rusefi/firmware/controllers/algo/engine_configuration.cpp

1087 lines
32 KiB
C++

/**
* @file engine_configuration.cpp
* @brief Utility method related to the engine configuration data structure.
*
* @date Nov 22, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "pch.h"
#include "speed_density.h"
#include "advance_map.h"
#include "flash_main.h"
#include "bench_test.h"
#if EFI_ONBOARD_MEMS
#include "accelerometer.h"
#endif
#include "defaults.h"
#include "bmw_m52.h"
#include "bmw_m73.h"
#include "canam.h"
#include "custom_engine.h"
#include "dodge_neon.h"
#include "dodge_ram.h"
#include "engine_template.h"
#include "ford_aspire.h"
#include "ford_1995_inline_6.h"
#include "f136.h"
#include "honda_k_dbc.h"
#include "honda_600.h"
#include "honda.h"
#include "honda_obd1.h"
#include "hyundai.h"
#include "GY6_139QMB.h"
#include "nissan_primera.h"
#include "nissan_vq.h"
#include "mazda_miata.h"
#include "mazda_miata_1_6.h"
#include "mazda_miata_na8.h"
#include "mazda_miata_vvt.h"
#include "m111.h"
#include "mercedes.h"
#include "gm_ls_4.h"
#include "gm_sbc.h"
#include "subaru.h"
#include "slingshot.h"
#include "test_engine.h"
#include "sachs.h"
#include "harley.h"
#include "vw.h"
#include "vw_b6.h"
#include "toyota_jz.h"
#include "toyota_1NZ_FE.h"
#include "mitsubishi_3A92.h"
#include "mitsubishi_4G93.h"
#include "ford_festiva.h"
#include "boost_control.h"
#if EFI_IDLE_CONTROL
#include "idle_thread.h"
#endif /* EFI_IDLE_CONTROL */
#if EFI_ALTERNATOR_CONTROL
#include "alternator_controller.h"
#endif
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "electronic_throttle.h"
#endif
#if EFI_HIP_9011
#include "hip9011.h"
#endif
#include "hardware.h"
#if EFI_PROD_CODE
#include "board.h"
#endif /* EFI_PROD_CODE */
#if EFI_EMULATE_POSITION_SENSORS
#include "trigger_emulator_algo.h"
#endif /* EFI_EMULATE_POSITION_SENSORS */
#if EFI_TUNER_STUDIO
#include "tunerstudio.h"
#endif
//#define TS_DEFAULT_SPEED 115200
#define TS_DEFAULT_SPEED 38400
/**
* Current engine configuration. On firmware start we assign empty configuration, then
* we copy actual configuration after reading settings from flash.
* This is useful to compare old/current (activeConfiguration) and new/future (engineConfiguration) configurations in order to apply new settings.
*
* todo: place this field next to 'engineConfiguration'?
*/
static bool hasRememberedConfiguration = false;
#if EFI_ACTIVE_CONFIGURATION_IN_FLASH
#include "flash_int.h"
engine_configuration_s & activeConfiguration = reinterpret_cast<persistent_config_container_s*>(getFlashAddrFirstCopy())->persistentConfiguration.engineConfiguration;
// we cannot use this activeConfiguration until we call rememberCurrentConfiguration()
bool isActiveConfigurationVoid = true;
#else
static engine_configuration_s activeConfigurationLocalStorage;
engine_configuration_s & activeConfiguration = activeConfigurationLocalStorage;
#endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */
void rememberCurrentConfiguration() {
#if ! EFI_ACTIVE_CONFIGURATION_IN_FLASH
memcpy(&activeConfiguration, engineConfiguration, sizeof(engine_configuration_s));
#else
isActiveConfigurationVoid = false;
#endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */
hasRememberedConfiguration = true;
}
static void wipeString(char *string, int size) {
// we have to reset bytes after \0 symbol in order to calculate correct tune CRC from MSQ file
for (int i = strlen(string) + 1; i < size; i++) {
string[i] = 0;
}
}
static void wipeStrings() {
wipeString(engineConfiguration->engineMake, sizeof(vehicle_info_t));
wipeString(engineConfiguration->engineCode, sizeof(vehicle_info_t));
wipeString(engineConfiguration->vehicleName, sizeof(vehicle_info_t));
}
void onBurnRequest() {
wipeStrings();
incrementGlobalConfigurationVersion("burn");
}
/**
* this hook is about https://github.com/rusefi/rusefi/wiki/Custom-Firmware and https://github.com/rusefi/rusefi/wiki/Canned-Tune-Process
*
*/
PUBLIC_API_WEAK void boardTuneDefaults() { }
PUBLIC_API_WEAK void boardEngineTypeTune(engine_type_e engineType) { }
// Weak link a stub so that every board doesn't have to implement this function
PUBLIC_API_WEAK void boardOnConfigurationChange(engine_configuration_s* /*previousConfiguration*/) { }
/**
* this is the top-level method which should be called in case of any changes to engine configuration
* online tuning of most values in the maps does not count as configuration change, but 'Burn' command does
*
* this method is NOT currently invoked on ECU start - actual user input has to happen!
