineering Pipeline in-

troduced in Section 2.5 and discussed in Chapters IV and V. Manifold based predictive

modeling also appears to be a viable basis for Intrusion Detection Systems (IDS) for

CPS networks. Section 6.5 briefly explores prediction using manifold reconstruction.

The following sequence of EDM techniques is recommended by Ye et al. to best

understand and interpret important characteristics of the data:

1. Execute a train-test split of each time series (signal) being studied

2. Perform simplex projection using the train-test subsets [83].

• Determine Embedding Dimensionality E which maximizes forecast skill ρ.

3. Characterize whether the data appears to exhibit deterministic chaos using
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simplex projection and E.

4. Characterize nonlinearity of the data using Sequential Locally Weighted Global

Linear Maps (S-map) and E [84].

5. Quantify causality with CCM using E and two signals to generate shadow

manifolds to test predictive accuracy [13, 85].

• Performing CCM using multiple values for the lag parameter τ enables

both measurement of the observed strength of a causal relationship and

the time delay between cause and effect.

To greatly summarize the technique, simplex projection is the process of iteratively

selecting points Yt in a shadow manifold and b other points whose histories over time t

are most similar to the currently selected point [17, 83]. A simplex is a generalization

of a triangle or tetrahedron to an arbitrary number of dimensions [86]. The weighted

average of the future values of the b other points is used to make predictions about

future values of Yt. The difference between predictions made in this manner Ŷt+1

and the actual future values of Yt provide a forecast skill ρ. This process can be

iteratively repeated for shadow manifolds created with different dimensionality to

find the embedding dimension E which optimizes ρ.

S-map analysis works in a similar iterative fashion but instead creates linear re-

gression vectors using all neighboring points. The regression vectors are aggregated

to approximate an n-dimensional spline. The spline is then compared to the shadow

manifold attractor to measure ρ [17, 84]. A non-linear tuning parameter θ is used to

adjust weighting of neighbors with respect to their distance to the current focal point

Xt when generating the regression estimates. If ρ is maximized when θ = 0, then the

time series may be assumed to belong to a simple linear system instead of a dynamic

system.
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Whitey’s Theorem asserts that the embedding dimension E “will always lie be-

tween the number of variables in the system n and 2n + 1” [17, 87]. Thus, simplex

projection provides insight into the true dimensionality of the dynamic system re-

sponsible for generating observation data without requiring complete understanding

of the system itself. In the case of vehicle network analysis, understanding the range of

dimensionality for a vehicle network may be useful in conjunction with the available

shadow manifolds for creating high quality models of the vehicular network. Such

models could be used to implement effective Intrusion Detection Systems (IDS) for

the CAN network. In the context of this paper, knowing E is necessary for accurate

application of CCM to detect causality between signals. Likewise, the results of S-

map analysis indicate whether signals relationships common to all vehicles, such as

vehicle speed and brake pressure, may be expected to produce linear manifolds and

thus be appropriate candidates for analysis using computationally simpler methods

such as Granger Causality or auto-regressive linear models [17, 84, 88, 89].

2.8 Verification and Validation

“It is imperative to develop analytical techniques capable of assessing all forms

of data, including functional data, to build credibility and confidence” in models and

techniques used to solve research questions [90]. Verification & Validation (V&V) is

the field of study dedicated to the development and use of such analytical assessment

techniques to ensure models and techniques “within [their] domain of applicability

possesses a satisfactory range of accuracy consistent with the intended application of

the model” or technique [91].

“Verification determines if the model [or technique] is built correctly and vali-

dation evaluates whether the correct model [or technique] is being used” [90]. A

summary taxonomy of V&V techniques proposed by Dr. Osman Balci from Virginia
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V&V Techniques for Simulation Models

Audit
Desk Checking
Documentation Checking
Face Validation
Inspections
Reviews
Turing Test
Walkthroughs

Informal

Cause-Effect Graphing
Control Analysis
	 Calling Structure Analysis
	 Concurrent Process Analysis
	 Control Flow Analysis
	 State Transition Analysis
Data Analysis
	 Data Dependency Analysis
	 Data Flow Analysis
Fault/Failure Analysis
Interface Analysis
	 Model Interface Analysis
	 User Interface Analysis
Semantic Analysis
Structural Analysis
Symbolic Evaluation
Syntax Analysis
Traceability Assessment

Static

Induction
Inductive Assertions
Inference
Lambda Calculus
Logical Deduction
Predicate Calculus
Predicate Transformation
Proof of Correctness

Formal

Acceptance Testing
Alpha Testing
Assertion Checking
Beta Testing
Bottom-Up Testing
Comparison Testing
Compliance Testing
	 Authorization Testing
	 Performance Testing
	 Security Testing
	 Standards Testing
Debugging
Execution Testing
	 Execution Monitoring
	 Execution Profiling
	 Execution Tracing
Fault/Failure Insertion Testing
Field Testing
Functional (Black-Box)Testing
Graphical Comparisons
Interface Testing
	 Data Interface Testing
	 Model Interface Testing
	 User Interface Testing
Object-Flow Testing
Partition Testing
Predictive Validation
Product Testing
Regression Testing
Sensitivity Analysis
Special Input Testing
	 Boundary Value Testing
	 Equivalence Partitioning Testing
	 Extreme Input Testing
	 Invalid Input Testing
	 Real-Time Input Testing
	 Self-Driven Input Testing
	 Stress Testing
	 Trace-Driven Input Testing
Statistical Techniques
Structural (White-Box)Testing
	 Branch Testing
	 Condition Testing
	 Data Flow Testing
	 Loop Testing
	 Path Testing
	 Statement Testing
Submodel/Module Testing
Symbolic Debugging
Top-Down Testing
Visualization/Animation

Dynamic

Figure 2: A Taxonomy of Verification and Validation Techniques for Conventional Simulation Models

Verification, Validation and Accreditation of Simulation Models 139

Figure 17. A Taxonomy of Verification and Validation Techniques Proposed by Osman
Balci [14]
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Tech is presented in Fig. 17. This section’s discussion and the remainder of this re-

search focuses exclusively on validation techniques. While verification of the greedy

techniques proposed in Sections 4.3 and 5.3 may be necessary, their monolithic and

relatively simple implementation make it unlikely that major implementation errors

in the program code occurred. The remainder of the implementations discussed in

Chapter III are open-source libraries receiving active open source development. Ver-

ifying whether these open source libraries are correct is beyond the scope of this

dissertation.

Several validation techniques listed in Fig. 17 do not explicitly require access to

truth data. Table 7 presents this subset of validation techniques along with their

descriptions proposed by Dr. Andrew Atkinson from the Air Force Institute of Tech-

nology [90].

Some combination of comparison testing and sensitivity analysis are used to val-

idate the various data collection and analysis techniques presented in this research.

This combination of techniques is well suited for validation in the scope of this dis-

sertation for several reasons. First, comparison testing enables the consistency of

input and output be quantified without any truth data. In the context of CAN pay-

load tokenization, comparison testing takes the form of quantifying the similarity of

a particular arbitration ID’s payload tokenization Compm(XID) between indepen-

dent driving samples from the same vehicle. By combining comparison testing with

sensitivity analysis, it is possible to test assumptions or techniques without truth

data.

Varying the driver, route, and duration should not affect the payload tokenization

if the lemmas presented in Section 2.4 hold true. If the tokenization output of the

lexical analysis techniques proposed in Chapter IV is highly consistent across sets

of similar and dissimilar driving samples, this serves as validation that the lemmas
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Table 7. A selection of validation techniques which do not require truth data

Validation
Technique

Description

Informal Technqiues

Face Validation
Face Validation is a process in which SMEs review the model and judge
whether the behavior and output is reasonable.

Static Techniques

Cause-Effect Graphing
Cause-Effect Graphing identifies what actions or settings within the model
causes which effects in order to assess model correctness.

Dynamic Techniques

Beta Testing
Beta Testing is the operational testing of the beta version, or the second,
revised version of the model. It is usually conducted using realistic conditions.

Comparison Testing
Comparison Testing is used when there are multiple versions of a
simulation model that are meant to represent the same system. These
versions are executed and then compared against each other.

Functional (Black-Box)
Testing

Functional Testing inspects the accuracy of the transformation
between the input and output of the model.

Predictive Validation
Predictive Validation uses input and output data from the real system
that is being modeled. This input data is used with the simulation model
to generate output which is then compared to the system output.

Sensitivity Analysis
Sensitivity Analysis involves changing the input parameters to the model
and reviewing how that affects the model output; the nature in which the
output changes in relation to the input should mirror that of the system.

Formal Techniques

Induction, Inference,
Logical Deduction

Induction, Inference, and Logical Deduction refer to the act of justifying a
conclusion based on some set of given premises. The argument should
follow established rules of inference to reach the conclusion.

Lambda-Calculus
Lambda-Calculus transforms the model into formal expressions so that
mathematical proof of correctness techniques may be applied.

proposed in Section 2.4 are reasonable and the techniques are consistent. This style

of informal inductive reasoning using comparison testing and sensitivity analysis are

applied throughout Chapters IV, V, and VI in order to answer the research questions

posed in Section 1.2 and validate the lemmas proposed in Section 2.4.

The remainder of this section focuses on enumerating various inputs and outputs

to vehicular CAN bus networks and the unsupervised reverse engineering pipeline

introduced in Section 2.5 and discussed in Chapters IV and V. Features, metrics or

techniques for performing comparison testing of each input and output are introduced.
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Brief descriptions of those metrics and techniques are provided; however, extensive

discussion about their use in prior work is beyond the intent and scope of this section.

Table 8 provides a summary of the features, metrics, and techniques discussed.

Table 8. Input and Output Features and Metrics Used to Perform Validation

System\Technique
Input

Features
Input

Metrics
Output
Features

Output
Metrics

Vehicle Network Vehicle Speed
Dynamic Time

Warping
Set of Arb IDs

Set of Payload Matrices
Jaccard Index

Lexical Analysis Output from vehicle network
Set of Payload Compositions

Set of Time Series
Alignment Score

Semantic Analysis
(Correlation)

Time Series Jaccard Index Set of Labeled Clusters
Jaccard Index

J1979 Correlation

Semantic Analysis
(Causation)

Time Series N/A
Embedding Dimension

Non-Linear Tuning Parameter
Manifold Reconstruction(s)

Simplex Forecast Skill
S-Map Forecast Skill
CCM Forecast Skill

Multi-View Forecast Skill

Vehicle Network Input.

Vehicle speed is used for quantifying similarity of input to a vehicle network for

four reasons. First, it is agnostic to the mechanical and physical characteristics of in-

dividual vehicles. Motorcycles, hybrid-vehicles, fully electric vehicles, etc. all monitor

current speed using equivalent units of measurement (distance over time). Second,

the findings presented in Section 6.4 support the intuitive assumption that vehicle

speed effectively includes information about many other features of the vehicle such

as driver input and power-train state. Third, vehicle speed is one of the few J1979

diagnostics which is mandated to be universally supported by all passenger vehicles

[20]. This means truth data is available during validation. Fourth, we subjectively

believe that focusing on a single feature simplifies the discussion and complexity of

comparing input to a vehicle network without significantly changing inferences that

may have resulted from using multi-variate alternatives.

Quantifying the similarity between the speed signals is possible using Dynamic
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Figure 18. Example of Non-Linear Signal Alignment Using Dynamic Time Warping
[15]
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ABSTRACT 
The dynamic time warping (DTW) algorithm is able to find the 
optimal alignment between two time series.  It is often used to 
determine time series similarity, classification, and to find 
corresponding regions between two time series.  DTW has a 
quadratic time and space complexity that limits its use to only 
small time series data sets.  In this paper we introduce FastDTW, 
an approximation of DTW that has a linear time and space 
complexity.  FastDTW uses a multilevel approach that recursively 
projects a solution from a coarse resolution and refines the 
projected solution.  We prove the linear time and space 
complexity of FastDTW both theoretically and empirically.  We 
also analyze the accuracy of FastDTW compared to two other 
existing approximate DTW algorithms:  Sakoe-Chuba Bands and 
Data Abstraction.  Our results show a large improvement in 
accuracy over the existing methods. 

Keywords 
dynamic time warping, time series 

1. INTRODUCTION 
Motivation.   Dynamic time warping (DTW) is a technique that 
finds the optimal alignment between two time series if one time 
series may be “warped” non-linearly by stretching or shrinking it 
along its time axis.  This warping between two time series can 
then be used to find corresponding regions between the two time 
series or to determine the similarity between the two time series.  
Dynamic time warping is often used in speech recognition to 
determine if two waveforms represent the same spoken phrase.  In 
a speech waveform, the duration of each spoken sound and the 
interval between sounds are permitted to vary, but the overall 
speech waveforms must be similar.  In addition to speech 
recognition, dynamic time warping has also been found useful in 
many other disciplines [8], including data mining, gesture 
recognition, robotics, manufacturing, and medicine.  Dynamic 
time warping is commonly used in data mining as a distance 
measure between time series.  An example of how one time series 
is “warped” to another is shown in Figure 1.  

In Figure 1, each vertical line connects a point in one time series 
to its correspondingly similar point in the other time series.  The 
lines actually have similar values on the y-axis but have been 
separated so the vertical lines between them can be viewed more 
easily.  If both of the time series in Figure 1 were identical, all of 
the lines would be straight vertical lines because no warping 
would be necessary to ‘line up’ the two time series.  The warp 
path distance is a measure of the difference between the two time 

series after they have been warped together, which is measured by 
the sum of the distances between each pair of points connected by 
the vertical lines in Figure 1.  Thus, two time series that are 
identical except for localized stretching of the time axis will have 
DTW distances of zero. 

Time  
Figure 1. A warping between two time series. 

Despite the effectiveness of the dynamic time warping algorithm, 
it has an O(N2) time and space complexity that limits its 
usefulness to small time series containing no more than a few 
thousand data points.  More details of the dynamic time warping 
algorithm are contained in Section 2.1. 

Problem.  We desire to develop a dynamic time warping 
algorithm that is linear in both time and space complexity and can 
find a warp path between two time series that is nearly optimal.   

Approach.  In this paper we introduce the FastDTW algorithm, 
which is able to find an accurate approximation of the optimal 
warp path between two time series.  The FastDTW algorithm 
avoids the brute-force dynamic programming approach of the 
standard DTW algorithm by using a multilevel approach.  The 
time series are initially sampled down to a very low resolution.  A 
warp path is found for the lowest resolution and “projected” onto 
an incrementally higher resolution time series.  The projected 
warp path is refined and projected again to yet a higher resolution.  
The process of refining and projecting is continued until a warp 
path is found for the full resolution time series. 

