rusefi/firmware/controllers/algo/signal_executor.cpp

140 lines
4.0 KiB
C++

/**
* @file signal_executor.c
*
* todo: we should split this file into two:
* one for pure scheduling and another one for signal output which would
* use the scheduling
*
* @date Dec 4, 2013
* @author Andrey Belomutskiy, (c) 2012-2014
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "signal_executor.h"
#include "efiGpio.h"
#include "engine.h"
/**
* Signal executors feed digital events right into WaveChart used by Sniffer tab of Dev Console
*/
#include "rpm_calculator.h"
EXTERN_ENGINE;
#include "wave_chart.h"
extern WaveChart waveChart;
#if EFI_PROD_CODE || EFI_SIMULATOR
static Logging logger;
#endif
extern OutputPin outputs[IO_PIN_COUNT];
extern pin_output_mode_e *pinDefaultState[IO_PIN_COUNT];
void initSignalExecutor(void) {
#if EFI_PROD_CODE || EFI_SIMULATOR
initLogging(&logger, "s exec");
#endif
initSignalExecutorImpl();
}
void initOutputSignal(OutputSignal *signal, io_pin_e ioPin) {
signal->io_pin = ioPin;
}
uint32_t dbgStart;
uint32_t dbgDurr;
extern const char *namedPinsArray[NAMED_PIN_COUNT];
void turnPinHigh(io_pin_e pin) {
#if EFI_DEFAILED_LOGGING
// signal->hi_time = hTimeNow();
#endif /* EFI_DEFAILED_LOGGING */
// turn the output level ACTIVE
// todo: this XOR should go inside the setOutputPinValue method
doSetOutputPinValue(pin, true);
// sleep for the needed duration
#if EFI_WAVE_CHART
// explicit check here is a performance optimization to speed up no-chart mode
if (CONFIG(isDigitalChartEnabled)) {
// this is a performance optimization - array index is cheaper then invoking a method with 'switch'
const char *pinName = namedPinsArray[pin];
// dbgDurr = hal_lld_get_counter_value() - dbgStart;
addWaveChartEvent(pinName, WC_UP);
}
#endif /* EFI_WAVE_ANALYZER */
// dbgDurr = hal_lld_get_counter_value() - dbgStart;
}
void turnPinLow(io_pin_e pin) {
// turn off the output
doSetOutputPinValue(pin, false);
#if EFI_DEFAILED_LOGGING
systime_t after = hTimeNow();
debugInt(&signal->logging, "a_time", after - signal->hi_time);
scheduleLogging(&signal->logging);
#endif /* EFI_DEFAILED_LOGGING */
#if EFI_WAVE_CHART
if (CONFIG(isDigitalChartEnabled)) {
// this is a performance optimization - array index is cheaper then invoking a method with 'switch'
const char *pinName = namedPinsArray[pin];
addWaveChartEvent(pinName, WC_DOWN);
}
#endif /* EFI_WAVE_ANALYZER */
}
int getRevolutionCounter(void);
/**
*
* @param delay the number of ticks before the output signal
* immediate output if delay is zero
* @param dwell the number of ticks of output duration
*
*/
void scheduleOutput(OutputSignal *signal, float delayMs, float durationMs) {
if (durationMs < 0) {
firmwareError("duration cannot be negative: %d", durationMs);
return;
}
if (cisnan(durationMs)) {
firmwareError("NaN in scheduleOutput", durationMs);
return;
}
efiAssertVoid(signal!=NULL, "signal is NULL");
int index = getRevolutionCounter() % 2;
scheduling_s * sUp = &signal->signalTimerUp[index];
scheduling_s * sDown = &signal->signalTimerDown[index];
scheduleTask("out up", sUp, (int) MS2US(delayMs), (schfunc_t) &turnPinHigh, (void *) signal->io_pin);
scheduleTask("out down", sDown, (int) MS2US(delayMs) + MS2US(durationMs), (schfunc_t) &turnPinLow, (void*) signal->io_pin);
}
io_pin_e getPinByName(const char *name) {
if (startsWith(name, "spa")) {
int index = atoi(name + 3);
return (io_pin_e) ((int) SPARKOUT_1_OUTPUT - 1 + index);
}
return IO_INVALID;
}