* See 'preCalculate' or 'startHardware' which are invoked BOTH on start and configuration change
*/
void incrementGlobalConfigurationVersion(const char * msg) {
assertStackVoid("increment", ObdCode::STACK_USAGE_MISC, EXPECTED_REMAINING_STACK);
if (!hasRememberedConfiguration) {
criticalError("too early to invoke incrementGlobalConfigurationVersion %s", msg);
}
engine->globalConfigurationVersion++;
#if EFI_DEFAILED_LOGGING
efiPrintf("set globalConfigurationVersion=%d", globalConfigurationVersion);
#endif /* EFI_DEFAILED_LOGGING */
applyNewHardwareSettings();
boardOnConfigurationChange(&activeConfiguration);
engine->preCalculate();
#if EFI_ELECTRONIC_THROTTLE_BODY
onConfigurationChangeElectronicThrottleCallback(&activeConfiguration);
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
#if EFI_ENGINE_CONTROL && EFI_PROD_CODE
onConfigurationChangeBenchTest();
#endif
#if EFI_SHAFT_POSITION_INPUT
onConfigurationChangeTriggerCallback();
#endif /* EFI_SHAFT_POSITION_INPUT */
#if EFI_EMULATE_POSITION_SENSORS && ! EFI_UNIT_TEST
onConfigurationChangeRpmEmulatorCallback(&activeConfiguration);
#endif /* EFI_EMULATE_POSITION_SENSORS */
engine->engineModules.apply_all([](auto & m) {
m.onConfigurationChange(&activeConfiguration);
});
rememberCurrentConfiguration();
}
/**
* @brief Sets the same dwell time across the whole getRpm() range
* set dwell X
*/
void setConstantDwell(floatms_t dwellMs) {
for (int i = 0; i < DWELL_CURVE_SIZE; i++) {
config->sparkDwellRpmBins[i] = 1000 * i;
}
setArrayValues(config->sparkDwellValues, dwellMs);
}
void setWholeIgnitionIatCorr(float value) {
setTable(config->ignitionIatCorrTable, value);
}
void setFuelTablesLoadBin(float minValue, float maxValue) {
setLinearCurve(config->injPhaseLoadBins, minValue, maxValue, 1);
setLinearCurve(config->veLoadBins, minValue, maxValue, 1);
setLinearCurve(config->lambdaLoadBins, minValue, maxValue, 1);
}
void setWholeIatCorrTimingTable(float value) {
setTable(config->ignitionIatCorrTable, value);
}
/**
* See also crankingTimingAngle
*/
void setWholeTimingTable_d(angle_t value) {
setTable(config->ignitionTable, value);
}
#if EFI_ENGINE_CONTROL
static void initTemperatureCurve(float *bins, float *values, int size, float defaultValue) {
for (int i = 0; i < size; i++) {
bins[i] = -40 + i * 10;
values[i] = defaultValue; // this correction is a multiplier
}
}
#endif // EFI_ENGINE_CONTROL
void prepareVoidConfiguration(engine_configuration_s *p_engineConfiguration) {
criticalAssertVoid(p_engineConfiguration != NULL, "ec NULL");
efi::clear(p_engineConfiguration);
p_engineConfiguration->clutchDownPinMode = PI_PULLUP;
p_engineConfiguration->clutchUpPinMode = PI_PULLUP;
p_engineConfiguration->brakePedalPinMode = PI_PULLUP;
}
void setDefaultBasePins() {
#if EFI_PROD_CODE
// call overrided board-specific serial configuration setup, if needed (for custom boards only)
// needed also by bootloader code
setPinConfigurationOverrides();
#endif /* EFI_PROD_CODE */
// set UART pads configuration based on the board
// needed also by bootloader code
#ifdef TS_SECONDARY_UxART_PORT
engineConfiguration->binarySerialTxPin = Gpio::C10;
engineConfiguration->binarySerialRxPin = Gpio::C11;
#endif // TS_SECONDARY_UxART_PORT
engineConfiguration->tunerStudioSerialSpeed = TS_DEFAULT_SPEED;
engineConfiguration->uartConsoleSerialSpeed = 115200;
}
// needed also by bootloader code
// at the moment bootloader does NOT really need SD card, this is a step towards future bootloader SD card usage
void setDefaultSdCardParameters() {
engineConfiguration->isSdCardEnabled = true;
}
#if EFI_ENGINE_CONTROL
static void setDefaultWarmupIdleCorrection() {
initTemperatureCurve(CLT_MANUAL_IDLE_CORRECTION, 1.0);
float baseIdle = 30;