Contributions.   Our main contribution is the introduction of the 
FastDTW algorithm, which is an accurate approximation of DTW 
that runs in linear time and space.  We prove the O(N) time and 
space complexity both theoretically and empirically.  We also 
empirically demonstrate that FastDTW produces an accurate 
minimum-distance warp path between two time series than is 
nearly optimal (standard DTW is optimal, but has a quadratic time 
and space complexity).  In addition to the FastDTW algorithm, we 
evaluate other existing approximate DTW algorithms, and 
compare their accuracy on a large and diverse group of time series 
data sets. 

Figure 19. Example Warping Between Two Signals [16]
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Figure 20. Example of Euclidean Distance Measurement Between Time Series Using
Linear Regression and Dynamic Time Warping

Time Warping (DTW). DTW “allows a non-linear mapping of one signal to another

by minimizing the distance between the two” [15, 92, 93]. Fig. 18 and 19 provide

visualizations of this process. Fig. 20 provides an example comparing how distances

between two signals are measured using linear regression and DTW.

Fig. 20 represents the vehicle speed signals from two controlled driving samples

collected from the same vehicle. The x-axis is the observed payload index but may

be thought of as time. The y-axis represents the vehicle speed over time with higher

values corresponding to higher speed. Consider the yellow point on the blue speed

signal as an example. The vertical dashed red line represents the distance to the green

signal using standard linear regression. The dashed black line represents the distance

measurement to the nearest point to the green signal that occurs with DTW. In this

specific example, the driver came to a complete stop approximately half way through

the driving scenario. However, the moment this full stop occurred is slightly offset

by approximately 10 seconds (time is not explicitly shown in the plot). This caused

the following hard acceleration and deceleration events immediately following the
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stop to also be offset. This example highlights how DTW produces a total distance

measurement that is more resilient to this kind of offset in frequency or amplitude

that is likely to occur when collecting driving samples from passenger vehicles.

DTW is an O(n2) time complexity algorithm which makes it difficult to use for

larger data sets. Its widespread use in the “bioinformatics, medicine, engineering,

and entertainment” domains has led to several versions of DTW exist which improve

time complexity to O(n) in some cases [93]. The FastDTW algorithm was chosen for

use in this dissertation due to its potential for O(n) runtime and memory complexity

and implementation as a Python package [16, 94].

Vehicle CAN Bus Network Output.

The output of a vehicle’s CAN bus network may be expressed as a set of matrices

XID which represent chronologically ordered payloads aggregated by arbitration ID.

The Jaccard similarity coefficient (Jaccard Index) and conditional logic may be used to

quickly quantify the similarity between the set of arbitration IDs observed in different

sample of network traffic. This metric has been used as a similarity metric in at least

three other automated network protocol reverse engineering proposals [95, 96, 97].

Equation 1 defines the Jaccard Index which is the magnitude of the intersection of

two sets divided by the magnitude of their union. If the two sets are identical, then

the Jaccard Index is 1. If they are disjoint, the Jaccard Index is 0.

J(A,B) =
|A

⋂
B|

|A
⋃
B|

(1)

The Jaccard Index may be used to efficiently calculate the similarity between the

set of arbitration IDs observed in two samples of CAN bus traffic. Additional domain

specific conditional logic may be used to further refine this similarity measurement.

For example, lemma one from Section 2.4 requires that two arbitration IDs are the
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same only if their respective matrix of payloads XID use the same payload bit width n.

Statistics about their transmission frequency could also be used in a similar manner.

The goal of adding conditional logic is to ensure the lemmas proposed in Section 2.4

are maintained. For the purposes of this research, two arbitration IDs are considered

the same if their respective matrix of payloads XID have the same bit width n. This

requirement ensures that any similarity measurements for the IDs output in different

samples serve as tests for validating lemma one from Section 2.4: vehicular CAN

frames use a consistent payload bit width for each arbitration ID. Specifically, lemma

one is considered to be a valid assumption if the Jaccard Index is very large6 when

comparing the sets of observed IDs in several different samples.

CAN Payload Lexical Analysis.

The set of arbitration IDs and their matrix of chronologically ordered payloads

XID serve as the input to the unsupervised lexical analysis phase of the automated

reverse engineering pipeline shown in Fig. 11 and discussed in Chapter IV. The output

of the lexical analysis process is a set of payload token compositions Compm(XID)

and the set of time series signals extracted using those compositions. Comparison

testing of the tokenization results is possible using the Jaccard Index or the novel

alignment score metric.

Fig. 21 provides an example comparing two tokenization results for a 16-bit pay-

6For this context, a very large Jaccard Index is assumed to be approximately 0.9 or higher.

Bits Positions 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Boundaries 1 2 3 4 5 6 7 8 9 10 11 12 13 15 15

Tokens A {15}

Boundary Set A

Token Set B {0}

Boundary Set B 9, 12 }

{3 , 6 ,

{1 , 4 ,

{12, 13, 14}

{12, 13, 14, 15}

{0, 1, 2} {3, 4, 5}

{1, 2, 3} {4, 5, 6, 7, 8}

{6, 7, 8} {9, 10, 11}

{9, 10, 11}

9, 12, 15 }

Figure 21. Example of Two Payload Tokenization Compositions for a 16-bit Payload

46



load. The sets of token boundaries are listed as boundary set A and boundary set B.

An example calculation of the Jaccard Index using the tokenization boundary sets A

and B shown in Fig. 21 is demonstrated in Equation 2.

J(A,B) =
|A

⋂
B|

|A
⋃
B|

=
|{9, 12}|

|{1, 3, 4, 6, 9, 12, 15}|
=

2

7
u 0.29 (2)

We propose that the Jaccard Index masks the fact that these tokenization results

agree for 10 out of the 15 bit position boundary decisions in this example. This

discrepancy makes the Jaccard Index less desirable than the novel alignment score

proposed in Equation 3. The intuition behind the alignment score is to evaluate the

number of dissimilar boundary decisions with respect to the total number of possible

boundary decisions n − 1; n is the payload bit width. Using the total boundary

decisions as a scaling factor allows the metric to be more representative of the true

similarity between tokenization results. This scaling also allows the metric to be

directly compared despite dissimilar payload bit widths.

S(A,B) = 1− |A	B|
n− 1

≡ 1− |A
⋃
B − A

⋂
B|

n− 1
(3)

In Equation 3, the 	 operator represents the symmetric difference of sets A and

B which is their intersection A
⋃
B minus their union A

⋂
B [98]. The symmetric

difference of boundary sets A and B is the set of dissimilar boundary decisions.

Equation 4 demonstrates a calculation of the alignment score for the example shown

in Fig. 21. The range of the alignment score is the same as the Jaccard Index with

1 corresponding to identical tokenization output. An alignment score of 0 results

from a pair of tokenization results which do not share any matching bit boundary

decisions.
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S(A,B) = 1− |{1, 3, 4, 6, 9, 12, 15} − {9, 12}|
16− 1

= 1− |{1, 3, 4, 6, 15}|
15

= 1− 5

15
=

2

3
u 0.67

(4)

In the case of one tokenization result representing truth data, as is the case with

the simulated payloads used by Markovitz and Wool and the simulations discussed in

Section 3.3, this alignment score metric serves as a measure of accuracy for the exper-

imental tokenization result [8]. In the more likely scenario where neither tokenization

result is known to be correct, as is the case with comparison testing using the same

vehicle in different driving conditions, this metric serves as a measure of consistency.

Time Series Semantic Analysis: Unsupervised Labeling.

The unsupervised semantic analysis phase of the unsupervised reverse engineer-

ing pipeline introduced in Section 2.5 and detailed in Chapter V uses the signals

produced by the lexical analysis phase described in Chapter IV. While the alignment

score metric quantifies how similar payload compositions are between driving sam-

ples, adding or removing a single bit position xj comprising a particular signal may

drastically alter its numerical interpretation. Calculating the Jaccard Index of the

set of tokens tk output from lexical analysis provides a quantitative baseline for how

similar the input to semantic analysis is between the two samples. In this context,

the intersection is the subset of tokens tk which are exactly the same set of bit position

xj extracted from a particular arbitration ID’s set of payloads XID. All other tokens

tk are therefore members of the symmetric difference of the two sets of tokens output

during lexical analysis of the respective CAN bus data samples.

The output of the semantic analysis discussed in Chapter V is labeled clusters
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of signals. The Jaccard Index can quantify whether these clusters represent similar

groups of signals. Calculating the Jaccard Index between each potential pair of clus-

ters can provide insight into intra-sample and inter-sample relationships in a fashion

similar to a correlation matrix. For example, a large Jaccard Index between two

clusters serves as a measure of the similarity between the exact tokens (define by Arb

ID, left most bit position, and right most bit position) comprising each cluster. If

those two clusters represent the same vehicle in different driving conditions, a large

Jaccard Index may be interpreted as validation that the semantic analysis method is

robust to variations in driving conditions. If the two clusters belong to samples from

different vehicles, the Jaccard Index may reveal whether the OEMs manufactured the

vehicles with similar sets of Arbitration IDs, payload compositions, and relationships

to physical processes within the vehicles. As a domain specific validation technique,

it is also interesting to perform correlation between J1979 diagnostic data and sig-

nals which were clustered during semantic analysis. Calculating the Jaccard Index

of signals assigned a particular label using J1979 data compared to signals that did

not get the same label within individual clusters provides additional insight into the

homogeneity of signal clusters produced during semantic analysis.

Time Series Semantic Analysis: Empirical Data Modeling.

Validation metrics and techniques relevant to the Empirical Data Modeling (EDM)

were introduced in Section 2.7. Those concepts are discussed further in Chapter VI.
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III. Research Method

3.1 Assumptions and Limitations

There are several overarching assumptions and limitations regarding the unsuper-

vised reverse engineering pipeline introduced in Section 2.5 and discussed in Chapters

IV and V. This section presents those general assumptions and limitations. Other

assumptions or limitations specific to the topic of a particular chapter appear after

each chapter’s introduction.

Sample Similarity.

Comparison testing and sensitivity analysis are used for evaluating whether the

research questions posed in Section 1.2 are answered by the approaches in Chapters

IV, V, and VI. There is no way to completely control or fully predict the output

of passenger vehicle CAN bus networks. Factors such as individual ECU hardware

clock drift, CAN bus arbitration resolution, minor or major variations in driver input,

mechanical component performance fluctuating within operational tolerance, minor

or major changes to driving route, duration, and conditions, and data logging errors

or omissions all affect what ultimately appears in a particular sample of CAN bus

network traffic. The following three categories of sample similarity are assumed to be

sufficient for the purposes of performing validation using a combination of comparison

testing and sensitivity analysis.

• Samples are considered to be very similar when collected using the same vehicle

operated by the same driver using a scripted driving scenario on the same length

of paved roadway which is free of obstacles. The two vehicle speed signals

shown in Fig. 20 from Section 2.8 are examples of time series from very similar

samples.
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• Samples are considered to be similar when collected using the same vehicle op-

erated by the same driver using a scripted driving scenario using approximately

the same length of paved roadway with approximately the same level of vehicle

traffic along the route.

• Samples are considered to be dissimilar when collected using the same vehi-

cle operated without a scripted driving route with major variations in traffic

patterns, traffic control devices, or speed limits. An example of a major vari-

ation is comparing a sample collected during ‘heavy city traffic’ to a sample

predominantly collected at freeway speeds with few traffic control devices. A

subjectively large difference in sample duration is another example of a major

variation.

Vehicle Network Output.

The lemmas regarding constant payload bit width and logical composition de-

scribed in Section 2.4 are assumed to hold true regardless of major variations to the

sample collection conditions. Thus, any variation in payload tokenization accuracy or

consistency is assumed to be exclusively caused by shortcomings of the lexical analysis

strategy.

Limited Empirical Validation: Truth Data and Network Simulation.

Section 2.3 discussed how access to OEM generated DBC files are necessary to

correctly interpret the CAN bus network traffic for a particular vehicle. The limited

distribution of these files means validation presented in this dissertation and similar

work in the automotive network reverse engineering domain relies upon simulations

to generate truth data. As of 2018 there is no known published research regarding

the probability distribution of a particular payload composition being used by a par-
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ticular manufacturer, vehicle model, model year, or vehicle type. There is also no

published research regarding the distribution of arbitration IDs, payload bit widths,

signal types, or other features important to producing simulation models that accu-

rately represent real world CAN bus networks.

A 64-bit CAN payload has 264−1 = 9, 223, 372, 036, 854, 775, 808 possible composi-

tions. Markovitz and Wool assumed that each token within each of those compositions

can be one of three signal types [8]. Each payload composition belongs to one of 211

(standard frame format) or 229 (extended frame format) possible arbitration IDs.

Those arbitration IDs in turn belong to some combination of
n!

k!(n− k)!
arbitration

IDs comprising a vehicle’s network where n is the maximum IDs allowable by the

frame format (211 or 229) and k is the number of IDs actually used.

The exponentially large space of possible vehicle CAN bus network configurations

combined with no existing research models implies that simulations of vehicle net-

work payloads and signal behavior are effectively arbitrary. The approaches in this

dissertation are ultimately intended to improve the frequency and accuracy of CAN

bus network modeling research; however, some kind of simulation strategy is needed

to validate the lexical analysis approach. Thus, the simulation strategy proposed in

Section 3.3 and used for validation in Chapter IV is arbitrary but assumed to be

reasonable based on subjective expert opinion. The use of Monte Carlo simulation

techniques is intended to partially mitigate the arbitrary nature of the simulations

from a validation standpoint. However, the random data generation methods and

their parameters are also chosen based on subjective expert opinion. Simulation is

not used in Chapters V and VI because J1979 diagnostic information and manual

reverse engineering could be used for truth data.
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3.2 Data Collection

Data collection for testing the proposals in this dissertation took place in two

phases. Both data collection phases used the collection device shown in Fig. 22 con-

nected to the vehicle’s On-Board Diagnostics (OBD-II) interface1. The first phase

included a broad study of 17 vehicles representing 8 different Original Equipment

Manufacturers (OEMs), 8 model years (2008-2017 except 2013 and 2016), five vehi-

cle types (two and four door sedans, SUV, truck, wagon), hybrid and conventional

power trains, and manual and automatic transmissions. Different drivers operated

the vehicles using a similar scripted driving route. No J1979 diagnostic data was

collected during this data collection phase to ensure no logical modification to the

vehicle networks occurred.