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -40, 1.5);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -30, 1.5);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -20, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -10, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 0, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 10, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 20, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 30, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 40, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 50, 37.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 60, 35.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 70, 33.0 / baseIdle);
}
/**
* see also setTargetRpmCurve()
*/
static void setDefaultIdleSpeedTarget() {
copyArray(config->cltIdleRpmBins, { -30, - 20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 , 110, 120 });
copyArray(config->cltIdleRpm, { 1350, 1350, 1300, 1200, 1150, 1100, 1050, 1000, 1000, 950, 950, 930, 900, 900, 1000, 1100 });
}
#endif // EFI_ENGINE_CONTROL
/**
* see also setDefaultIdleSpeedTarget()
*/
void setTargetRpmCurve(int rpm) {
setLinearCurve(config->cltIdleRpmBins, CLT_CURVE_RANGE_FROM, 140, 10);
setLinearCurve(config->cltIdleRpm, rpm, rpm, 10);
}
static void setDefaultGppwmParameters() {
// Same config for all channels
for (size_t i = 0; i < efi::size(engineConfiguration->gppwm); i++) {
auto& cfg = engineConfiguration->gppwm[i];
chsnprintf(engineConfiguration->gpPwmNote[i], sizeof(engineConfiguration->gpPwmNote[0]), "GPPWM%d", i);
// Set default axes
cfg.loadAxis = GPPWM_Zero;
cfg.rpmAxis = GPPWM_Rpm;
cfg.pin = Gpio::Unassigned;
cfg.dutyIfError = 0;
cfg.onAboveDuty = 60;
cfg.offBelowDuty = 50;
cfg.pwmFrequency = 250;
for (size_t j = 0; j < efi::size(cfg.loadBins); j++) {
uint8_t z = j * 100 / (efi::size(cfg.loadBins) - 1);
cfg.loadBins[j] = z;
// Fill some values in the table
for (size_t k = 0; k < efi::size(cfg.rpmBins); k++) {
cfg.table[j][k] = z;
}
}
for (size_t j = 0; j < efi::size(cfg.rpmBins); j++) {
cfg.rpmBins[j] = 1000 * j;
}
}
}
#if EFI_ENGINE_CONTROL
static void setDefaultEngineNoiseTable() {
setRpmTableBin(config->knockNoiseRpmBins);
engineConfiguration->knockSamplingDuration = 45;
setArrayValues(config->knockBaseNoise, -20);
}
#endif // EFI_ENGINE_CONTROL
static void setDefaultCanSettings() {
// OBD-II default rate is 500kbps
engineConfiguration->canBaudRate = B500KBPS;
engineConfiguration->can2BaudRate = B500KBPS;
engineConfiguration->canSleepPeriodMs = 50;
engineConfiguration->canReadEnabled = true;
engineConfiguration->canWriteEnabled = true;
engineConfiguration->canVssScaling = 1.0f;
// Don't enable, but set default address
engineConfiguration->verboseCanBaseAddress = CAN_DEFAULT_BASE;
}
static void setDefaultScriptParameters() {
setLinearCurve(config->scriptTable1LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable1RpmBins);
setLinearCurve(config->scriptTable2LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable2RpmBins);
setLinearCurve(config->scriptTable3LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable3RpmBins);
setLinearCurve(config->scriptTable4LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable4RpmBins);
}
/**
* @brief Global default engine configuration
* This method sets the global engine configuration defaults. These default values are then
* overridden by engine-specific defaults and the settings are saved in flash memory.
*
* This method is invoked only when new configuration is needed:
* * recently re-flashed chip
* * flash version of configuration failed CRC check or appears to be older then FLASH_DATA_VERSION
* * 'rewriteconfig' command
* * 'set engine_type X' command
*
* This method should only change the state of the configuration data structure but should NOT change the state of
* anything else.
*
* This method should NOT be setting any default pinout
*/
static void setDefaultEngineConfiguration() {
#if (! EFI_UNIT_TEST)
efi::clear(persistentState.persistentConfiguration);
#endif
prepareVoidConfiguration(engineConfiguration);
#if EFI_BOOST_CONTROL
setDefaultBoostParameters();
#endif
setDefaultCanSettings();
engineConfiguration->sdCardLogFrequency = 50;
setDefaultGppwmParameters();
setDefaultScriptParameters();
#if EFI_ENGINE_CONTROL
setDefaultBaseEngine();
setDefaultFuel();
setDefaultIgnition();
setDefaultCranking();
// VVT closed loop, totally random values!