1Technical details about this data collection device are provided in Section 3.4

Voltage ConverterOBD-II Interface

MicroSD

Card

MEMS

Accelerometer

CANable

Raspberry 

Pi Zero W

Figure 22. On-Board Diagnostics (OBD-II) Vehicle Network Sniffer
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The second data collection phase used only one driver and vehicle. Various com-

binations of very similar, similar, and dissimilar data samples were collected with

the benefit of requesting J1979 diagnostic information during each sample. The very

similar samples were collected by driving on a 1.3 mile straight closed course with a

start and turn around point clearly marked. This controlled driving scenario began

with the driver started at a full stop, accelerated to 75 miles per hour (mph), then

released all driver input except the steering wheel. After a delay of approximately 30

seconds, the driver began applying modest accelerator and brake pedal input to reach

the end of the 1.3 mile straight line closed course. Once near the opposite end, the

driver performed a u-turn and came to a complete stop facing the starting position.

This sequence of events was repeated until the driver returned the vehicle to the origi-

nal starting position and orientation. Five samples for this controlled driving scenario

were collected in rapid succession. The goal of this collection strategy is to minimize

variation of as many environmental, vehicle, and driver related factors as possible.

Such factors include road traction, temperature, driver alertness and idiosyncratic

behavior, and the vehicle’s mechanical performance.

A ‘city’ driving sample was collected during a four minute drive through light

traffic on curved and straight roads that featured various traffic control devices. A

second ‘city’ driving sample consisted of an approximately 30 minute drive through

light and heavy traffic and included segments of highway driving. Fig. 23 presents

examples of vehicle speed signals from each of these three driving scenarios. The

x-axis of each figure is time in seconds. The y-axis is the unit scale normalized

magnitude of vehicle speed.

54



Long ‘City’ Sample

Short ‘City’ Sample

Controlled Sample

Figure 23. Examples of Vehicle Speed Time Series from Three Dissimilar Driving
Scenarios

3.3 Data Simulation

Simulation is used in Chapter IV to augment findings produced using data col-

lected from passenger vehicle CAN networks. Section 3.1 discussed the limitations of

simulating CAN networks. To briefly reiterate that discussion, the simulation strat-

egy proposed in this section as well as that in all other academic research pertaining

to CAN and similar protocols is effectively arbitrary and based solely on subjective

expert opinion.

The time series and payload simulations strategies presented in this section repre-

sent an attempt to reasonably simulate CAN payloads produced by passenger vehicles.

Analysis of whether the proposed simulation strategy is reasonable, how accurately

it resembles one or more passenger vehicle CAN networks, and similar research ques-

tions are beyond the scope of this research. That said, this research is expected to

directly enable future research intended to answer such questions. It is the earnest

hope of the author that the techniques presented here helps motivate research in the

area of modeling and simulating CAN networks.
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Two independent steps form the basis for simulating CAN network data in this

proposal. The first step is generating many continuous numerical and non-continuous

time series using random walks. The second step randomly concatenates those sim-

ulated time series into a matrix of payloads Xsim with an approximate bit width

n ≈ 64. The continuous numerical random walks were generated using a Weiner Pro-

cess (Brownian Motion) with drift. Equation 3.3 presents the auto-regressive random

walk calculation method. The data used to generate a mean and standard deviation

for this equation was a vehicle speed signal extracted from a ‘city’ driving sample

collected from a real vehicle. The random error term ε is draws from the standard

normal distribution ε ∼ N(0, 1).

drift = X − V ar [X]

2
(5)

xt = xt−1 × e(drift + σ×ε) (6)

Non-continuous time series are generated by adding or removing an arbitrarily

‘large’ integer value from the current value at a set interval of time. Values are

added until the maximum unsigned integer value for the particular bit width being

used is reached. Then values are subtracted until doing so would reach 0. This

behavior continues to produce an approximately sinusoidal behavior with limits at

0 and 2n. This non-continuous simulation was performed for bit widths between 2

and 10. The intent for this simulation method is to generate time series which are

constant except for arbitrarily large gaps between some samples. Again, these time

series generation and concatenation methods to produce simulated matrices Xsim are

based on subjective expert insight that they reasonably approximate data generated
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by production passenger vehicles; further research in simulating CAN bus networks

is needed but beyond the scope of this research.

Fig. 24 presents an example of 100 continuous and 9 non-continuous time series

generated using the random walk techniques described above. The Transition Aggre-

gation N-Gram (TANG) for each time series were independently calculated and then

concatenated until a row vector of at least 64 bit positions xi was created2. Three

different concatenation strategies were used to generate CAN ‘payloads’ Xsim in this

manner. The first strategy is to create payloads using only continuous time series

data by sampling without replacement the total population of simulated continuous

time series. Once the last concatenation increased the ‘payload’ bit width to 64-bits

or greater, it was saved and a new ‘payload’ was started. The second strategy is

the same as the first except non-continuous time series were randomly sampled with

replacement and placed between each continuous time series. The third strategy used

only non-continuous time series to generate 100 simulated ‘payloads’. The true com-

position Comp′Xsim of each Xsim generated using these strategies was recorded for

comparison during validation.

3.4 Technical Implementation

The CAN bus data collection device shown in Fig. 22 uses a Debian Linux distri-

bution called ‘Raspbian’ tailored for the Raspberry Pi Zero W hardware. Raspbian

release 2017-03-02 is the specific version of the operating system (OS) used to operate

the Raspberry Pi Zero W. This OS is a customized implementation of Debian Linux

“Jessie” Version 8 based on Linux kernel version 4.9 and compiled using GCC 4.9 [99].

The data logging and J1979 diagnostic polling were accomplished using a combina-

tion of version 20161220 of the SocketCAN (https://github.com/linux-can/can-utils)

2TANGs are introduced in Section 4.2
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Measuring Accuracy / Consistency
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Figure 24. Example Random Walks of 100 Continuous (lefthand) and 10 Non-
Continuous (righthand) Time Series

Linux kernel module and a custom activation program written in C++. The custom

C++ program made API calls to SocketCAN to request J1979 diagnostic information

every 0.25 seconds; however, in practice the vehicle studied using J1979 diagnostics

only responded to those requests about once every 10 seconds. Regular CAN traffic

were logged to a Comma-Separated Values (CSV) text file using interrupts triggered

by SocketCAN and the CAN controller’s firmware.

The Raspberri Pi Zero W uses a 1GHz single core CPU and the ‘Raspbian’ oper-

ating system was not designed to provide ‘real-time’ guarantees to running processes

[100]. These limitations make it highly likely that one or more CAN frames transmit-

ted to the OBD-II port by the vehicle’s CAN bus were not successfully recorded in the

CSV log of observed network traffic. However, an average of 403,221 payloads were

observed across the short ‘city’ driving samples collected from the 17 vehicles studied.

This large number of observations is assumed to mitigate any loss of fidelity caused by

limitations in the network logging device. Data observable from the OBD-II interface

were assumed to be an acceptably representative and faithful representation of data

generated by CPS connected to the vehicle’s CAN bus.

All techniques related to the unsupervised reverse engineering pipeline introduced
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in Section 2.5 and discussed in Chapters IV and V were implemented in Python

3.6. Elements of the Numpy v1.14, Pandas v0.22, and scikit-learn v0.19 packages

were used for data structures, interpolation, and normalization [101, 102, 103]. The

FastDTW v0.3.2 package was used for its implementation of the FastDTW algorithm

[16, 94]. SciPy’s matplotlib plotting package was used to produce figures [104].

Chapter VI leverages the rEDM v0.7.1 package developed for R by Ye et al.

[89]. It is used to produce all EDM findings discussed in Chapter VI using signals

generated by the tokenization methods described in Chapter IV. The package provides

a straightforward set of functions for performing EDM, has two detailed user manuals

written be Ye et al. and Chang et al, and its developers include Dr. George Sugihara,

the creator of most of the techniques rEDM implements [53, 85].

Data Cleaning.

Data cleaning and pre-processing was routinely performed to implement the tech-

niques presented in this research. This involved interpolating univariate time series

data to a shared time axis and normalization of magnitudes to unit length magni-

tude. Interpolation was performed using the reindex function from Pandas with the

nearest point interpolation strategy. Normalization was achieved using scikit-learn’s

minmax scale method and its default feature scaling range of 0 to 1. Lastly, arbi-

tration IDs whose set of payloads XID did not use a constant bit width (Lemma 1

from Section 2.4) or represented a repetition of one value were ignored. Across the 18

passenger vehicle studied, there was an average of less than one arbitration ID which

violated lemma 1. It appears that the instances of non-constant payload bit width

were primarily caused by data collection errors. In particular, disconnecting the data

collection device while it was writing the contents of a payload to the logging file

resulted in one incorrectly recorded payload to appear at the end of the log.
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IV. Unsupervised Lexical Analysis of CAN Payloads

The lexical analysis strategy for the pipeline introduced in Section 2.5 focuses

on approximately continuous numerical signals. A signal was defined in Section 2.4

as a univariate time series generated by a cyber-physical system (CPS). Continuous

numerical signals can and should be tokenized before non-continuous signals because

there is a predictable relationship among the transition frequencies of each bit posi-

tion xj ∈ XID when base-10 (decimal) signals are converted to base-2 (binary) rep-

resentations. This relationship holds regardless of whether two’s compliment, one’s

compliment, signed magnitude, or unsigned encoding is used1. The predictable re-

lationship is bit ordering from a least significant bit (LSB) to a most significant bit

(MSB). The LSB represents the 20’s place while the MSB is the 2n−1’s place where n

is the bit width being used.

Empirical analysis of the vehicles discussed in Section 4.4 suggest that CPS sam-

pling analog processes such as velocity or pedal position many times a second produces

approximately continuous numerical signals. This behavior is also likely to occur with

sensors monitoring the joint angles of a robotic arm or the energy output of an x-ray

machine. As an example, the vehicle sensors measuring locomotion typically pro-

duce signals which have small differences between sequential samples. Engine RPM

should not change from 1,215, 7,031, back down to 2,580, and then 5,111 within

one second. Rather, a predictably smooth change from one value to another occurs

between sequential measurements such as 2,000 to 2,031 and then 2,045 RPM. This

produces approximately continuous numerical time series token tk with bit positions

xj that transition more frequently the closer xj ∈ tk is to the LSB of tk. The lexical

1Signed magnitude encoding is the only exception to the predictable relationship among bit
positions. Signed magnitude encoding is the same as unsigned except the MSB represents the
numerical sign. This causes that MSB to transition somewhat independently to the neighboring bit
positions.
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analysis techniques in this chapter are based upon searching for the predictable and

approximately monotonic increase of transition frequency of xj ∈ tk from MSB to

LSB.

4.1 Assumptions and Limitations

The lemmas discussed is Section 2.4 introduced and motivated the assumptions

that each arbitration ID observed on a vehicle CAN bus XID uses the same bit width

n and token composition Compm(XID). This chapter also assumes that the majority

of signals embedded in a set of vehicular payloads XID is approximately continuous

numerical signals. This section also assumes that the majority of sequential samples

of a signed numerical signal XID,i do not represent a transition from a positive to a

negative value. Such ‘crossing zero’ incidents are expected to represent a minority of

the observed signal behavior. Signals which do not meet this assumption may cause

what is referred to as the ‘frequent zero crossing problem.’

Frequent Zero Crossing Problem.

One predictable flaw in the method presented in this chapter is the scenario where

there are very frequent ‘crossing zero’ events of a signed number using one or two’s

compliment. To explain, imagine a sensor sampling the vehicle’s steering wheel angle

where the neutral position represents 0. Steering wheel positions counter-clockwise

relative to neutral are represented by increasingly negative numbers and positions

clockwise from neutral are positive numbers. If the CAN network sample collected

while driving exclusively with the steering wheel angle mostly neutral with many small

counter-clockwise and clockwise corrections, then the bit positions near the MSB

transition nearly as frequently as those near the LSB. This kind of data collection

scenario is possible from freeway driving and other places where straight line driving
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conditions are common.

The controlled driving scenario described in Section 3.1 involved mostly straight

line driving conditions where this problem may have occurred. It is not possible to

definitively identify, test, or quantify how significant the ‘zero crossing problem’ was

during these samples without a DBC file for the vehicle studied or some other truth

data. Thus, detailed analysis of this limitation and research about how to overcome

it is beyond the scope of this dissertation.

4.2 Transition Aggregation N-Gram (TANG)

A bit position xj is considered to have transitioned when it flips between 1 and

0 in chronologically-sequenced CAN payloads XID,i and XID,i+1. Bit level transition

analysis can be efficiently calculated by storing observed payloads into an I × J

boolean matrix. I is the number of row vectors with one row per observed CAN

message payload XID,i. J is the bit width n of the payloads with column vectors

representing the relative bit positions xj ∈ XID. See Table 9 for an example of a 10

x 8 boolean array representing 10 samples of an 8-bit payload.

Table 9. Example Boolean Matrix for an Arbitration ID’s Payloads

Observation
Bit Position

27 26 25 24 23 22 21 20

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 1 1
4 0 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0 1
6 0 0 0 0 0 1 1 0
7 0 0 0 0 0 1 1 1
8 0 0 0 0 1 0 0 0
9 0 0 0 0 1 0 0 1

By performing an exclusive or (XOR) of each sequential pair of row vectors XID,i
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and XID,i+1 in such a boolean matrix, a transition matrix is then created with I − 1

rows and 1s anywhere a bit transition occurred. Table 10 is the transition matrix

produced from Table 9. In this example, the 0th row vector XID,0 is XORed with the

1st row vector XID,1.

0 0 0 0 0 0 0 0

⊕ 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

XID,1 is XORed with XID,2 and so on for all sequential row vectors in the boolean

matrix. Summing the 1s in each column vector (bit position xj) of the transition

matrix produces a 1 × J row vector. For the remainder of this research, this row

vector is referred to as a Transition Aggregation N-Gram (TANG).

0 0 0 0 0 0 0 1

⊕ 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

Table 10. Example Transition Matrix and Transition Aggregation

XOR Result
Bit Position

27 26 25 24 23 22 21 20

Observation 0⊕ 1 0 0 0 0 0 0 0 1
Observation 1⊕ 2 0 0 0 0 0 0 1 1
Observation 2⊕ 3 0 0 0 0 0 0 0 1
Observation 3⊕ 4 0 0 0 0 0 1 1 1
Observation 4⊕ 5 0 0 0 0 0 0 0 1
Observation 5⊕ 6 0 0 0 0 0 0 1 1
Observation 6⊕ 7 0 0 0 0 0 0 0 1
Observation 7⊕ 8 0 0 0 0 1 1 1 1
Observation 8⊕ 9 0 0 0 0 0 0 0 1

TANG 0 0 0 0 1 2 4 9
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4.3 Composition Selection Using TANG

The proposed composition selection strategy assumes the xj ∈ XID with the

largest transition count in a TANG is the LSB of a numerical signal tk ∈ XID. This

LSB should represent a local maximum in the TANG. A contiguous subset of bit

positions on the left-hand or right-hand side of the local maximum should form a

decreasing gradient of transition counts until reaching a local minimum. That local

minimum is assumed to be the MSB of the same token tk ∈ XID as the LSB. This

behavior is demonstrated in the TANG produced from Table 9. Bit position 20 is the

LSB of the token representing an unsigned integer sequence counting from 0 in row

0 to 9 in row 9. A decreasing gradient of transition counts extends on the left-hand

side of the LSB until reaching a local minimum at the 24 bit position. That local

minimum can optionally be interpreted to extend to the 27 bit position.

Algorithm 1 presents a greedy search strategy for clustering bit positions xj ∈ XID

into a composition Compm(XID) of tokens tk defining each continuous numerical

signal concatenated within the set of payloads XID. Algorithm 1 may be thought

of as gradient descent and gradient ascent implemented as a univariate unsupervised

clustering method. Gradient descent is a machine learning technique intended to find

a local minimum of a function forming a surface or curve; gradient ascent finds a local

maximum [105]. The TANG serves as the function in this case with local minima

assumed to represent the MSB of each tk ∈ XID and local maxima corresponding to

the LSBs. Clustering is performed by grouping xj ∈ XID into disjoint sets referred

to as tokens tk. Each tk represents a contiguous subset of xj ∈ XID which include

a local minimum, a set of 0 or more intermediary bit positions with a monotonically

increasing or decreasing gradient of transitions counts, and a local maximum. Tokens

tk are added to the composition Compm(XID) until all xj ∈ XID are part of one and

only one tk ∈ Compm(XID) (lemma 2).

64



Require: A 1× n TANG array. TANG index j corresponds to bit position
xj ∈ XID. TANG values are the observed transition counts of xj ∈ XID.

1: comp: list ← [ ]
2: left bit, last bit: integer ← 0
3: token started, endian, padding: boolean ← false
4: max inversion: float ← 0.0
5: for j = 0 to j = n− 1 do
6: if TANG[j] = 0 and not padding then
7: if token started then
7: comp.append((left bit, j-1))
7: token started ← false
7: left bit ← j+1
7: last bit ← TANG[j]
8: end if
8: go to next iteration

9: end if
10: if token started then
11: if TANG[j] ≥ last bit and endian then
11: {continue this gradient ascent; do nothing for now}
12: else if TANG[j] ≤ last bit and not endian then
12: {continue this gradient descent; do nothing for now}
13: else if ||TANG[j]-last bit|| ≤ max inversion then
13: {continue despite this gradient inversion; do nothing for now}
14: else if left bit = j-1 then
15: if TANG[j] ≥ last bit then
15: endian ← true
16: else
16: endian ← false
17: end if
18: else
18: comp.append((left bit, j-1))
18: left bit ← j
19: end if
20: else
20: token started = true
20: left bit ← j
21: end if
21: last bit ← TANG[j]
22: end for
23: if token started then
23: comp.append((left bit, ||TANG||-1))
24: end if
25: return comp

Algorithm 1: Greedy Payload Tokenization Using a TANG
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The benefits of this greedy search approach include the following:

1. No reliance on heuristics or a priori knowledge of XID to produce Compm(XID)

2. It allows for different endian bit ordering ∀tk ∈ XID
2

3. Efficient memory and computational complexity

4. High accuracy and consistency as demonstrated is Section 4.4

Calculating the TANG of a matrix of payloads XID requires O(I×J) computation

and memory complexity to create the transition matrix and calculate the sum of

each column vector xj in that matrix. Algorithm 1 requires constant O(n ≤ 64)3

computation and memory complexity to execute a single loop using a TANG to

output Compm(XID).

Algorithm 1 begins with a for loop over each index of the TANG array using the j

iterator variable. Lines 6 to 9 handle the case when a particular bit position xj ∈ XID

had zero transitions in the sample. This phenomenon is referred to as a padding bit.

If the padding variable is set to TRUE to enable padding bits to be included in the

composition Compm(XID), then lines 6 to 9 are effectively ignored. If padding is

FALSE and padding bits are being excluded from Compm(XID), then these lines add

the set of bit positions {xleft bit, ..., xj−1} being clustered—if any—to Compm(XID)

and resets the other flow control variables.

Lines 10 to 19 of Algorithm 1 handle the cases when a local minimum or local

maximum has already been identified. Line 11 enables gradient ascent when a lo-

cal minimum was identified and the current xj represents part of a monotonically

increasing gradient of transition counts. Line 12 enables gradient descent when a

2Endians are introduced in Section 2.4
3The 64 upper limit refers to the maximum of 64-bit payloads in the standard and extended CAN

frame formats. CAN frame formats are discussed in Section 2.3.
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local maximum was identified and the current xj represents part of a monotonically

decreasing gradient of transition counts. If the max inversion variable is set to a

float value greater than 0, then line 13 allows for gradients between local minima and

maxima to deviate from a strictly increasing or decreasing series of transition count

values. If a local maximum or minimum was found at the previous index, then lines 14

to 17 detect whether this second bit position represents the beginning of an increasing

or decreasing gradient of transition values. This logic is equivalent to determining

the token’s endian formatting. The final portion of lines 10 to 19 account for when a

local minimum has been found next to a local maximum and a new token should be

started. These lines record the current cluster of xj ∈ XID as a token and add it to

the composition Compm(XID).

If no token is currently being created then lines 20 to 21 ensure a new token is

created using the current bit position as its first element. Line 23 ensures that any

token in the process of being clustered at the conclusion of the for loop is added to

Compm(XID). Compm(XID) is returned as a list of tuples with each tuple represent-

ing the left most and right most bit position bounding each token tk ∈ Compm(XID)

on line 23.

Payload Tokenization Example.

Fig. 25 is an example payload tokenized using its TANG and Algorithm 1. The

TANG is a 1×n row vector containing the sum each xj ∈ X0x42D transitioned between

a 0 and 1 in sequential samples X0x42D,i. This example is taken from an eleven minute

sample of city driving with a 2015 light duty truck. The two time series plots at the

top of Fig. 25 represent each logically distinct signal present in the set of payloads

X0x42D. These plots represent the two distinct tk ∈ X0x42D visible in the 64-bit

TANG plot at the bottom of the figure. The vertical axis of these time series plots
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Figure 25. Tokenization Result of Payloads Using Arbitration ID 0x42D

is the unsigned integer interpretation of each token with magnitudes normalized to

unit scale (0 to 1). The horizontal axis is the chronological index of the payloads

observed in the sample. Thus, these time series plots may be read from left to right

as the normalized unsigned numerical value the subset of bit positions took on as time

progressed.

The third plot at the bottom of Fig. 25 is a scatter plot of the TANG for the set

of payloads X0x42D. The vertical axis of the TANG plot is the unit scale normalized

transition count for each bit position in the 64-bit payloads. Higher values on this

vertical axis indicate the bit position marked by the horizontal axis transitioned more

frequently. The horizontal axis indicates the total bit positions in the series of observed

payloads. In this example, all observed payloads associated with arbitration ID 0x42D

used 64-bits.

Vertical dashed lines indicate the most significant bit (MSB) of a signal. The LSB
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of each signal is not explicitly identified to avoid clutter. However, both the LSB and

MSB are explicitly listed in the title of each time series plot. Grey triangles in the

TANG plot indicate possible padding bits observed in the CAN data sample; these

bit positions never transitioned.

Padding bits were included in Compm(XID) when producing Fig. 25. The remain-

ing findings in this research assumed that padding bits were the most significant bits

of tk ∈ XID. Exploring methods for identifying when padding bits should or should

not be used included in payload compositions is beyond the scope of this dissertation.

However, the empirical findings in this dissertation suggest that padding bits should

be included in payload compositions.

4.4 Validation

Tokenization Consistency Using Observed Payloads.

Samples from highly controlled and ‘city’ driving scenarios are used to evaluate

the consistency of Algorithm 1. Sets of payloads XID with identical IDs and bit

widths in both samples are used for this evaluation. The Alignment Score S metric is

used to quantify the consistency of tokenization between samples. Accuracy cannot

be evaluated due to the lack of truth data regarding the correct payload compositions

for the vehicles studied.

The first phase of data collection described in Section 3.2 consisted of gathering

driving samples from 17 different passenger vehicles during a short ‘city’ driving

scenario. One sample was gathered from each vehicle. A k-fold cross-validation

strategy with 5 folds was used to iteratively segment these samples into two subsets

[11, 105]. A chronologically contiguous subset of payloads representing one fifth of the

total sample was held out of the larger sample at each of the five iterations. Lexical

analysis was performed on both the holdout subset and remaining sample to produce
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two token compositions : Compm(XID) and Compm+1(XID). The Alignment Score

S was calculated using these compositions. The average of these five composition

comparisons S was recorded for each vehicle.

Table 11 lists the average Alignment Score using this k-fold cross-validation strat-

egy for the 17 vehicles studied in the first phase of data collection. The average

Alignment Score measuring tokenization consistency across all arbitration IDs for

all 17 vehicle was 0.93. If every ID is assumed to use 64-bit payloads, this equates

to an average difference of approximately four different boundary decisions between

samples. This highly consistent result for a generalizable lexical analysis method is

encouraging; however, these four dissimilar boundary decisions likely cause signifi-

cant numerical interpretations of an observed data matrix XID. Additional manual

adjustment by a human expert, domain specific heuristics, or tuning threshold pa-

rameters to a particular OEM or vehicle model may be necessary to further improve

tokenization consistency. It is also the intent of this research to facilitate the rapid

creating of extensive labeled data sets for training supervised machine learning mod-

els such as a Neural Network. An adequately trained supervised machine learning

model is expected to eventually replace or augment the unsupervised techniques pre-

sented in this chapter. The techniques proposed in this chapter ‘therefore serves as

the gold standard against which newer tests can be compared. When enough data

have accumulated to make [this] gold standard untenable it can perfectly reasonably

be replaced by another. This can then preside until it too is toppled’ [106].

Table 11. Average Alignment Score of K-Fold Cross Validation Using ‘City’ Driving
Samples

Vehicle
Alignment

Score S
Vehicle S Vehicle S Vehicle S Vehicle S

1 0.93 2 0.92 3 0.94 4 0.93 5 0.94
6 0.91 7 0.95 8 0.94 9 0.95 10 0.90
11 0.92 12 0.93 13 0.94 14 0.97 15 0.94
16 0.92 17 0.88
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The second phase of data collection involved operating vehicle 14 in various driving

conditions while recording J1979 diagnostic data. The Alignment Scores comparing

tokenization of payloads from each driving scenario are presented in Table 12. The

tokenization strategy resulted in an average of 99.2% consistent payload boundary

decisions between five iterations of the very similar driving scenario described in

Section 3.1 using vehicle 14. Comparing the five iterations of controlled driving

samples to a shorter ‘city’ driving sample shown in Fig. 23 led to an average of 98.7%

consistent payload boundary decisions. The average Alignment Score comparing each

of the five very similar driving scenario samples to the dissimilar long ‘city’ driving

sample resulted in an average of 98.6% tokenization similarity. Comparing the short

and long ‘city’ driving samples resulted in 99.3% similar tokenization results. Multiple

iterations of the ‘short’ and ‘long’ city driving conditions were not collected.

This average Alignment Score of .99 across the three dissimilar driving scenarios

is higher than the average Alignment Score of 0.94 measured using k-fold analysis of

a single sample from the same vehicle. These results equate to an average of approx-

imately four different boundary decisions in a 64-bit payload when measured using

k-fold cross validation compared to just one differing boundary decision when com-

paring dissimilar driving samples. This difference in measured consistency depending

on the validation strategy and driving conditions highlight the need for future work

focused specifically on understanding how experimental design and validation strat-

egy may effect findings. The goal of such work may be to propose best practices for

how to employ comparison testing of unsupervised lexical analysis techniques when

no truth data is available.
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Table 12. Alignment Score of Very Similar and Dissimilar Driving Scenarios Using
Vehicle 15

Controlled
(5 Iterations)

Short ‘City’ Long ‘City’

Controlled 0.992 0.987 0.986

Short ‘City’ N/A 0.993

Long ‘City N/A

Tokenization Accuracy Using Simulated Payloads.

A combination of random walk data simulation strategies described in Section 3.3

were used to quantify the tokenization accuracy of Algorithm 1. The intent of this

simulation is to evaluate tokenization accuracy in three general scenarios. The first

evaluation tests payload tokenization accuracy using only payloads containing con-

tinuous numerical time series data. This is the ideal scenario given the assumptions

and design of Algorithm 1. The second evaluation tests tokenization output when

non-continuous time series are interwoven with continuous time series. The second

scenario is intended to represent challenging but more realistic payloads that are rep-

resentative of production vehicle CAN networks. The final scenario is simulation of

payloads containing only non-continuous time series.

Tokenization of simulated payloads including only continuous numerical time se-

ries was 100% accurate. Simulated payloads composed of interleaved continuous and

non-continuous time series resulted in tokenization accuracy of 96.1% on average.

Algorithm 1 achieved an average of 90.6% tokenization accuracy with simulated pay-

loads consisting only of non-continuous time series.

The tokenization accuracy of these simulations appear to be very good when ex-

pressed as percentages. However, a 0.906 tokenization alignment score for a 64-bit

CAN payload means 6 boundary decisions are incorrect on average. Orphaning or in-

correctly adding even a single MSB or sign bit can cause extremely different numerical
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interpretations of binary data. Thus, we subjectively believe these simulation results

generally agree with the empirical results from examining production vehicular CAN

networks in three important ways:

1. Continuous numerical signals are consistently and accurately tokenized when

adjacent to other continuous signals

2. When adjacent to a non-continuous signal, off by one errors in identifying the

MSB of a continuous signal may occur; this causes potentially large interpreta-

tion errors

3. While apparently capable of identifying the general position of a non-continuous

signal in a payload, consistent off by one errors in identifying the MSB and LSB

of those signals means their numerical interpretation should be assumed to be

unreliable.

4.5 Conclusions

The empirical and simulated findings suggest that the unsupervised lexical analy-

sis methods proposed in this chapter may serve as a viable ‘gold standard’ for CAN

payload tokenization. However—like ‘gold standard’ tests in the medical field—our

hope is that this may simply serve ‘as the gold standard against which newer tests

can be compared. When enough data have accumulated to make [this] gold standard

untenable it can perfectly reasonably be replaced by another’ [106]. Specifically, the

time series extraction provided by Algorithm 1 combined with the use of J1979 diag-

nostics for truth data and manual labeling should enable the production of reasonably

large labeled data sets from proprietary passenger vehicle networks. These labeled

data sets could then be used to train supervised classifiers or enable development and

testing of even more accurate payload lexical analysis techniques.
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V. Unsupervised Semantic Analysis of Automobile Time
Series Data

This chapter introduces two techniques intended to achieve unsupervised seman-

tic analysis of signals identified by lexical analysis of observed CAN network data.