engineConfiguration->auxPid[0].pFactor = 2;
engineConfiguration->auxPid[0].iFactor = 0.005;
engineConfiguration->auxPid[0].dFactor = 0;
engineConfiguration->auxPid[0].offset = 33;
engineConfiguration->auxPid[0].minValue = 10;
engineConfiguration->auxPid[0].maxValue = 90;
engineConfiguration->vvtOutputFrequency = DEFAULT_SOLENOID_FREQUENCY; // VVT solenoid control
engineConfiguration->isCylinderCleanupEnabled = true;
engineConfiguration->auxPid[0].minValue = 10;
engineConfiguration->auxPid[0].maxValue = 90;
engineConfiguration->auxPid[1].minValue = 10;
engineConfiguration->auxPid[1].maxValue = 90;
engineConfiguration->turboSpeedSensorMultiplier = 1;
#if EFI_IDLE_CONTROL
setDefaultIdleParameters();
#endif /* EFI_IDLE_CONTROL */
#if EFI_ELECTRONIC_THROTTLE_BODY
setDefaultEtbParameters();
setDefaultEtbBiasCurve();
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
engineConfiguration->mafSensorType = Bosch0280218037;
setBosch0280218037();
engineConfiguration->mapMinBufferLength = 1;
engineConfiguration->vvtActivationDelayMs = 6000;
engineConfiguration->startCrankingDuration = 3;
engineConfiguration->maxAcRpm = 5000;
engineConfiguration->maxAcClt = 100;
engineConfiguration->maxAcTps = 75;
initTemperatureCurve(IAT_FUEL_CORRECTION_CURVE, 1);
engineConfiguration->alternatorControl.minValue = 0;
engineConfiguration->alternatorControl.maxValue = 90;
setLinearCurve(config->scriptCurve1Bins, 0, 100, 1);
setLinearCurve(config->scriptCurve1, 0, 100, 1);
setLinearCurve(config->scriptCurve2Bins, 0, 100, /*precision*/1);
setLinearCurve(config->scriptCurve2, 30, 170, 1);
setLinearCurve(config->scriptCurve3Bins, 0, 100, 1);
setLinearCurve(config->scriptCurve4Bins, 0, 100, 1);
setLinearCurve(config->scriptCurve5Bins, 0, 100, 1);
setLinearCurve(config->scriptCurve6Bins, 0, 100, 1);
setLinearCurve(config->alsIgnRetardLoadBins, 2, 10, /*precision*/1);
setRpmTableBin(config->alsIgnRetardrpmBins);
setLinearCurve(config->alsFuelAdjustmentLoadBins, 2, 10, /*precision*/1);
setRpmTableBin(config->alsFuelAdjustmentrpmBins);
setLinearCurve(config->fuelLevelBins, 0, 5);
setDefaultWarmupIdleCorrection();
setRpmTableBin(engineConfiguration->map.samplingAngleBins);
setLinearCurve(engineConfiguration->map.samplingAngle, 100, 130, 1);
setRpmTableBin(engineConfiguration->map.samplingWindowBins);
setLinearCurve(engineConfiguration->map.samplingWindow, 50, 50, 1);
setLinearCurve(config->vvtTable1LoadBins, 20, 120, 10);
setRpmTableBin(config->vvtTable1RpmBins);
setLinearCurve(config->vvtTable2LoadBins, 20, 120, 10);
setRpmTableBin(config->vvtTable2RpmBins);
setDefaultEngineNoiseTable();
// is this same old setCommonNTCSensor?
engineConfiguration->clt.config = {0, 23.8889, 48.8889, 9500, 2100, 1000, 1500};
setCommonNTCSensor(&engineConfiguration->iat, 2700);
// wow unit tests have much cooler setDefaultLaunchParameters method
engineConfiguration->launchRpm = 3000;
// engineConfiguration->launchTimingRetard = 10;
engineConfiguration->launchRpmWindow = 500;
engineConfiguration->launchSpeedThreshold = 30;
engineConfiguration->engineSnifferRpmThreshold = 2500;
engineConfiguration->sensorSnifferRpmThreshold = 2500;
engineConfiguration->noAccelAfterHardLimitPeriodSecs = 3;
/**
* Idle control defaults
*/
setDefaultIdleSpeedTarget();
// setTargetRpmCurve(1200);
engineConfiguration->idleRpmPid.pFactor = 0.05;
engineConfiguration->idleRpmPid.iFactor = 0.002;
engineConfiguration->idleRpmPid.minValue = -20;
engineConfiguration->idleRpmPid.maxValue = 20;
/**
* between variation between different sensor and weather and fabrication tolerance
* five percent looks like a safer default
*/
engineConfiguration->idlePidDeactivationTpsThreshold = 5;
engineConfiguration->idle.solenoidFrequency = DEFAULT_SOLENOID_FREQUENCY;
// set idle_position 50
engineConfiguration->manIdlePosition = 50;
// engineConfiguration->idleMode = IM_AUTO;
engineConfiguration->idleMode = IM_MANUAL;
engineConfiguration->useStepperIdle = false;
setLinearCurve(config->iacCoastingRpmBins, 0, 8000, 1);
#if !EFI_UNIT_TEST
engineConfiguration->analogInputDividerCoefficient = 2;
#endif
// performance optimization
engineConfiguration->sensorChartMode = SC_OFF;
setTPS1Calibration(convertVoltageTo10bitADC(0),
convertVoltageTo10bitADC(5),
convertVoltageTo10bitADC(5),
convertVoltageTo10bitADC(0));
engineConfiguration->tps2Min = convertVoltageTo10bitADC(0);
engineConfiguration->tps2Max = convertVoltageTo10bitADC(5);
engineConfiguration->tps2SecondaryMin = convertVoltageTo10bitADC(5);
engineConfiguration->tps2SecondaryMax = convertVoltageTo10bitADC(0);
engineConfiguration->idlePositionMin = PACK_MULT_VOLTAGE * 0;
engineConfiguration->idlePositionMax = PACK_MULT_VOLTAGE * 5;
engineConfiguration->wastegatePositionMin = PACK_MULT_VOLTAGE * 0;
engineConfiguration->wastegatePositionMax = PACK_MULT_VOLTAGE * 5;
engineConfiguration->tpsErrorDetectionTooLow = -10; // -10% open
engineConfiguration->tpsErrorDetectionTooHigh = 110; // 110% open
engineConfiguration->oilPressure.v1 = 0.5f;
engineConfiguration->oilPressure.v2 = 4.5f;
engineConfiguration->oilPressure.value1 = 0;
engineConfiguration->oilPressure.value2 = 689.476f; // 100psi = 689.476kPa
engineConfiguration->mapLowValueVoltage = 0;
// todo: start using this for custom MAP
engineConfiguration->mapHighValueVoltage = 5;
engineConfiguration->cylinderBore = 87.5;
setBoschHDEV_5_injectors();
setEgoSensor(ES_14Point7_Free);
engineConfiguration->adcVcc = 3.0;
engineConfiguration->map.sensor.type = MT_MPX4250;
engineConfiguration->baroSensor.type = MT_CUSTOM;
engineConfiguration->baroSensor.lowValue = 0;
engineConfiguration->baroSensor.highValue = 500;
#if EFI_PROD_CODE
engineConfiguration->engineChartSize = 300;
#else
// need more events for automated test
engineConfiguration->engineChartSize = 400;
#endif
engineConfiguration->isMapAveragingEnabled = true;
engineConfiguration->isWaveAnalyzerEnabled = true;
engineConfiguration->acIdleRpmTarget = 900;
engineConfiguration->acDelay = 0.5;
engineConfiguration->acIdleExtraOffset = 15;
/* these two are used for HIP9011 only
* Currently this is offset from fire event, not TDC */
/* TODO: convert to offset from TDC */
engineConfiguration->knockDetectionWindowStart = 15.0 + 5.0;
engineConfiguration->knockDetectionWindowEnd = 15.0 + 45.0;
engineConfiguration->triggerSimulatorRpm = DEFAULT_SELT_STIM_RPM;
engineConfiguration->simulatorCamPosition[0] = DEFAULT_SELT_STIM_VVT0;
engineConfiguration->alternatorPwmFrequency = DEFAULT_SOLENOID_FREQUENCY;
engineConfiguration->isAlternatorControlEnabled = false;
engineConfiguration->driveWheelRevPerKm = 1000;
engineConfiguration->finalGearRatio = 1;
engineConfiguration->vssGearRatio = 3.73;
engineConfiguration->vssToothCount = 21;
engineConfiguration->mapErrorDetectionTooLow = 5;
// todo: default limits should be hard-coded for each sensor type
// https://github.com/rusefi/rusefi/issues/4030
engineConfiguration->mapErrorDetectionTooHigh = 410;
setLinearCurve(config->throttleEstimateEffectiveAreaBins, 0, 100);
engineConfiguration->hip9011Gain = 1;
#endif // EFI_ENGINE_CONTROL
#include "default_script.lua"
}
#if defined(STM32F7) && defined(HARDWARE_CI)
// part of F7 drama looks like we are having a hard time erasing configuration on HW CI :(
#define IGNORE_FLASH_CONFIGURATION true
#endif
// by default, do not ignore config from flash! use it!