These are intended to be functionally similar to the semi-supervised label propagation

technique proposed by Glennan et al. discussed in Section 2.5. In this context, un-

supervised clustering enables signals to be grouped into semantically homogeneous

groups. Some of those groups may then be labeled using limited truth data such as

J1979 diagnostic information and manual reverse engineering1. These clusters also

serve as a potentially useful feature for Intrusion Detection Systems (IDS) to detect

when one or more signals deviate from the majority of signals in an otherwise highly

correlated cluster.

Section 2.5 highlighted the significant differences between analyzing the CAN pro-

tocol and the text-based protocols being studied by Glennan et al. The expectation

that CPS in automotive CAN networks exclusively produce univariate time series

data is one of the most important differences. The proposal by Glennan et al. is

intended to account for a heterogeneous population of protocols and data types such

as numbers, text, and flow control meta-data. Meta-data such as checksums or cate-

gorical variables like transmission gear are expected to be present in automotive CAN

networks; however, empirical findings in this dissertation and related research demon-

strate that the vast majority of data is time series generated by CPS throughout the

vehicle [21, 22, 107, 108, 109, 110]. This enables semantic analysis to focus on time

series analysis and clustering.

This chapter achieves unsupervised semantic analysis with a completely unlabeled

data set in two phases. Subset selection of continuous numerical signals forms the

1The J1979 diagnostic standard was introduced in Section 2.3
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first phase. The intent of this subset selection is to differentiate signals expected

to be successfully tokenized from other data such as checksums or non-continuous

signals. The second phase attempts to cluster continuous numerical signals to find

highly correlated subgroups among the observations.

Glennan et al. used the k-Means clustering algorithm to achieve their particular

semantic analysis implementation [9]. The k-Means algorithm requires the number

of clusters to be specified a priori [11, 105]. This is not an acceptable requirement

in the context of analyzing vehicle networks which may each have a different number

of semantically unique types of signals which an independent researcher is unlikely

to know a priori. Density-Based Spatial Clustering (DBSCAN), k-Nearest Neighbors

(k-NN), and Agglomerative Hierarchical Clustering (AHC) are alternative clustering

methods used by other reverse engineering proposals. Those proposals and their use

of clustering are discussed in Appendix A.

DBSCAN is not an ideal clustering technique in the context of unsupervised re-

verse engineering (RE) because it may exclude outliers in a data set. k-NN, like

k-Means used by Glennan et al., requires the number of clusters to be known a pri-

ori. In each case, there is a requirement for the researcher to already have some

insight about the vehicular network or be willing to throw out data. Several other

techniques used by related work were considered to achieve unsupervised semantic

analysis including Principal Component Analysis (PCA) [11, 15, 28, 45, 46, 105, 111].

Ultimately, agglomerative hierarchical clustering (AHC) proved to be a viable cluster-

ing strategy. This is because it only requires specifying a maximum distance threshold

and linkage strategy for measuring distance between clusters [11, 105]. AHC was in-

troduced in Section 2.6. Selecting these features does not require extensive a priori

information about a particular vehicle. Thus, AHC is uniquely viable in the context of

unsupervised semantic analysis of signals extracted from proprietary CAN networks.
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Clustering strategies were tested using various statistical features of signals such

as mean and standard deviation. The large and unpredictable variability between

driving samples revealed that descriptive statistics like mean and standard deviation

were unreliable features to use for clustering similar signals. This is due to their

inconsistent relative magnitudes across dissimilar driving samples and network con-

figurations.

Pairwise descriptive statistics such as the Pearson’s Correlation Coefficient (PCC,

Pearson’s ρ) proved to be highly reliable for quantifying semantically similar time

series. The bioinformatics community routinely publishes papers focused on cluster-

ing similar genes using pairwise statistics such as mutual information, cross entropy,

and PCC [111, 112]. Clustering results using pairwise statistics are referred to as

‘Relevance Networks’ or ‘Correlation Networks’ in that domain. One example of such

research is a proposal by Butte and Kohane which used a combination of pairwise

mutual information and thresholding [112]. Their proposed method for generating

clusters (‘Relevance Networks’) was to manually adjust a threshold parameter and

the subset of data being clustered until a subjectively interesting connected graph

structure was produced.

A proposal by Fukushima et al. also used pairwise correlation coefficients with

the DPClus clustering algorithm (a density based method like DBSCAN) and several

domain specific algorithms. Their proposal produced a graph structure partitioned

into sub-graphs which represented clusters of correlated genes [111]. Their work

highlights the prevalence of proposals based upon hierarchical clustering methods

using pairwise statistics.

It is important to note that the problem of finding a graph partition which max-

imizes the correlation of signals in each partition while minimizing the correlation

between partitions may be similar to the Sum-Max Graph Partitioning Problem
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[113, 114]. Watrigant et al. published a pair of papers which demonstrated that the

problem is NP-hard and a greedy or heuristic solution is a viable but sub-optimal solu-

tion [113, 114]. Another area of similar research is community detection in networks.

A 2016 survey of community detection research by Fortunato and Hric highlight the

lack of validation methods and performance metrics in the domain. It also highlights

the fact that community detection in networks remains an open problem with a very

active research community [115]. Based on similar work being done in bioinformatics,

it seems likely some form of weighted graph clustering may be a viable approach for

performing semantic analysis of automotive time series. The correlated clusters pro-

duced by techniques in this chapter coupled with causal links discussed in Chapter

VI may provide the features necessary to enable community detection research in the

CPS network domain.

5.1 Assumptions and Limitations

Vehicle’s are assumed to include several CPS monitoring highly correlated physical

processes. An example of this phenomenon is the likely correlation between the output

of CPS monitoring the vehicle’s two or more wheel rotations per minute (RPM)

and those reporting the vehicle speed. There is an approximately linear relationship

between wheel RPM and current vehicle speed. Because even motorcycles have at

least two wheels, it is reasonable to assume there is at least two highly correlated

signals on the CAN network.

Signals for different physical processes being monitored are expected to be weakly

correlated compared to signals related to the same process. This assumption is the

purpose for selecting the single linkage cluster dissimilarity measurement strategy.

Single linkage evaluates two clusters of signals to be nearby so long as at least one

signal in cluster A is nearby to another in cluster B. Thus, when looking at the
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dendrogram a series of cluster fusions are expected to occur at relatively small inter-

cluster dissimilarity levels when signals from the same physical process are being

combined into one cluster. Then, a distinct vertical gap occurs in the tree reflecting

the relatively significant dissimilarity between all signals related to different physical

processes.

Another assumption used to perform subset selection is that signals produced by

CPS monitoring analog physical processes like wheel RPM, steering wheel angle, or

brake pressure are more diverse than other signals present on the network. Diversity

is measured using the Shannon Diversity Index statistic presented in the next section

[116]. Phrased another way, this assumption means signals with few unique values or

heavily favor only a few values are expected to not be continuous numerical signals

that were correctly tokenized during lexical analysis. Those signals are assumed to

represent subsets of bit positions xj ∈ XID which require additional lexical analysis

before being considered for semantic analysis.

5.2 Subset Selection of Continuous Numerical Time Series

The Shannon Diversity Index proved to be a reliable statistic for selecting a subset

of continuous numerical signals from data produced by networks representing several

Original Equipment Manufacturers (OEMs), model years, and vehicle models. It

measures the number of unique members in a population and the proportion of the

total population each represents [48]. Equation 7 is a method for calculating this

statistic given a population of decimal numbers.

H = −
n∑
i=1

x ∗ log2(x) (7)

The variable x represents the proportion of payloads in a signal which have

the same numerical interpretation. For example, consider a signal composed of
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100 observed payloads. A particular numerical interpretation is observed 10 times

in the total of 100 observations. Then that particular part of the sum would be

(10/100)× log2(10/100) ≈ −0.332. The upper limit n represents the total number of

unique numerical values present in the population of payloads the signal is composed

from. H is the Shannon Diversity Index. The base of the logarithm used affects the

units which H is expressed. H is expressed in bits when using log2, decimal digits with

log10, and natural units with loge; a decimal digit is about 31
3

bits [116]. The range

of H when using log2 is 0 to the bit width of the signal. The minimum occurs when a

signal is only one value repeated in every observation. The maximum Shannon Index

occurs when two conditions are met. First, the number of unique values n observed

in the signal but be 2 to the power of the signal’s bit width: 2nbit width . Second, each

unique value xi must represent an equal proportion of the total observations. Ex-

pressed in another way, the signal must be composed of 2nbit width unique numerical

values and each value must be observed the same number of times.

The Shannon Index is used in this context with the assumption that signals de-

scribing continuous numerical processes are more diverse than signals related to cate-

gorical data like turn signal activation. Selecting a subset of only continuous numerical

signals can be achieved by sorting the total population of signals produced during

tokenization by Shannon Index. A tunable percentage parameter tsubset is used to

select a percentage of the total population with the largest Shannon Index values. In-

creasing this percentage parameter increases the quantity of signals that are labeled

as continuous numerical signals in the signal clustering phase presented in Section

5.3. However, this also increases the possibility that signals which are not actually

continuous numerical signals become mislabeled. As with all unsupervised clustering

methods, there is no ‘magic’ setting for a parameter which is optimal for all data sets.

Fig. 26 provides a graphical guide for interpreting the notched box and whisker
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plots of Shannon Index values for studied vehicles shown in Fig. 27. The critical piece

of information is the Interquartile Range (IQR) expressed by the box in each plot.

The box represents 50% of observed Shannon Index values for signals produced by

the vehicle and extracted during lexical analysis. Each whisker is either 1.5 × IQR

from the nearest edge of the box or the minimum or maximum observed Shannon

Index. Observations that exceed either whisker are considered potential outliers [117].

Fig. 27 may help provide insight into how to best leverage the Shannon Index

statistic to perform subset selection. This chapter focuses on using a population

percentage threshold to select a subset of signals generated during lexical analysis

which represent the most diverse signals. An alternative approach may be to perform

subset selection by excluding signals which do not meet a minimum Shannon Index

threshold. Fig. 27 shows approximately what percentage of the total population of

signals extracted from each vehicle would be excluded for different threshold values.

The percentage based approach proposed in this section ensures a relatively consistent

quantity of signals are included during semantic analysis. The alternative minimum

threshold approach may cause the majority of signals from one vehicle to be included

in the subset while excluding the majority in another vehicle. Comparing how subset

selection would be effected by using a minimum Shannon Index threshold of three

with the signal populations from vehicles five and eleven demonstrates how such a

scenario might occur in practice.

It is not immediately clear whether a percentage based, ‘fixed’, a hybrid thresh-

old approach for Shannon Index based signal subset selection technique is superior.

Lexical Analysis of vehicle five produced a population of signals with approximately

75% containing less than two bits of information. It is unlikely that a continuous

numerical time series can be expressed using only two bits. Thus, a percentage based

subset selection method is unlikely to effectively filter non-continuous time series.
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Figure 26. Features of a Notched Box Plot

Figure 27. Notched Box Plot of Observed Signal Shannon Index Values by Vehicle
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The varied distribution of Shannon Index values across the 17 vehicles studied also

highlight that it is also unlikely that a ‘fixed’ minimum threshold is effective for all

vehicles; some sort of adjustment may be necessary based on the vehicle OEM or

make. Such adjustments are expected to require domain specific heuristics or a priori

knowledge which this research is explicitly avoiding in order to remain as generaliz-

able as possible. Thus, the percentage based approach is used in this chapter based

upon the assumption that it is a more generalizable thresholding strategy.

5.3 Time Series Clustering Using the Pearson’s Correlation Coefficient

The signal clustering process begins with generating a correlation matrix C using

the Pearson Correlation Coefficient (PCC). PCC is a measure of linear correlation be-

tween two variables [118]. In this case, the unsigned integer interpretation of each pair

of signals produced during tokenization are being correlated. The DataFrame.corr()

method in Python’s Pandas library generated the correlation matrix used to produce

the results presented in this chapter [102].

Two modifications are made to the correlation matrix C to use it as a dissimi-

larity matrix for Agglomerative Hierarchical Clustering (AHC). First, any negative

values in C are set to 0. Negative PCC values indicate two signals were negatively

correlated in the sampled data. The current intent of this proposal is to only con-

sider positively correlated signals extracted during lexical analysis. Consideration of

how to best leverage information about negatively correlated signals is reserved for

future work. The second modification is to perform the matrix subtraction 1 − C.

This is done to convert large PCC results (near 1) between highly correlated signals

to small dissimilarity values. Likewise, uncorrelated signals with a PCC near 0 now

have large dissimilarity values near 1. This modified correlation matrix C is referred

as the distance matrix D.
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Single linkage AHC using the distance matrix D was performed using the Python

SciPy library’s hierarchy module in the clustering package scipy.cluster [119].

Dendrograms shown in this chapter and Appendix B were also produced using this

module and the Python Matplotlib library [104].

This clustering strategy is implicitly targeted for CAN networks with few continu-

ous numerical signals with unique behavior. This is because clusters are formed using

the pairwise PCC statistic. If a continuous numerical signal corresponds to a unique

physical process then it is unlikely that another signal in the network is highly corre-

lated. By requiring every signal to be correlated with at least one other signal to be

clustered and labeled, an implicit false positive filtering process is performed. Specif-

ically, it is possible that edge cases or an overly inclusive subset selection threshold

parameter choice results in one or more improperly tokenized signals being included in

the subset of continuous numerical signals. By requiring these improperly tokenized

signals be correlated to another signal in the subset, this effectively ensures these

false positive subset selection errors require another highly correlated tokenization

error to occur before both false positives are incorrectly clustered.

Table 13. Summary Results of Sample Sizes, Tokenization, and Signal Clustering

Make Model
Model
Year

Total
Payloads

Total
Arb IDs

Total
Static
IDs

Total
Short
IDs

Avg.
Payload

Bit Width

Signals
Extracted

Avg.
Signal

Bit Width

Avg.
Signal

Shannon
Index

Total
Singleton
Clusters

Total
Non-Singleton

Clusters

Avg.
Cluster

Population

Total
Clusters
in Subset

Avg.
Subset
Cluster

Population

0 1 1 2009 626,373 29 4 0 50.2 80 15.6 3.75 23 11 4.64 10 4.90
1 1 2 2011 300,385 63 18 0 49.5 142 15.6 3.89 46 18 4.39 8 6.62
2 2 3 2014 247,850 122 47 6 58.2 304 14.3 2.81 100 35 5.06 20 5.90
3 3 4 2015 336,007 81 19 3 64.0 258 15.4 2.45 86 31 4.45 17 5.94
4 3 4 2017 284,194 85 20 2 64.0 261 15.9 2.37 78 29 5.14 18 5.67
5 3 5 2010 483,652 26 3 0 64.0 121 12.2 2.18 27 18 4.50 13 2.77
6 4 6 2012 248,940 29 0 0 53.8 87 17.9 4.02 46 9 4.33 4 4.50
7 4 6 2015 349,732 42 0 0 51.1 127 16.9 3.86 89 12 3.08 6 3.50
8 4 7 2012 279,407 42 0 0 51.6 117 18.5 3.77 67 15 3.27 7 3.86
9 5 8 2015 437,282 45 4 0 57.2 166 14.3 2.96 59 20 4.65 14 4.93
10 5 9 2010 367,813 30 4 2 51.5 87 16.8 4.16 34 15 3.27 12 2.92
11 6 10 2009 486,394 20 6 0 46.8 44 17.1 4.59 22 5 2.60 4 2.75
12 7 11 2009 323,327 38 13 0 55.8 72 18.7 3.85 32 10 2.70 6 3.17
13 7 12 2008 1,129,028 88 31 0 55.9 206 15.9 2.78 76 17 4.47 7 7.14
14 7 13 2012 266,611 88 38 0 55.9 172 16.4 3.26 61 20 4.25 11 5.09
15 7 14 2017 414,283 124 51 0 58.6 293 14.2 2.51 81 36 5.06 23 6.43
16 8 15 2009 273,481 27 0 0 64.0 110 15.7 3.10 56 14 3.50 9 3.56

Average 57.6 15.2 0.8 56.0 155.7 16.0 3.3 57.8 18.5 4.1 11.1 4.7
Standard Deviation 34.0 17.0 1.6 5.6 81.3 1.7 0.7 24.8 9.2 0.8 5.7 1.4
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5.4 Validation

Table 13 provides a summary of the unsupervised lexical and semantic analysis

pipeline discussed in Chapters IV and V. These data were collected having owners

drive according to a scripted scenario and route. The driving script took approxi-

mately 10 minutes to complete and took place in ‘city’ driving conditions. We propose

that the large standard deviation with respect to the average for each feature listed in

Table 13 indicates that there is significant variability between passenger vehicle CAN

network configurations. Additionally, the highly similar payload bit width and signal

bit width apparently used by Original Equipment Manufacturer (OEM) two suggest

there may be a degree of predictability about network configuration if the OEM is

known a priori or can be inferred from the data.

Example output of the semantic analysis techniques described in this chapter

are presented in Fig. 28, 29, and 30. Section 4.3 described how to interpret these

time series plots; the cluster numbers listed refer to the arbitrary order the cluster’s

branch decision was made according to the dendrogram. Each of these examples were

produced by different OEMs, model types, and model years in the population studied.

Similar results were found across all 17 vehicles tested. Signals in the clusters shown

in Fig. 28 and 29 have been removed to reduce figure height. These signals clusters

demonstrate how passenger vehicle networks often generate highly correlated signals

across a range of arbitration IDs. These similarities are consistently captured by the

semantic analysis approach proposed in this chapter. Unfortunately, J1979 diagnostic

information could not be collected during the first phase of data collection. Therefore,

it is difficult to objectively assess whether one or more of these clusters corresponded

to a particular physical process.

Fig. 31 is an example cluster produced by vehicle 14 when J1979 diagnostic in-

formation was collected during the sample. The vehicle responded to the diagnostic
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Figure 28. Signal Cluster Result from Vehicle 15
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Figure 29. Signal Cluster Result from Vehicle 1
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Figure 30. Signal Cluster Result from Vehicle 9
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Figure 31. Signal Cluster Result from Vehicle 14 With Signals Labeled Using Correla-
tion With J1979 Diagnostic Responses
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requests listed below; their value over time is presented in Fig. 32. Each signal subplot

lists the PCC for the most correlated J1979 service—if any. This particular example

demonstrates that AHC identified a homogeneous cluster of vehicle speed signals. The

PCC of only 0.89 on average would likely be 1.00 if more than 7 responses were re-

ceived during this approximately 5 minute ‘city’ driving sample. Informal discussions

with professionals in the automotive industry suggest that this infrequent response

rate is typical when requesting multiple diagnostic services while driving passenger

vehicles.

• PID 0xC: Engine RPM (7 responses)

• PID 0xD: Speed km/h (7 responses)

• PID 0x11: Throttle % (6 responses)

Figure 32. J1979 Diagnostic Service Responses for ‘City’ Driving Sample

89



5.5 Conclusions

The empirical findings presented in Section 5.4 indicate that the semantic analysis

approach proposed in this chapter is consistently effective across a range vehicles and

driving conditions. However, “it can be hard to assess the results obtained from

unsupervised learning methods, since there is no universally accepted mechanism

for performing cross-validation or validating results on an independent data set...

there is no way to check out work because we do not know the true answer–the

problem is unsupervised” [105]. Signal labeling using J1979 diagnostic data and

cluster consistency using the Jaccard Index may enable some degree of quantitative

validation for the semantic analysis strategy proposed in this chapter. However,

access to DBC files provided by vehicle OEMs would enable much more comprehensive

and definitive findings since those files include the correct semantic label for each

signal in the vehicle.
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VI. Empirical Data Modeling Using Automobile Time
Series Data

This chapter adheres to the steps and terminology prescribed in the manual writ-

ten by Ye et al. (co-authored by Dr. Sugihara) to use EDM methods with signals

for vehicle speed, engine RPM, and brake pressure collected from vehicle 14. The

pairwise relationships between vehicle speed, engine RPM, and brake were selected

to demonstrate the viability of EDM in the context of automated reverse engineering

of CAN networks for two reasons. First, SAE J1979 diagnostic data is available to

confirm that some signals produced during tokenization are in fact vehicle speed or

engine RPM [20]. Second, there is an intuitive understanding that causal relation-

ships exist between these features such as increased engine RPM affecting vehicle

speed after a brief time delay. This allows for a degree of subjective validation about

whether the results are reasonable in the context of automotive network analysis.

Objective validation is achieved using comparison testing of EDM results based

on samples collected from a single vehicle operated according to the controlled and

short ‘city’ driving scenarios. The relative behavior of these features in either scenario

are shown in Fig. 33 and 34. In both cases, there is a fairly clear visual relationship

between an increase in engine RPM causing an increase in vehicle speed after a brief

delay. Likewise, increased brake pressure consistently causes a noticeable decrease in

vehicle speed.

Vehicle speed, brake pressure, and engine RPM signals were extracted using the

tokenization process described in Chapter IV. The vehicle speed and engine RPM

signals were confirmed to be such using post-hoc correlation with SAE J1979 diag-

nostic data [20]. The brake pressure signal was identified using data collected in the

controlled driving scenario described in Section 3.2 and shown in Fig. 33. Because the

brake was only applied at the beginning, mid point, and end of the driving sample,
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Figure 33. Example of Brake Position, Engine RPM, and Vehicle Speed Time Series
from a 3 Minute Controlled Driving Scenario
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Figure 34. Example of Brake Position, Engine RPM, and Vehicle Speed Time Series
from a 5 Minute ‘City’ Driving Scenario

manual reverse engineering quickly identified a signal which matched that behavior

using the output of lexical analysis. The subsets of bit positions for these specific

engine RPM, vehicle speed, and brake pressure signals were identically tokenized for

both driving conditions studied.

Using Phase Portraits to Understand System Behavior.

Before delving into the EDM techniques introduced in Section 2.7, it may be help-

ful to study the phase portraits of the vehicle speed, engine RPM, and brake pressure

time series being used. The Simplex Projection primer hosted at the University of
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California San Diego’s Sugihara Lab web site suggests using phase portraits as a pre-

cursor to EDM analysis to gain an intuitive sense for the behavior of the system

being studied [17]. The primer presents the concept of phase portraits—or, ‘lagged-

coordinate embedding’—as a two or three dimension plot of a time series against

lagged versions of itself. These lagged dimensions may be thought of as the value

of the time series at time t, t + τ , and t + 2τ with τ being the magnitude of time

between each dimension. Fig. 35, 36, and 37 show the phase portrait of each feature

being studied using time series from the short ‘city’ driving scenario. A magnitude

of one was used for the lag τ .

Figure 35. 3-Dimensional Plot of Brake Pressure Time Series Relative to Two Lags of
the Same Time Series (‘City’ Driving Scenario)

Figure 36. 3-Dimensional Plot of Engine RPM Time Series Relative to Two Lags of
the Same Time Series (‘City’ Driving Scenario)
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Figure 37. 3-Dimensional Plot of Vehicle Speed Time Series Relative to Two Lags of
the Same Time Series (‘City’ Driving Scenario)

Phase portraits produced using time series which exhibit deterministic chaos are

expected to have one or more visually perceptible trends. Systems with globally

linear behavior, “that is tomorrow’s value is proportional to today’s value,” produces

a phase portrait with a strong trend along a single vector [17]. Globally linear behavior

is visibly evident in the phase portraits of vehicle speed and engine RPM. This makes

sense since the sample frequency for these time series is in the millisecond range

and these physical features necessarily change in relatively small increments at that

time scale. Conversely, the brake pressure phase portrait includes evidence of more

dynamic behavior. This too makes sense considering that a driver can significantly

change the pedal position within a few milliseconds. This increased potential for

dynamic behavior is reflected by the cloud of points around the otherwise linear

vector created from moderate changes to braking pressure input over time.

The pronounced linearity of the vehicle speed and engine RPM phase portraits

suggests that statistical modeling methods such as auto-regressive linear models and

Granger Causality may be viable alternatives to EDM [1, 17, 88]. However, these

alternatives may not fully capture the dynamic behavior of braking input and other

vehicle processes. The ability to work with both globally linear and dynamic systems

is the motivation for using EDM technique instead of these alternatives.
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Sections 6.2 and 6.3 use Simplex Projection and S-map to quantify the linearity

observed in the time series of the three features studied. Simplex Projection is also

used to make an educated guess for the optimal embedding dimension to use during

shadow manifold reconstruction using these time series1. Multi-view embedding and

Convergent Cross Mapping (CCM)—two other EDM techniques—are later used in

Sections 6.4 and 6.5 to demonstrate that these globally linear features can still be used

to create a highly accurate predictive model of dynamic features like braking pressure.

Such models may significantly improve the accuracy of Intrusion Detection Systems

(IDS) of passenger vehicles. Likewise, causal relationships identified using CCM could

potentially be used to significantly expand the scope of the label propagation concept

discussed in Chapter V.

6.1 Assumptions and Limitations

One limitation of EDM analysis is that behavior that is idiosyncratic to a par-

ticular driving scenario is reflected in the results. For example, the highly controlled

driving scenario involved the driver only applying braking pressure within a rela-

tively small range of vehicle speeds. A driver can obviously apply braking pressure

at any vehicle speed; however, data collected during this particular driving scenario

appears to have caused EDM results to reflect a potentially artificially strong causal

relationship from vehicle speed onto braking pressure. Analysis of the dissimilar and

relatively unscripted ‘city’ driving scenario is intended to highlight this limitation of

EDM analysis of samples that are know to include atypical behavior. There may

be other subtle idiosyncrasies of the driver, vehicle, or ‘city’ driving scenario which

caused artificially strong or weak causal relationships to be found using EDM meth-

ods. We assume the impact of such sample specific influences are minimal for the

1Section 2.7 introduced shadow manifold reconstruction, manifold embedding dimensionality, and
other EDM concepts discussed in Chapter VI
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purposes of demonstrating that EDM is a viable unsupervised automotive network

semantic analysis method.

Figure 38. Examples of Time Series Representing (A) Deterministic Chaos and (B)
Stochastic Noise

Figure 39. 2-Dimensional Phase Portrait Using Time Series Representing (A) Deter-
ministic Chaos and (B) Stochastic Noise [17]

EDM techniques are also unable to correctly model systems which represent true

stochasticity (also known as high dimensional noise or true randomness). Fig. 38

demonstrates this limitation using example time series representing (A) determin-

istic chaos and (B) stochastic noise [17]. It may be difficult to notice a significant

difference between these time series. However, the 2-dimensional phase portraits of

these time series shown in Fig. 39 show that there is clear auto-regressive behavior

present in time series (A) as demonstrated by the distinct linear trends throughout

the phase portrait. Identifying and quantifying such auto-regressive trends is the pur-
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pose of Takens’ Theorem which EDM techniques are based upon [13, 81, 83, 84, 120].

Stochastic noise lacking such trends makes it highly unlikely to find the correct di-

mensionality to use during manifold reconstruction, among other challenges. The

term manifold refers specifically to ‘a compact manifold M of dimension m’ defined

by ‘a smooth one-parameter family of vector fields ZΩ and a smooth one-parameter

family of functions yΩ’ [81]. Generic examples of compact manifolds include a sphere,

torus, double torus, cross surface, and Klein bottle [121].

Figure 40. 3-Dimensional Phase Portrait Showing a Correctly Reconstructed Attractor
Using Time Series Representing Deterministic Chaos [17]

Fig. 40 demonstrates the importance of selecting the correct dimensionality for

manifold reconstruction. Fig. 40 is a 3-dimensional phase portrait of time series (A)

from Fig. 38. Notice how every point in the manifold is now differentiable compared

to the 2D reconstruction shown in Fig. 39. Some points may appear to overlap in

the single perspective provided by Fig. 40; however, hopefully it is clear to the reader

that viewing the 3-dimensional space from different angles allows for each point to be

uniquely identified. Being able to distinguish between each vector ∈ ZΩ is critical to

accurately measure whether two shadow manifolds may be diffeomorphic (maps 1:1)

during Convergent Cross Mapping (CCM). A group of non-differentiable portions of
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manifold M due to an incorrect selection of dimensionality m to express M is referred

to as a ‘singularity’. Singularities obstruct the diffeomorphic relationship between

shadow manifolds and may lead to misleading or incorrect findings by EDM methods.

The concepts of shadow manifolds, diffeomorphism, and CCM were introduced in

Section 2.7.

6.2 Selecting Embedding Dimension

Simplex Projection is an EDM method which may be used to make predictive

models using manifold reconstruction. When the ultimate goal is to use Convergent

Cross Mapping (CCM) and multi-view embedding to detect causal relationships and

build predictive models, Simplex Projection may be used to estimate the optimal em-

bedding dimension to use during manifold reconstruction. This is done by iteratively

testing predictive accuracy at various embeddings. Once all ‘singularities’ in the

manifold have been converted into differentiable manifold segments (as demonstrated

between Fig. 39 and 40 in Section 6.1), prediction accuracy should be maximized.