#ifndef IGNORE_FLASH_CONFIGURATION
#define IGNORE_FLASH_CONFIGURATION false
#endif
void loadConfiguration() {
#if ! EFI_ACTIVE_CONFIGURATION_IN_FLASH
// Clear the active configuration so that registered output pins (etc) detect the change on startup and init properly
prepareVoidConfiguration(&activeConfiguration);
#endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */
/* If board have any storage */
#if (EFI_STORAGE_INT_FLASH == TRUE) || (EFI_STORAGE_MFS == TRUE)
if (IGNORE_FLASH_CONFIGURATION) {
engineConfiguration->engineType = DEFAULT_ENGINE_TYPE;
resetConfigurationExt(engineConfiguration->engineType);
writeToFlashNow();
} else {
// this call reads configuration from flash memory or sets default configuration
// if flash state does not look right.
readFromFlash();
}
#else
// This board doesn't load configuration, initialize the default
engineConfiguration->engineType = DEFAULT_ENGINE_TYPE;
resetConfigurationExt(engineConfiguration->engineType);
#endif /* (EFI_STORAGE_INT_FLASH == TRUE) || (EFI_STORAGE_MFS == TRUE) */
// Force any board configuration options that humans shouldn't be able to change
setBoardConfigOverrides();
}
void resetConfigurationExt(configuration_callback_t boardCallback, engine_type_e engineType) {
enginePins.reset(); // that's mostly important for functional tests
/**
* Let's apply global defaults first
*/
setDefaultEngineConfiguration();
/**
* custom board engine defaults. Yes, this overlaps with (older) engine_type_e approach.
*/
boardTuneDefaults();
// set initial pin groups
setDefaultBasePins();
if (boardCallback != nullptr) {
boardCallback(engineConfiguration);
}
#if EFI_PROD_CODE
// call overrided board-specific configuration setup, if needed (for custom boards only)
setBoardDefaultConfiguration();
setBoardConfigOverrides();
#endif // EFI_PROD_CODE
engineConfiguration->engineType = engineType;
/**
* And override them with engine-specific defaults
*/
switch (engineType) {
case engine_type_e::MINIMAL_PINS:
// all basic settings are already set in prepareVoidConfiguration(), no need to set anything here
// nothing to do - we do it all in setBoardDefaultConfiguration
break;
#if EFI_UNIT_TEST
case engine_type_e::TEST_ISSUE_366_BOTH:
setTestEngineIssue366both();
break;
case engine_type_e::TEST_ISSUE_366_RISE:
setTestEngineIssue366rise();
break;
case engine_type_e::ET_BOSCH_QUICK_START:
setTestEngineBoschQuickStart();
break;
case engine_type_e::ET_TEST_WITH_BOSCH_QUICK_START:
setTestEngineWithBoschQuickStartCam();
break;
#endif // EFI_UNIT_TEST
#if HW_MICRO_RUSEFI || HW_PROTEUS
case engine_type_e::MERCEDES_M111:
setMercedesM111EngineConfiguration();
break;
#endif
#if HW_MICRO_RUSEFI
case engine_type_e::MRE_VW_B6:
setMreVwPassatB6();
break;
case engine_type_e::MRE_SECONDARY_CAN:
mreSecondaryCan();
break;
case engine_type_e::MRE_SUBARU_EJ18:
setSubaruEJ18_MRE();
break;
case engine_type_e::MRE_BOARD_NEW_TEST:
mreBoardNewTest();
break;
case engine_type_e::BMW_M73_MRE:
case engine_type_e::BMW_M73_MRE_SLAVE:
setEngineBMW_M73_microRusEfi();
break;
case engine_type_e::MRE_BODY_CONTROL:
mreBCM();
break;
#endif // HW_MICRO_RUSEFI
case engine_type_e::HONDA_OBD1:
setHondaObd1();
break;
case engine_type_e::FUEL_BENCH:
fuelBenchMode();
break;
#if HW_PROTEUS || HW_HELLEN_4CHAN || HW_HELLEN_8CHAN
case engine_type_e::HYUNDAI_PB:
setHyundaiPb();
break;
#endif
#if HW_PROTEUS || HW_HELLEN_HONDA
case engine_type_e::HONDA_K:
setHondaK();
break;
#endif
#if HW_HELLEN
case engine_type_e::MAZDA_MIATA_NA96:
setMazdaMiata96();
break;
case engine_type_e::MAZDA_MIATA_NA6:
setMazdaMiataNA6();