Thus, the optimal embedding factor E for shadow manifold reconstruction using a

particular time series is the local maximum of the curve defined by embedding di-

mension and prediction accuracy ρ produced by iterative runs of Simplex Projection.
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Figure 41. Simplex Projection Forecast Skill ρ With Respect to Embedding Dimension
E (Controlled Driving Scenario)
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Figure 42. Simplex Projection Forecast Skill ρ With Respect to Embedding Dimension
E (‘City’ Driving Scenario)

Fig. 41 and 42 show the results of performing Simplex Projection using multiple

embedding factors with the time series for vehicle speed, engine RPM, and brake

pressure. These figures represent the controlled and ‘city’ driving scenarios. Anal-

ysis of both driving scenarios and all three features resulted in nine as the optimal

embedding dimensionality for shadow manifold reconstruction. This “optimal value

does not have to correspond to the dimensionality of the original system... it is more

useful to think of the embedding dimension as a practical measure that is dependent

on the properties of the data” [85]. Furthermore, Whitey’s Theorem asserts that the

true number of variables affecting the time series in the actual system lies somewhere

between E and 2 × E + 1 [17, 87]. For the remainder of this chapter, all techniques

use a manifold embedding dimensionality of 9. This means that the shadow mani-

fold for each feature is constructed using the original time series and eight copies of

the same time series lagged by a multiple of a constant τ . Specifically, these extra

dimensions are the set of time series lagged by {τ, 2τ, 3τ, 4τ, 5τ, 6τ, 7τ, 8τ}. A single

payload offset in the chronologically ordered set of payloads XID is used as τ in the

analysis presented in this chapter.
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6.3 Characterizing System Linearity

Simplex Projection and Sequential Locally Weighted Global Linear Maps (S-map)

may both be used to determine whether a system is globally linear. This analysis is

not necessary to correctly reconstruct manifolds during CCM and multi-view embed-

ding. However, like the phase portraits discussed earlier in this chapter, understanding

whether a system is globally linear aids in the interpretation of results from CCM

and multi-view embedding. For example, the plots of forecast skill ρ and embedding

dimension shown in Section 6.2 had very minor differences in ρ as embedding dimen-

sion was adjusted. This scale was enlarged in the ‘city’ driving scenario compared

to the controlled driving scenario. The scale was also larger for brake pressure com-

pared to vehicle speed and engine RPM. This tight range of ρ is the result of the

globally linear behavior exhibited by vehicle speed and engine RPM relative to brake

pressure. It also highlights how a more diverse driving sample enable each feature to

demonstrate more dynamic behavior. CCM analysis of manifolds constructed from

globally linear features may be expected to result in an approximately linear strength

of causal relationship as sample (library) size is increased.

Simplex Projection was iteratively run using E = 9 and increasing values of time

to prediction tp to quantify the linearity of the vehicle speed, engine RPM, and brake

pressure time series in the controlled and ‘city’ driving scenarios. tp is the difference

in time between a point used to make a prediction about a future value and the

future value. The results of this iterative Simplex Projection analysis for both driving

scenarios are presented in Fig. 43 and 44. The x-axis for these figures is the number

of payloads in the future used to test forecast skill ρ. More specifically, the time in

tp is the number of payloads in the future used to make a forecast; this represents

some length of time because payloads are chronologically ordered. 1,000 payloads

equates to approximately 12 seconds of driving time, 600 payloads to 7 seconds, and
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200 payloads to 2.5 seconds. The gradual drop in forecast skill ρ for vehicle speed

and engine RPM indicate that they may be globally linear systems. While this does

not preclude them from being used as part of EDM techniques, it does suggest that

simpler computational models, such as Granger Causality or auto-regressive models,

may be viable alternatives when developing models or performing semantic analysis

[17, 84, 88, 89].
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Figure 43. Simplex Projection Forecast Skill ρ With Respect to Time to Predict tp
(Controlled Driving Scenario)
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Figure 44. Simplex Projection Forecast Skill ρ With Respect to Time to Predict tp
(‘City’ Driving Scenario)

Sequential locally weighted global linear maps (S-map) may be used in a similar

fashion to quantify system linearity. S-map differs from Simplex Projection in that

a non-linear tuning parameter θ is adjusted instead of tp. S-map analysis of glob-

ally linear systems is maximized when θ is 0. This relationship may be intuitively

explained using the phase portraits shown in Fig. 35, 36, 37, and 40. The points in
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36 and 37 tightly fall along a single distinct vector. Thus, predicting the location of

a single point along that vector may be accurately achieved using all other points

in the manifold (θ = 0). Conversely, the points in Fig. 35 also trend along a single

vector but also exists off of that axis. This means forecast skill ρ may improve using

a subset of points closest to the point being predicted (θ > 0). This scenario is even

more apparent in Fig. 36 which has very distinct local vectors defining behavior at

various parts of the manifold.
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Figure 45. S-map Forecast Skill ρ With Respect to the Nonlinear Tuning Parameter θ
(Controlled Driving Scenario)
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Figure 46. S-map Forecast Skill ρ With Respect to the Nonlinear Tuning Parameter θ
(‘City’ Driving Scenario)

Fig. 45 and 46 present the result of iterative S-map forecast skill ρ at various levels

for the non-linear tuning parameter θ. As with Simplex Projection, the small range

of differences in ρ for the controlled driving scenario and vehicle speed and engine

RPM features is evidence of globally linear behavior.
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6.4 Quantifying Causality
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Figure 47. Convergent Cross Mapping Forecast Skill ρ With Respect to Time to Predict
tp (‘City’ Driving Scenario)

The strength of causal relationships between vehicle speed, engine RPM, and brake

pressure is summarized in Fig. 47. The legend lists a series of X xmap Y relationships.

The term X xmap Y refers to the CCM analysis which used the shadow manifold MX

to make forecasts onto the shadow manifold MY . Somewhat counter-intuitively, the

resulting line of cross map skill ρ given time to predict tp is then interpreted as the

strength of the causal effect of Y onto X. Higher predictive skill ρ indicates a stronger

causal effect of Y onto X when time to predict tp is positive. Time to predict tp is

the delay—or lag—from the time a change in feature Y has a causal effect manifest

in the feature X. Since cause must precede effect, negative values of tp effectively

reverse the interpretation of X xmap Y from Y causes X to X causes Y . Fig. 47

allows the following observations to be made:

1. Brake pressure has a weak and nearly instant causal effect on engine RPM

(ρ u 0.19)
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2. Speed has a moderate causal effect on engine RPM after an approximately 1

second delay (ρ u 0.49)

3. Engine RPM has a moderate causal effect on brake pressure after an approxi-

mately 3 second delay (ρ u 0.49)

4. Engine RPM has a moderate causal effect on vehicle speed after an approxi-

mately 3 second delay (ρ u 0.53)

• Note: rpm xmap speed also suggests the reverse relationship is true as

well

5. Speed has a strong causal effect on brake pressure after an approximately 4

second delay (ρ u 0.60)

6. Speed has a strong causal effect on engine RPM after an approximately 3 to 5

second delay (ρ u 0.75)

Fig. 48 uses a graph format to expresses the causal relationships between the

vehicle speed, engine RPM, and brake pressure features found in Fig. 47. The arrows

pointing from feature X into feature Y represent a causal relationship from X onto

Y. Each arrow has two Pearson’s ρ values listed next to it using blue and red text.

The two colors represent the two manifolds—X xmap Y and Y xmap X—used to

quantify causal relationships between X and Y during CCM analysis. Each of these

cross mapping results were found be looking for the peaks of each line in Fig. 47.

The times listed under each ρ is the time to predict tp on the x-axis associated with

a particular line’s peak. A range of tp values is listed whenever the curve segment

adjacent to the maximum cross mapping skill ρ remained subjectively close to the

maximum. This plateau of the strongest observed cross map skill ρ defined by the
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Figure 48. Convergent Cross Mapping Forecast Skill ρ and Time to Predict tp Expressed
as a Graph (‘City’ Driving Scenario)

range of tp values on the x-axis is intended to represent the range of times the causal

physical process was observed to cause an effect on affected process.

Ideally, approximately the same maximum cross map skill ρ and its corresponding

time to predict tp are observed regardless of which shadow manifold is used during

CCM. If the results significantly differ based on the shadow manifold used then there

is uncertainty about how to interpret the dissimilar findings. Such uncertainty could

mean that CCM may not be viable for quantifying causal relationships between au-

tomotive CPS. The comparisons shown in Fig. 48 suggest that this is not the case.

Comparing the red and blue results for each causal relationship reveals a consistent
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maximum ρ and corresponding tp regardless of the shadow manifold used during

CCM. Each pair of findings presented using red and blue text next to each directed

causal relationship reveals overlapping time to predict tp ranges for the maximal

observed cross map skill ρ. The only counter example of this trend is the causal re-

lationship from RPM onto brake pressure. Findings from the RPM shadow manifold

had a different tp and ρ result compared to the results from using the Brake Pressure

shadow manifold.
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Figure 49. Convergent Cross Mapping Forecast Skill ρ With Respect to Library Size
(Controlled Driving Scenario)
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Figure 50. Convergent Cross Mapping Forecast Skill ρ With Respect to Library Size
(‘City’ Driving Scenario)

Section 6.1 discussed the limitation that CCM may reflect causal relationships
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which are idiosyncratic to the particular set of driving conditions. Using the controlled

driving scenario described in Section 3.2 as an example, braking pressure was only

applied at low speed and low engine RPM. CCM analysis of that driving scenario

is presented in Fig. 49. The maximal cross map skill ρ presented in the middle plot

of Fig. 49 suggests that engine RPM has a relatively weak causal relationship onto

brake pressure compared to brake causing RPM. Fig. 50, based on the ‘city’ driving

scenario, flips these relative strengths and significantly lowers both. This inconsistent

pair of findings mirrors the conflicted results highlighted at the conclusion of the

previous paragraph discussing Fig. 48.

It is unclear why only the relationships quantified by using the engine RPM shadow

manifold to cross map onto brake pressure were the only ones to suffer from inconsis-

tent results when comparing different shadow manifolds and driving scenarios. This

inconsistency may be caused by the fact that the driving samples were collected us-

ing vehicle 14 which is a high efficiency hybrid sedan. The combination of the hybrid

system dynamically turning off the internal combustion engine, the driver’s dynamic

decision making on when to apply braking and acceleration, and the relatively brief

sample duration of approximately four minutes may all be contributing factors that

led to an inconsistent observed relationship between engine RPM and braking pres-

sure. Inconsistent findings may be avoidable if experimental design best practices are

explored using targeted research designed to test when inconclusive CCM results do

and do not occur given different combinations of vehicles, drivers, driving scenarios,

and sample duration.

Subtle Causal Relationships.

Some of these CCM results may initially seem to disprove the method’s viability

in the context of automotive network analysis. For example, considering the vehicle
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network from a purely mechanical point of view may lead some to find the result that

engine RPM or vehicle speed has a relatively strong causal effect on brake pressure

preposterous. However, deeper consideration of these results in particular actually

highlights the power of EDM in the context of semantic analysis of cyber-physical

systems (CPS).

There is certainly no mechanical causal relationship from current vehicle speed or

engine RPM onto future brake pressure; only the driver (and to a small degree some

special systems like Anti-Lock Brakes) control brake pressure. Therein lies the deeper

finding being made by this CCM analysis. The driver knows they need to come to a

stop or significantly slow down in the near future. This causes the driver to decrease

pressure on the accelerator (and consequently reduce acceleration and engine RPM) in

anticipation of the braking event. Soon thereafter they transition to applying brake

pressure. For this particular driver, CCM analysis indicates that these transition

events took approximately 3 seconds. Thus there is a clear causal relationship from

a change in vehicle speed and engine RPM onto future brake pressure conveyed not

through mechanical means, but through the driver.

6.5 Comparing Prediction Accuracy to Statistical Methods

This section briefly highlights the predictive power of one EDM technique—Multi-

view embedding (MVE)—compared to a statistical prediction method like ordinary

least squares linear regression. Section 6.3 highlighted the result that vehicle speed,

engine RPM, and brake pressure appear to exhibit highly linear system behavior. The

phase plots of vehicle speed, engine RPM, and braking pressure shown in Fig. 35, 36,

and 37 visually demonstrate the linear system behavior of these features. These

findings motivated the selection of linear regression as the base case for a statistical

modeling technique to compare with an EDM alternative. Brake pressure was selected
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as the response variable being predicted by the other two features because of its

relatively non-linear behavior identified by simplex projection, S-map, and visual

analysis of 3D phase plots.
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Figure 51. Actual Brake Pressure and Predicted Brake Pressure Using Ordinary Least
Squares Linear Regression (‘City’ Driving Scenario)

Fig. 51 presents the actual brake pressure over time over time in a ‘city’ driving

sample as a solid black curve. The dashed black curve is the predicted brake pressure

over time using linear regression with vehicle speed and engine RPM as the indepen-

dent variables. The coefficient of determination R2 for this model was 0.102. This

may be interpreted that the linear regression model could only explain approximately

10% of the variance in braking pressure.

Fig. 52 presents the result using the same sample with MVE [53, 85, 89]. MVE
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Figure 52. Actual Brake Pressure and Predicted Brake Pressure Using Multiveiw
Embedding (‘City’ Driving Scenario)

works similarly to CCM except more than one feature and their lags are used during

manifold reconstruction. In this case only the vehicle speed and engine RPM time

series were used to create the manifold. The dashed black curve is the predicted

brake pressure over time using the MVE manifold. The coefficient of determination

R2 for this model was 0.61. This represents just over a 50% increase in variance

explained compared to linear regression.

6.6 Conclusions

The ability to quantify the subtle, indirect, but nevertheless important causal

relationships coupled with the largely unsupervised nature of EDM methods make
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them particularly well suited for CPS semantic analysis and IDS research. Because

EDM is uniquely capable of detecting causal relationships present in dynamic sys-

tems, it provides a natural compliment to the semantic analysis techniques presented

in Chapter V. These two semantic analysis techniques provide a wealth of informa-

tion about the relationships among time series. We believe that additional semantic

analysis is likely possible by studying a graph structure created using signals clusters

as nodes and causal relationships between clusters as edges. Such graph based analy-

sis may greatly extend the utility of label propagation by enabling inductive labeling

of unlabeled signal clusters based on their causal relationships to labeled clusters.
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VII. Conclusions

This dissertation motivated the need to automate lexical and semantic analysis for

Cyber-Physical System (CPS) networks such as the Controller Area Network (CAN)

bus used in passenger vehicles. Chapter IV presented techniques for automated lexi-

cal analysis intended to extract time series from proprietary payload formats. Auto-

mated semantic analysis of those payloads included finding correlated relationships

in Chapter V and causal relationship in Chapter VI. An array of validation metrics

and strategies were presented for each type of analysis.

All three focus areas—lexical analysis, semantic analysis, and validation—represent

significant novel contributions to the field of automated analysis of proprietary CPS

networks. These unsupervised techniques are intended to be a springboard for the in-

dependent cyber-security research community. They are expected to be of direct and

immediate use to the cyber-security auditing community. This is because they repre-

sent a very educated initial guess for the correct payload tokenization and functional

mapping of between time series present in the vehicle network. Auditors can quickly

and easily tweak this guess as needed until they are confident that the payloads have

been correctly reverse engineered. This reduces the time required for manual reverse

engineering from days down to hours or even minutes.

The research community is likewise expected to benefit by having a robust set of

techniques and validation strategies to improve future research. A consistent chal-

lenge for research in the CPS network domain is access to truth data for validating

techniques and findings. The comparison testing strategies presented in this paper

may be of direct use in future research or at least inspire similar research on how to

perform validation without truth data. The successful application of techniques from

Life Sciences research may also serve as inspiration to look beyond statistical machine

learning research.
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The output of these techniques may also enable the efficient generation of large

and diverse labeled data sets. Access to such data sets is expected to enable the devel-

opment of superior automated lexical and semantic analysis of proprietary networks

using supervised machine learning methods. Labeled data sets may also significantly

aid research in robust CPS network simulation techniques. Until that time, these

techniques may serve as a reliable ‘gold standard’ for computer aided analysis of

proprietary non-text network protocols.
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VIII. Future Work

The relatively new and compelling field of Empirical Data Modeling (EDM)

presents a significantly opportunity to improve the state of the art in semi-supervised

machine learning. For example, the semi-supervised learning pipeline proposed by

Glennan et al. was discussed in Section 2.5 and presented in Fig. 12. That pipeline

represented a sequence of unsupervised clustering to produce a fully labeled data

set, supervised classification, and then another unsupervised clustering phase to im-

plement a fuzzy classification strategy. It is expected that some data may remain

effectively unclassified (using the ‘unknown’ label) if very few or no labeled data are

present in a particular cluster during either clustering step. Using EDM in the con-

text of CPS network semantic analysis where the majority of data are expected to

be time series, it may be possible to leverage causal relationships between clusters to

classify more of the remaining unlabeled data. To demonstrate this, consider Fig. 53

which presents the output of a hypothetical semi-supervised data set labeling process.
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Figure 53. Example Result of Semi-Supervised Data Set Labeling

The points in the Speed and RPM clusters with black text represent the originally
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labeled time series. In the case of automotive CAN network analysis, these labels

may have come from correlation with limited J9179 diagnostic information. The other

points in these two clusters with underlined grey or white text represent additional

time series that were labeled by being in the same cluster of correlated time series.

This process is referred to as label propagation in semi-supervised machine learning

research [9, 10, 19, 80].

Current semi-supervised machine learning proposals have no reasonable means

to label the points in the blue cluster. This is because they don’t have the benefit

of knowing causal relationships between clusters which is possible using EDM with

time series data sets. The graph structure produced by adding causal links between

clusters along with some limited manual reverse engineering may sufficient to train

a supervised classifier to identify the blue cluster. For example, manual reverse engi-

neering several vehicles may reveal that brake pressure signals consistently produce a

cluster with the relative strengths of causal relationships to vehicle speed and engine

RPM clusters as shown in Fig. 531. These labeled weighted directed graphs could be

used to train a supervised classifier to identify one or more of these clusters based on

the graph structure and labeled clusters. A hypothetical result of this graph based

cluster classification is shown in Fig. 54.

The weighted directed graph and labeled clusters might be iteratively passed as

input to the classifier to label more clusters much like how the game of Sudoku

is played. For example, imagine that there are several more unlabeled clusters than

those shown in Fig. 54 with corresponding observed causal relationships between each

pair of clusters. The classifier may not be confident in its classification of those other

clusters using only the Speed and RPM cluster labels; however, it is confident in its

1The decision on exactly how the measure the strength of causation between time series in one
cluster to those in another is very similar to selecting a linkage strategy during Agglomerative
Hierarchical clustering
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Figure 54. Example Result of Semi-Supervised Data Set Labeling Augmented With
Graph Based Classification

classification of the brake cluster. The same graph is passed back to the classifier

but now three clusters—Speed, RPM, and Brake—are labeled. Assume this third

label increases the confidence for labeling one or more of the other unlabeled clusters

of time series above a minimum threshold. This process is repeated until no new

labels are assigned. At which point the researcher might decide to manually reverse

engineer the remaining clusters and re-train the classifier. This process of iterative

improving the graph based classifier might continue until the entire vehicle CAN

bus can be accurately classified using the a few J1979 diagnostics and the weighted

directed graph produced using the techniques described in this paper. Such a result

would hopefully encourage manufacturers to abandon their policy of security through

obscurity in favor of legitimate cyber-security mechanisms.
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Appendix A. Additional Background Information on
Automated Network Traffic Reverse Engineering

This dissertation is not the only work to recognize the applicability of life science

techniques to the field of automated network traffic reverse engineering. In his 2004

Toorcon presentation, Beddoe highlighted the similarities between bioinformatics and

protocol reverse engineering [122]. His presentation and self published paper proposed

using the Needleman Wunsch algorithm, the Smith Waterman algorithm[123], the

Unweighted Pairwise Mean by Arithmetic Averages (UPGMA) algorithm, and Phy-

logenetic Trees developed within the bioinformatics community to reverse engineer

Microsoft’s SMB protocol [124] . In addition to the presentation and paper, Beddoe

also uploaded his prototype code for using these ideas to reverse engineer SMB to a

public GitHub repository1. Beddoe does not appear to have published any evaluation

of his proposals.

Weng et al. also explored the idea of using the Needlman-Wunsch algorithm as a

component in their 2012 conference paper “A semantics aware approach to automated

reverse engineering unknown protocols” [52]. Their approach is to iteratively consider

various n-grams of various byte lengths given a string generated by a stateful appli-

cation layer protocol. They then used the bottleneck clustering algorithm to group

similar n-grams based upon bespoke heuristics about the contents of the n-grams.

Finally, they employed the Needleman-Wunsch algorithm to align and combine the

n-grams within a cluster to produce a final candidate for a lexical token. Several

other papers also considered the use of unsupervised clustering as part of an auto-

mated reverse engineering approach for a stateful, text based, variable packet length,

application layer protocols such as Server Message Block (SMB) and File Transfer

Protocol (FTP) [50, 51, 125, 126, 127].

1https://github.com/unmarshal/protocol-informatics
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The use of taint analysis also appears to be a popular method for achieving auto-

mated reverse engineering of network protocols [95, 128, 129, 130, 131]. Taint analysis

is essentially accessing to the memory being used by a process communicating with

the target protocol to infer a finite state machine that conforms to the protocol stan-

dard as well as the message format used in the protocol. We propose that direct

access to the memory in each of a vehicle’s ECUs is not a realistic data collection

method so taint analysis are not considered further. However, taint analysis may be

effective in the context of the medical electronics industry which may have relatively

fewer models and ECUs per machine than the automotive industry.

DeYoung, Puupera, Roning, and Antunes et al. present methods for inferring a

finite automata compliant with an observed application layer network trace using

methods from the field of computational linguistics [50, 51, 125, 132]. Puupera used

the concept of local search using the idea of suffix arrays. Unfortunately, the authors

realized that their approach was too simplistic for their goal of inferring automata

from variable length network protocols and no meaningful results were pursued. Sim-

ilar work by the same research team based on context free grammars continue as part

of the PROTOS project [51].

Three proposals by Choi et al., Trifilo et al., and Cui et al. featured methods for

reverse engineering protocol format using a combination of statistical analysis and

machine learning [18, 49, 133]. Trifilio et al. assumed a payload should be tokenized

into one byte signals. The authors then looked for the variance of each signal as an

indication for which were static protocol keywords. They applied bespoke heuristics

for determining which levels of variance defined static and dynamic signals when

generating a protocol automata. Choi et al. presented a non-text protocol reverse

engineering effort also relying on the assumption that sub-flows are one or more bytes

of data [49]. The approach ultimately leveraged a series of custom heuristic filters
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to achieve approximately 40% accuracy in predicting the sub-flows used in a custom

IEEE 802.15.4 protocol. In a separate paper, Cui et al. relied upon predictable text

delimiters like spaces and tabs for text portions of observed network traffic and one

byte segments for non-text network traffic to perform lexical analysis [18]. Tokens

were clustered based on 20 statistical properties similar to those presented in Table

5. A second round of clustering with additional features was done to identified sub-

clusters within the larger clusters identified during the first iteration. Then, any

pairs of tokens with potential dependencies (such as a numerical token followed by a

text token of that length) are merged. Afterwards, tokens in the same sub-clusters

with significantly similar statistical properties are ‘merged’ into a single token. This

process continues until all dependent and similar tokens are merged. Finally, the

Needleman-Wunsch algorithm is used to align the remaining tokens with overlaps

using heuristic distance measurements. This pipeline is presented in Fig. 55.

The 1997 conference paper ‘Segmentation of expository texts by hierarchical ag-

glomerative hierarchical clustering’ by Yaari et al. demonstrated the effectiveness of

agglomerative clustering for accurate tokenization of natural language text [30]. While

their effort leveraged a known grammar being used by the corpus of text being seg-

mented, it nevertheless demonstrates the effectiveness of agglomerative hierarchical

clustering in a segmentation effort of similar complexity to CAN payload tokenization.

Muter’s ‘Entropy-based anomaly detection for in-vehicle networks’ demonstrates

the effectiveness of using entropy as a statistical feature for signal comparison in

the automotive network domain. Muter’s approach was to calculate the entropy of

signals at the bit level, arbitration ID level, and total network level. A notion of

‘distance’ between signals was then calculated using the probability distributions of

their entropy, p(x) and q(x) respectively, to calculate the relative entropy as shown
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Figure 55. Overview of Discoverer’s architecture presented as Fig. 1 in [18]

in equation 8.

RelEnt(p/q) =
∑
x∈Cx

p(x)log
p(x)

q(x)
(8)

Muter then used the levels of entropy and cross entropy to establish a notion of

vehicle state. The insight proposed is that a parked vehicle generates signals which

have much lower entropy than when the vehicle is moving. Thus, establishing ranges

of entropy and cross entropy for each signal in a CAN network given different driving

conditions enables the creation of a model describing the vehicle network that is

simultaneously insensitive to ‘normal’ fluctuations in signals while being sensitive to

deviations in entropy caused by new data caused by an attack. Deviations which

exceeded a heuristic threshold were considered an attack. This method was able to

detect a simulated attack on vehicle speed related signals for any value greater than

±1 kph from the legitimate speed related signals.

In the context of classifying network signals, the term semi-supervised classifica-

tion is defined by a majority of published proposals as training a supervised classifier

that somehow makes use of unsupervised clustering before or after the classification

process. This is done to expand the number of labeled classes and to improve clas-
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sification accuracy. The main differentiation between the approaches is the choice of

clustering algorithm, classification algorithm, and distance metrics.

Two clustering algorithms used by semi-supervised reverse engineering proposals

are DBSCAN and k-means [10, 19, 80, 134, 135]. The important difference between

these two methods is k-means guarantees every data point is added to a cluster.

DBSCAN treats outlying points as noise which can remained unclustered in the final

result. With the exception of the proposal by Ducange et al., these proposals all relied

upon the k-Nearest Neighbors (k-NN) classifier. Ducange et al. instead chose to use a

multi-objective fuzzy classifier [136]. k-NN may be the more common choice because

of its consistent accuracy, simplicity, and computational complexity [80, 137].

The specific classifier used by Ducange et al. is a Multi-objective Evolutionary

Fuzzy Classifier (MOEFC) which combined a Multi-Objective Evolutionary Algo-

rithm (MOEA) and Fuzzy Rule-based Classifier (FRBC). The FBRC relies on a rule

base(RB) which is a database of the decision rules used to classify data. A deci-

sion rule in this context is essentially a feature and threshold for separating classes.

The MOEFC simultaneously optimizes the total rule length(TRL) of the RB and the

FBRC’s classification accuracy. In other words, an excessive TRL (the number of

propositions used in the antecedents of the RB) is over-fitting the classifier and re-

duces the ease of interpreting the classification decisions. The balance between TRL

and classifier accuracy is made using the Pareto Archived Evolution Strategy(PAES)

rule and condition selection (RCS) algorithm [138]. Ducange et al. note that they

used the “2+2” variant of the M-PEAS algorithm presented in [139].

These papers followed two trends for using statistical features and distance met-

rics. These trends are to either use one specific measurement like cross entropy and

vector cosine similarity or a ‘kitchen sink’ approach of using as many features as pos-

sible [10, 9, 80, 19, 134, 135]. An example of the types and number of statistics used
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Figure 56. A set of statistical network traffic features used by [19]

in a ‘kitchen sink’ approach is shown in Fig. 56. Glennan et al. note that the ‘kitchen

sink’ approach has the drawback that some features may actually inhibit classifica-

tion performance [9]. To account for this, they incorporated feature selection as part

of their semi-supervised proposal in order to select a subset of the 40 features they

initially consider.
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Appendix B. Agglomerative Hierarchical Clustering
Dendrograms

The following Dendrograms provide a visualization of the clustering distance be-

tween signal clusters for each vehicle studied. The horizontal portion of each upside

down U shape corresponds to the distance between clusters specified by level listed

on the y-axis. The x-axis is unlabeled but corresponds to the individual signals ob-

served in the vehicle’s CAN bus network. The unique signal identifiers have been

omitted from these figures to prevent clutter. A gray dashed horizontal line indicates

the 0.2 maximum inter-cluster threshold used during single linkage Agglomerative

Hierarchical Clustering.
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Figure 57. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 0
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Figure 58. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 1
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Figure 59. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 2
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Figure 60. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 3
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Figure 61. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 4
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Figure 62. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 5
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Figure 63. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 6
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Figure 64. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 7
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Figure 65. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 8
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Figure 66. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 9
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Figure 67. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 10
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Figure 68. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 11
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Figure 69. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 12
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Figure 70. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 13
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Figure 71. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 14
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Figure 72. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 15
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Figure 73. Dendrogram of Agglomerative Hierarchical Clustering for Vehicle 16
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50. R. L. S. Puuperä, “Domain Model Based Black Box Fuzzing Using Regular
Languages,” University of Oulu, 2010.

144
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