break;
case engine_type_e::MAZDA_MIATA_NA94:
setMazdaMiataNA94();
break;
case engine_type_e::MAZDA_MIATA_NB1:
setMazdaMiataNB1();
break;
case engine_type_e::MAZDA_MIATA_NB2:
setMazdaMiataNB2();
break;
case engine_type_e::MAZDA_MIATA_NB2_36:
setMazdaMiataNB2_36();
break;
#endif
#if HW_PROTEUS
case engine_type_e::POLARIS_RZR:
case engine_type_e::MAVERICK_X3:
setMaverickX3();
break;
case engine_type_e::ME17_9_MISC:
setSlingshot();
break;
case engine_type_e::WASTEGATE_PROTEUS_TEST:
proteusDcWastegateTest();
break;
case engine_type_e::PROTEUS_NISSAN_VQ35:
setProteusNissanVQ();
break;
case engine_type_e::PROTEUS_GM_LS_4:
setProteusGmLs4();
break;
case engine_type_e::PROTEUS_VW_B6:
setProteusVwPassatB6();
break;
case engine_type_e::PROTEUS_QC_TEST_BOARD:
proteusBoardTest();
break;
case engine_type_e::PROTEUS_LUA_DEMO:
proteusLuaDemo();
break;
case engine_type_e::HARLEY:
setHarley();
break;
case engine_type_e::PROTEUS_BMW_M73:
setEngineBMW_M73_Proteus();
break;
case engine_type_e::MIATA_PROTEUS_TCU:
setMiataNB2_Proteus_TCU();
break;
case engine_type_e::HONDA_OBD2A:
setProteusHondaOBD2A();
break;
case engine_type_e::PROTEUS_STIM_QC:
proteusStimQc();
break;
case engine_type_e::GM_SBC:
setGmSbc();
break;
#ifdef HARDWARE_CI
case engine_type_e::PROTEUS_ANALOG_PWM_TEST:
setProteusAnalogPwmTest();
break;
#endif // HARDWARE_CI
#endif // HW_PROTEUS
#ifdef HW_HELLEN_MERCEDES
case engine_type_e::HELLEN_128_MERCEDES_4_CYL:
setHellenMercedes128_4_cyl();
break;
case engine_type_e::HELLEN_128_MERCEDES_6_CYL:
setHellenMercedes128_6_cyl();
break;
case engine_type_e::HELLEN_128_MERCEDES_8_CYL:
setHellenMercedes128_8_cyl();
break;
#endif
#ifdef HW_HELLEN_NISSAN
case engine_type_e::HELLEN_121_NISSAN_4_CYL:
setHellen121nissanQR();
break;
case engine_type_e::HELLEN_121_NISSAN_6_CYL:
setHellen121nissanVQ();
break;
#endif
#ifdef HW_HELLEN_HYUNDAI
case engine_type_e::HELLEN_154_HYUNDAI_COUPE_BK1:
setGenesisCoupeBK1();
break;
case engine_type_e::HELLEN_154_HYUNDAI_COUPE_BK2:
setGenesisCoupeBK2();
break;
#endif
#ifdef HW_HELLEN_4CHAN
case engine_type_e::HELLEN_4CHAN_STIM_QC:
alphax4chanStimQc();
break;
#endif // HW_HELLEN_4CHAN
#ifdef HW_HELLEN_8CHAN
case engine_type_e::GM_SBC:
setGmSbc();
break;
#endif
#ifdef HW_HELLEN_121_VAG
case engine_type_e::HELLEN_121_VAG_5_CYL:
setHellen121Vag_5_cyl();
break;
case engine_type_e::HELLEN_121_VAG_V6_CYL:
setHellen121Vag_v6_cyl();
break;
case engine_type_e::HELLEN_121_VAG_VR6_CYL:
setHellen121Vag_vr6_cyl();
break;
case engine_type_e::HELLEN_121_VAG_8_CYL:
setHellen121Vag_8_cyl();
break;
#endif
case engine_type_e::FERRARI_F136:
setF136();
break;
#ifdef HW_HELLEN
case engine_type_e::TOYOTA_1NZ_FE:
setToyota1NZFE();
break;
case engine_type_e::HELLEN_HONDA_BCM:
setHondaCivicBcm();
break;
#endif // HW_HELLEN
#if defined(HW_FRANKENSO) || HW_PROTEUS
// used in HW CI
case engine_type_e::VW_ABA:
setVwAba();
break;
case engine_type_e::FRANKENSO_BMW_M73_F:
setBMW_M73_TwoCoilUnitTest();
break;
#endif // HW_FRANKENSO || HW_PROTEUS
#if defined(HW_FRANKENSO)
case engine_type_e::DEFAULT_FRANKENSO:
setFrankensoConfiguration();
break;
case engine_type_e::FRANKENSO_TEST_33810:
setDiscovery33810Test();
break;
case engine_type_e::TEST_ENGINE:
setTestCamEngineConfiguration();
break;
case engine_type_e::TEST_CRANK_ENGINE:
setTestCrankEngineConfiguration();
break;
case engine_type_e::FRANKENSO_QA_ENGINE:
setFrankensoBoardTestConfiguration();
break;
case engine_type_e::DODGE_NEON_1995:
setDodgeNeon1995EngineConfiguration();
break;
case engine_type_e::DODGE_NEON_2003_CRANK:
setDodgeNeonNGCEngineConfiguration();
break;
case engine_type_e::FORD_ASPIRE_1996:
setFordAspireEngineConfiguration();
break;
case engine_type_e::NISSAN_PRIMERA:
setNissanPrimeraEngineConfiguration();
break;
case engine_type_e::FRANKENSO_MIATA_NA6_MAP:
setMiataNA6_MAP_Frankenso();
break;
case engine_type_e::ETB_BENCH_ENGINE:
setEtbTestConfiguration();
break;
case engine_type_e::L9779_BENCH_ENGINE:
setL9779TestConfiguration();
break;
case engine_type_e::EEPROM_BENCH_ENGINE:
#if EFI_PROD_CODE
setEepromTestConfiguration();
#endif
break;
case engine_type_e::MITSUBISHI_3A92:
setMitsubishi3A92();
break;
case engine_type_e::MITSUBISHI_4G93:
setMitsubishi4G93();
break;
case engine_type_e::FORD_INLINE_6_1995:
setFordInline6();
break;
case engine_type_e::GY6_139QMB:
setGy6139qmbDefaultEngineConfiguration();
break;
case engine_type_e::HONDA_600:
setHonda600();
break;
case engine_type_e::FORD_ESCORT_GT:
setFordEscortGt();
break;
case engine_type_e::DODGE_RAM:
setDodgeRam1996();
break;
case engine_type_e::TEST_ENGINE_VVT:
setTestVVTEngineConfiguration();
break;
case engine_type_e::TEST_DC_WASTEGATE_DISCOVERY:
setTestDcWastegateConfiguration();
break;
case engine_type_e::SACHS:
setSachs();
break;
case engine_type_e::TOYOTA_2JZ_GTE_VVTi:
setToyota_2jz_vics();
break;
case engine_type_e::TEST_33816:
setTest33816EngineConfiguration();
break;
case engine_type_e::TEST_ROTARY:
setRotary();
break;
#endif // HW_FRANKENSO
case engine_type_e::BMW_M52:
bmwM52();
break;
#ifdef HW_SUBARU_EG33
case engine_type_e::SUBARU_EG33:
setSubaruEG33Defaults();
break;
#endif //HW_SUBARU_EG33
default:
firmwareError(ObdCode::CUSTOM_UNEXPECTED_ENGINE_TYPE, "Unexpected engine type: %d", engineType);
}
boardEngineTypeTune(engineType);
applyNonPersistentConfiguration();
}
void emptyCallbackWithConfiguration(engine_configuration_s * p_engineConfiguration) {
UNUSED(p_engineConfiguration);
}
void resetConfigurationExt(engine_type_e engineType) {
resetConfigurationExt(&emptyCallbackWithConfiguration, engineType);
}
void validateConfiguration() {
if (engineConfiguration->adcVcc > 5.0f || engineConfiguration->adcVcc < 1.0f) {
engineConfiguration->adcVcc = 3.0f;
}
engine->preCalculate();
}
void applyNonPersistentConfiguration() {
#if EFI_PROD_CODE
efiAssertVoid(ObdCode::CUSTOM_APPLY_STACK, hasLotsOfRemainingStack(), "apply c");
efiPrintf("applyNonPersistentConfiguration()");
#endif
#if EFI_ENGINE_CONTROL
engine->updateTriggerWaveform();
#endif // EFI_ENGINE_CONTROL
}
void setTwoStrokeOperationMode() {
engineConfiguration->twoStroke = true;
}
void setCamOperationMode() {
engineConfiguration->skippedWheelOnCam = true;
}
void setCrankOperationMode() {
engineConfiguration->skippedWheelOnCam = false;
}
void commonFrankensoAnalogInputs() {
/**
* VBatt
*/
engineConfiguration->vbattAdcChannel = EFI_ADC_14;
}
// These symbols are weak so that a board_configuration.cpp file can override them
BOARD_WEAK void setBoardDefaultConfiguration() { }
// specific firmware builds are meant for specific hardware. In order to provide best user experience on well-known boards sometimes we reduce user flexibility.
BOARD_WEAK void setBoardConfigOverrides() { }
BOARD_WEAK int hackHellenBoardId(int detectedId) { return detectedId; }
BOARD_WEAK void onBoardStandBy() { }
BOARD_WEAK int getBoardMetaOutputsCount() { return 0; }
// default implementation: treat all outputs as low side
BOARD_WEAK int getBoardMetaLowSideOutputsCount() { return getBoardMetaOutputsCount(); }
BOARD_WEAK Gpio* getBoardMetaOutputs() { return nullptr; }
BOARD_WEAK int getBoardMetaDcOutputsCount() { return 0; }